
The Advanced Object-Oriented

Design Mooc Companion

S. Ducasse

April 1, 2024

Copyright 2024 by S. Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations vi

1 Introduction 1

2 Module Exercises 3

2.1 Default flow . 3

2.2 Exercises proposition per Module . 3

I Teacher corner

3 About Pharo and Moocs 7

3.1 A truly excellent and pedagogical language 7

3.2 Some testimonies . 8

3.3 Conclusion . 9

4 Lectures 11

4.1 Possible pedagogical objectives . 11

4.2 Lecture: Essence of OO design from 1/2 to 1 day 12

4.3 Lecture: Pharo in 1 day . 12

4.4 Lecture: Basic OOP in 1/2 to 1 day . 13

4.5 Lecture: Pharo and Object-oriented design in 2 days 14

4.6 Lecture: Advanced object-oriented design lecture example 14

4.7 Conclusion . 16

II Guided Exercices

5 A basic LAN application 19

5.1 Creating the class LNNode . 20

5.2 Sending/receiving packets . 21

5.3 Better printString . 22

5.4 Creating the class LNPacket . 23

5.5 Creating the class LNWorkstation . 24

5.6 Creating the class LNPrinter . 26

5.7 Simulating the LAN . 27

5.8 Conclusion . 28

i

Contents

6 Crafting a simple embedded DSL with Pharo 29

6.1 Getting started . 29

6.2 Rolling a die . 30

6.3 Creating another test . 31

6.4 Instance creation interface . 31

6.5 First specification of a die handle . 33

6.6 Defining the DieHandle class . 34

6.7 Improving programmer experience . 36

6.8 Rolling a die handle . 38

6.9 About Dice and DieHandle API . 38

6.10 Handle’s addition . 39

6.11 Role-playing syntax . 40

6.12 Conclusion . 41

7 Stone paper scissors 43

7.1 Starting with a couple of tests . 44

7.2 Creating the classes . 44

7.3 With messages . 44

7.4 About double dispatch . 47

7.5 A Better API . 47

7.6 About alternative implementations . 48

7.7 Conclusion . 49

8 Revisiting the Die DSL: a case for double dispatch 51

8.1 A little reminder . 52

8.2 [Optional] Alternate way . 52

8.3 New requirements . 53

8.4 Turning requirements into tests . 53

8.5 Introducing faces on DieHandle . 54

8.6 The first implementation . 54

8.7 Sketching double dispatch . 55

8.8 Adding two dice . 55

8.9 Adding a die and a die or a handle . 56

8.10 When the argument is a die handle . 56

8.11 Stepping back . 57

8.12 Now a DieHandle as receiver . 58

8.13 sumWithHandle: on Die class . 59

8.14 Conclusion . 60

9 A little Ssaturn PathFinder 61

9.1 A robot in its space . 62

9.2 Scripts . 62

9.3 Getting the code . 63

9.4 Basic robot behavior . 63

9.5 Robot move . 63

9.6 Sending order to robots . 65

ii

Contents

9.7 Adding new orders . 65

9.8 Introducing commands . 66

9.9 Challenge: Replay . 68

9.10 Non recording commands . 70

9.11 Challenge: Automatic way back home . 72

9.12 Challenge: Path optimizations . 74

9.13 Extensions . 76

9.14 Conclusion . 77

10 Finding the North with Compass 79

10.1 Existing situation . 79

10.2 Representing directions . 80

10.3 Introducing NorthWest, SouthEast, and friends 81

11 A little expression interpreter 83

11.1 Starting with constant expression and a test 83

11.2 Negation . 84

11.3 Adding expression addition . 85

11.4 Multiplication . 86

11.5 Stepping back . 87

11.6 Negated as a message . 89

11.7 Annoying repetition . 90

11.8 Introducing Expression class . 91

11.9 Class creation messages . 92

11.10 Introducing examples as class messages 94

11.11 Printing . 95

11.12 Revisiting negated message for Negation 99

11.13 Introducing BinaryExpression class . 100

11.14 What did we learn . 102

11.15 About hook methods . 103

11.16 Variables . 105

11.17 Conclusion . 109

12 Understanding visitors 111

12.1 Existing situation: expression trees . 112

12.2 Visitor’s key principle . 112

12.3 Introducing an evaluating Visitor . 113

12.4 Now handling addition . 114

12.5 Supporting negation . 115

12.6 Supporting Multiplication . 116

12.7 Supporting Division . 117

12.8 Moving up evaluateWith: . 119

12.9 Supporting variables . 119

12.10 Redefine evaluateWith: . 120

12.11 A new visitor . 121

12.12 Visiting methods . 121

iii

Contents

12.13 Conclusion . 122

III Unguided exercises

13 Tamagotchi Mechanics 127

13.1 Problem Context . 127

13.2 Behavior . 127

13.3 Extensions . 128

13.4 Tests . 128

13.5 About behavior description . 129

14 Civilization 131

14.1 General Rules . 131

14.2 Defending Unit Damage Formula . 132

14.3 Attacking Unit Damage Formula . 132

14.4 Units . 133

14.5 Terrains . 134

14.6 Tests . 134

15 Little unguided projects 137

15.1 LAN simulator . 137

15.2 Loading LAN code. 137

15.3 LAN extensions . 138

15.4 Die players . 139

15.5 About the die DSL . 140

15.6 About Visitors . 140

IV Unguided Projects

16 Designing little board games 147

16.1 Support . 147

16.2 Loading Myg and Bloc . 147

16.3 Bloc . 148

16.4 Possible Games . 148

16.5 Other resources . 148

16.6 Some generic extensions . 149

16.7 Minesweeper . 149

16.8 Flood it . 150

16.9 Tetris and variations . 151

16.10 2048 . 152

16.11 Memory . 152

16.12 SlideOut . 153

16.13 Laser game . 154

16.14 Same game . 154

16.15 Nonogram . 155

16.16 Conclusion . 155

iv

Contents

17 Microdown miniprojects 157

17.1 Blog and its posts . 157

17.2 Link checker . 157

17.3 Table of contents . 158

17.4 Book Sanitizer . 158

17.5 Automatic Numbering . 159

17.6 Rendered math downloader . 159

v

Illustrations

3-1 The full syntax of Pharo . 8

5-1 An example of a LAN with packets. 19

6-1 A single class with a couple of messages. Note that the method

withFaces: is a class method. 30

6-2 Inspecting and interacting with a die. 31

6-3 A die handle is composed of dice. 34

6-4 Inspecting a DieHandle. 35

6-5 Die details. 37

6-6 A die handle with more information. 37

6-7 A polymorphic API supports the Don’t ask, tell principle. 39

7-1 Stone paper scissors. 43

7-2 An overview of a possible solution using double dispatch. 47

8-1 Summing two dice and be prepared for more. 57

8-2 Summing a die and a dicable. 57

8-3 Summing a die and a dicable . 58

8-4 Handling all the cases: summing a die/die handle with a die/die handle . . . 59

9-1 A 2D space and a robot in ascii. 61

9-2 A minimal design. 62

9-3 A design with Command. 67

9-4 A simple path and a way back home. 73

11-1 A flat collection of classes (with a suspect duplication). 85

11-2 Expressions are composed of trees. 87

11-3 Evaluation: one message and multiple method implementations. 88

11-4 Code repetition is a bad smell. 91

11-5 Introducing a common superclass. 92

11-6 printOn: and printString a ”hooks and template” in action. 97

11-7 The message negated is overridden in the class ENegation. 100

11-8 Factoring instance variables. 101

11-9 Factoring instance variables and behavior. 103

11-10 Better design: Declaring an abstract method as a way to document a

hook method. 104

11-11 Variables and their evaluation. 109

vi

Illustrations

12-1 A simple hierarchy of expressions. 111

12-2 Visitor principle. 113

12-3 Visitor at work. 117

16-1 Minesweeper: identifying mines based on the number of adjacent cells

containing a bomb. 149

16-2 Flood it: change the color of any adjacent tiles with the same color. 150

16-3 Tetris variations: Here the user places forms to remove rows and lines. . . 151

16-4 2048 . 152

16-5 Memory . 153

16-6 SlideOut: Elements can slide in one direction but are blocked by others.

The goal is to get the red element out. 153

16-7 (a) Starting from its origin, the laser beam should reach the target. (b)

Rotating a mirror changes the path of the laser beam 154

16-8 SameGame: collapsing columns by removing one by one colored of the

cell of the same color. 154

16-9 Nonograms: coloring cells based on number clues. 155

vii

CHA P T E R 1
Introduction

This book accompanies the ’The Advanced Object-Oriented Design and Develop-
ment with Pharo’ MOOC (AOOD) that is freely available at https://advanced-
design-mooc.pharo.org. The AOOD Mooc is not about Pharo but about object-
oriented design and presents a large set of topics on this subject from basic
to advanced points. From this perspective, AOOD Mooc extends the Pharo
Mooc https://mooc.pharo.org. AOOD Mooc uses Pharo and readers may
want to watch some videos of the Pharo Mooc to better understand the code.
The module 0 of the AOOD Mocc proposes a selection of lectures to get up to
speed with Pharo.

The current document contains a collection of design exercises at different
levels of guidance and difficulties.

• The first part of the book is dedicated to teachers and presents differ-
ent setups in which this material has been used.

• The second part proposes several little projects to exercise double dis-
patch, Command, and Visitor Design Patterns.

• The third part proposes some unguided extensions to the previous
projects as well as some exercises that are also loosely described to
give space for variations.

• The fourth part presents some game ideas that you are invited to de-
sign and build with Bloc the new graphic layer of Pharo and that can
also benefit from the micro-framework Myg.

1

https://advanced-design-mooc.pharo.org
https://advanced-design-mooc.pharo.org
https://advanced-design-mooc.pharo.org
https://advanced-design-mooc.pharo.org
https://mooc.pharo.org
https://mooc.pharo.org

CHA P T E R 2
Module Exercises

The module is composed of 10 modules and an optional one around Pharo.
There is no direct mapping one to one mapping between the exercises and
the modules. For example the Module 2 around tests is the second one so
that the learners can try to write tests in any of the exercises. In addition
when we could all the guided exercises contained tests.

2.1 Default flow

By default we suggest

• follow the book order and perform the exercises. Note that the Tam-
agotchi (Chapter 13) and Civilization (Chapter 14) projects are less
guided on purpose and this can give you more space to design solu-
tions.

• then follow some unguided projects as described in Chapter 15. Note
that each of the unguided projects requires that the extended project
has been performed. For the LAN we are giving the possibility to load
the code since the exercise is simple.

• implement one of the games proposed in Chapter 16 or a nice exten-
sion of the Microdown project proposed in Chapter 17.

2.2 Exercises proposition per Module

Module 1.

Chapter 5 (A basic LAN application) You can also follow Chapter 10 (Finding
the North with Compass) since it presents some basic ways to use late bind-

3

Module Exercises

ing.

Module 2.

Chapter 6 (Crafting a simple embedded DSL with Pharo). Another interesting
exercise is Chapter 11 (A little expression interpreter) since it illustrates well
object-oriented design and will be extended in Module 6.

Module 3.

To exercise Hooks you can work on the Chapter 15 section related to the LAN
extension. You can also check the extension for the die rolling exercise.

Module 4.

To prepare the exercises of Module 6 we suggest doing Chapter 11 (A little
expression interpreter). Here you can for example follow Chapters 13 (Tam-
agotchi Mechanics) and 14 (Civilization).

Module 5.

To exercise the Command pattern do the Chapter 9 (A little saturn PathFinder)
and you can continue with Chapter 10 (Finding the North with Compass). In
addition, Chapter 13 is a nice exercise to use the State pattern.

Module 6.

In this module you should do the exercises of Chapter 7 (Stone paper scis-
sors) as well as the one of Chapter 12 (Understanding visitors). From then on,
you can do the unguided exercises about AST in Chapter 15 (Little unguided
projects) and the Microdown extensions of Chapter 17 (Microdown projects).

Module 7, 8, 9, 10.

From then on you should work on games (see Chapter 16 or Microdown ex-
tensions (see Chapter 17).

4

Part I

Teacher corner

CHA P T E R 3
About Pharo and Moocs

In this short chapter, we want to stress some key properties of Pharo and the
teaching material we developed around it.

3.1 A truly excellent and pedagogical language

Pharo is a truly excellent language and environment to teach object-oriented
programming. Here are some reasons you will certainly recognize if you ever
programmed or taught Pharo.

• Tiny Syntax. The full syntax of Pharo fits on half of a postcard (see
Listing 3-1). A good element can learn Pharo syntax in a couple of
hours and be productive in a couple of days.

• A uniform object model without any exception. Everything is an
object and there is not a single exception. The execution model is the
same at all levels. There are no special rules for class methods.

• Ready to use out of the box. Pharo is ready to use in 2 min. There is
no need to configure Eclipse. The SUnit framework is ready to use.

• Highly immersive IDE. Developers get immersed in a sea of objects.
They can interact with live objects and this is a huge win to deeply un-
derstanding the object-oriented metaphor. They talk to their objects.

• Gorgeous TDD support. Pharo is the best environment to develop fol-
lowing Test-Driven Design. In addition, Pharo supports eXtreme Test-
Driven Design that takes full advantage of Test-Driven Design and live-
ness of Pharo. You literally develop in your debugger in the context of
a test execution.

7

About Pharo and Moocs

Listing 3-1 The full syntax of Pharo

exampleWithNumber: x
"This method illustrates the complete syntax."
<aMethodAnnotation>
| y |
true & false not & (nil isNil)

ifFalse: [self halt].
y := self size + super size.
{ #($a #a 'a' 1 1.0) . 1 + 2 }

do: [:each | Transcript
show: (each class name);
show: (each printString); show:''].

^ x<y

• Advanced integrated tools. Pharo comes out of the box with a large
set of tools: It offers refactorings, code critics, and test coverage. It
supports microcommits: all the changes and versions of all compiled
methods are one click away. Developers can navigate back in their his-
tory, and run the tests to validate a change revert. It has a full integra-
tion with Git.

3.2 Some testimonies

While this book is the companion exercise for the Advanced Object-Oriented
Design, it reuses a couple of concepts from the Pharo mooc. The Pharo Mooc
is of high quality and received excellent feedback.

Here are some testimonies of the Pharo mooc.

In french

J’ai trouvé ça très intéressant, beaucoup plus que prévu ! je regrette de ne pas m’y
être mis plus tôt. J’ai enfin l’impression de vraiment faire de la POO ! Ou à l’inverse je
me rend que je n’en faisais pas vraiment... - Anonymous, 2019

Mooc absolument remarquable. Superbe voyage autour de Pharo. Le paradigme
objet qui (re)prend enfin du sens ! - Anonymous - 01/03/2019

In English

I have just completed week seven of the Pharo Mooc (beginner and object
oriented tracks) I am starting a redo of the Mooc with the web track (Tiny-
Blog project). I have already learned so much ! I have spent the last 20 years
or so in software development and, following this Mooc, I realized I hadn’t
really grasped the essence of object oriented design. - Anonymous

8

3.3 Conclusion

Really one of the best mooc I have ever attended. And I have attended quite a few
(openSAP, openHPI). As an old fashioned ABAP developer I want to be reborn as
Pharo developer in my next life :-) - Anonymous

Hi! I finished the MOOC some weeks ago and I would like to congratulate ev-
erybody involved! After a decade+ of Python programming I think I found
my new favorite language :). I’m making a small Teapot server for Slack com-
mand bots, I’m goona push it to Github (yay Iceberg), if anyone is interested.
- EduardoPadoan

I just completed the @pharoproject Mooc the best investment I have ever made of my
time. MAQBOOL Hey all - I’ve just finished the Mooc - thanks for an excellent course
and a thouroughly interesting look at a new way to program :smile: Looking forward
to starting to play with Pharo on some upcoming ideas I’ve had. - Tieryn

As much as I thought I understand object-orientation, it is very clear NOW
that without a truly useable Smalltalk, which Pharo is, it is impossible to re-
ally understand and exercise object-orientation. Thank you all soooo much. -
Mike D. 06/12/2020

Hey all - I’ve just finished the Mooc - thanks for an excellent course and a thouroughly
interesting look at a new way to program :smile: Looking forward to starting to play
with Pharo on some upcoming ideas I’ve had - Anonymous

A general comment I wanted to make is that the MOOC so far has been great.
Impressed with the quality and content, and grateful that it is available and
free. Many thanks! - Aryeh

IMHO the videos were very well done. I would even say shockingly well done… for a
bunch of programmers who are supposed to be clueless about design - SeanDeNigris -
10/26/2017

The more I’m learning about @pharoproject the more I appreciate it’s beauty
and simplicity, finally, object-oriented programming is done right - MAQ-
BOOL

3.3 Conclusion

The two Moocs around Pharo are the results of more than 60 years teaching
object-oriented programming. Our experience shows that developers do not
program the same once they follow such Moocs.

9

CHA P T E R 4
Lectures

Pharo Summer School was a game-changer! Before, I struggled with OOP, but now
I get it. The presentations were polished, and the instructors made complex con-
cepts simple and unforgettable. I’ve discovered the amazing possibilities of Pharo.
It’s way more than just a summer school. I highly recommend it to anyone in the pro-
gramming world! Thank you to all the instructors and the Pharo Consortium for this
amazing opportunity! I hope to see you all again soon! Q.

The material of the ’Advanced Object-Oriented Design’ MOOC available at http://advanced-
mooc.pharo.org has been refined over several years and used in interna-
tional summer schools. It has been used for many successful lectures at dif-
ferent levels and configurations.

We describe some possible pedagogical objectives, some key insights, and
different setups to take advantage of such material. The conventions to refer
to the slides and videos of the two Moocs following the ones of the original
names:

• W (which stands for Week) is used in the Pharo Mooc and

• M (which stands for Module) is used in the Advanced Object-Oriented
Mooc.

4.1 Possible pedagogical objectives

The material proposed by the MOOC can be used to give lectures on the fol-
lowing topics:

• Basic object-oriented programming (excluding for example Law of
Demeter, Typing, Design Patterns)

• Test-Driven Design

11

http://advanced-mooc.pharo.org
http://advanced-mooc.pharo.org
http://advanced-mooc.pharo.org
http://advanced-mooc.pharo.org

Lectures

• Basic Object-Oriented Design (creating Hooks and Template, designing
reusable objects)

• Advanced object-oriented design (including Design Patterns and type
consideration)

In addition and as we will show below, such goals can be easily enriched with
soft skills such as:

• How to find information?

• How to report activity?

• How to get some help by asking questions in forums or online chat?

• How to report problems?

The ’Advanced Object-Oriented Design’ Mooc complements the Pharo Mooc
available at http://mooc.pharo.org

4.2 Lecture: Essence of OO design from 1/2 to 1 day

For a lecture on object-oriented design of three hours we usually present the
essence of dispatch, key points about inheritance, and core extension mecha-
nism. We use the following material from http://advanced-mooc.pharo.org:

• M1-1 Essence of Dispatch: Taking Pharo Booleans as Example

• M1-2 Essence of Dispatch: Let the receiver decide

• M1-3 Inheritance Basics

• M1-4 Inheritance and Lookup: Self - Understand lookup once for all

• M1-5 About super

• M3-2 Message Sends are Plans for Reuse

• M3-3 Hooks and Template: One of the cornerstones of OOP

As a bonus, we often give a little introduction to unit testing (M2-1 Test 101:
The minimum) you should know and a live demo of eXtreme Test-Driven
Design as shown in (M2-4 Xtreme Test Driven Development: Getting a pro-
ductivity boost).

4.3 Lecture: Pharo in 1 day

Even if teaching Pharo is not directed and supported by the Mooc http://advanced-
mooc.pharo.org, the Pharo Mooc http://mooc.pharo.org can be used and
combined to produce a simple introduction to Pharo.

Here is the material that we use:

12

http://mooc.pharo.org
http://mooc.pharo.org
http://advanced-mooc.pharo.org
http://advanced-mooc.pharo.org
http://advanced-mooc.pharo.org
http://advanced-mooc.pharo.org
http://advanced-mooc.pharo.org
http://advanced-mooc.pharo.org
http://mooc.pharo.org
http://mooc.pharo.org

4.4 Lecture: Basic OOP in 1/2 to 1 day

• W1S05 PharoSyntaxInANutshell

• W1S06 Blocks

• W1S07 Basic-Blocks-Loops

• W1S07 BasicBooleansAndCondition

• W1S08 Loops

• W1S10 ClassAndMethodDefinition

• W2S01 Messages

• W2S02 Messages-ForTheJavaProgrammers

• W2S03 Basic-Variables

• W2S03 Messages-Precedence

• W2S04 Messages-Sequence

• W2S07 CharacterStringSymbol

• W2S08 Basic-ArraySetOrderedCollection

• W2S10 Iterators

• W2S11 Streams

Here are some extra lectures students may want to follow:

• W2S05 ParenthesisVsSquareBrackets

• W2S06 Yourself

• W2S09 UnderstandingMistakes

• W3S00 TeapotAsAPretext

We often also present some knowledge about tests. For this we use:

• M2-1 Test 101: The minimum you should know

• M2-3 Test-Driven Development

• M2-4 Xtreme Test-Driven Development: Getting a productivity boost

4.4 Lecture: Basic OOP in 1/2 to 1 day

When we are teaching object-oriented basics we use the lectures available
as PreSequel of the Pharo mooc and available under http://rmod-pharo-
mooc.lille.inria.fr/MOOC/2018-PreSequelOOP-FR/ and http://rmod-pharo-
mooc.lille.inria.fr/MOOC/2018-PreSequelOOP-EN/

The five following lectures cover the basics.

• First Look At Class Object Methods

13

http://rmod-pharo-mooc.lille.inria.fr/MOOC/2018-PreSequelOOP-FR/
http://rmod-pharo-mooc.lille.inria.fr/MOOC/2018-PreSequelOOP-FR/
http://rmod-pharo-mooc.lille.inria.fr/MOOC/2018-PreSequelOOP-EN/
http://rmod-pharo-mooc.lille.inria.fr/MOOC/2018-PreSequelOOP-EN/

Lectures

• What is An Object?

• What is A Class?

• Method Vs Messages

• Object-Oriented Paradigm

Since we believe that tests are also key knowledge we often also present:

• M2-1 Test 101: The minimum you should know

• M2-3 Test-Driven Development

• M2-4 Xtreme Test-Driven Development: Getting a productivity boost

Finally, if time allows it we present some of the lectures presented in Section
4.2. We focus in particular on the following 3 lectures:

• M1-1 Essence of Dispatch: Taking Pharo Booleans as Example

• M1-2 Essence of Dispatch: Let the receiver decide

• M3-2 Message Sends are Plans for Reuse

4.5 Lecture: Pharo and Object-oriented design in 2 days

Often we start by one day on Pharo and we take another day to show the
essence of OOD. In addition, we often show the inspector and the fact that
developers can extend to adapt to the model they manipulate. We show that
having adaptable tools is a productivity boost. Finally we stress that eXtreme
Test-Driven development as promoted by Pharo is really powerful since a
test specifies a clear context that is then used to code in debugger. Coding
in the debugger is not just fixing a bug, it is having all the information (the
context) at hand in a specific configuration that helps focusing on points
specified by a test. This is extremelly powerful. It combines the power of
Test-Driven Design with the deep immersive interaction of Pharo.

4.6 Lecture: Advanced object-oriented design lecture ex-

ample

During several years we used and developed around this material the fol-
lowing lecture whose description is available at https://github.com/pharo-
mooc/AdvancedOODesignWithTDD

The lectures length is around 10 slots of 4 hours covering a mix of lectures
and labs. The level of the students was Master 1. Their level is heteroge-
neous.

The objectives of the lectures were:

14

https://github.com/pharo-mooc/AdvancedOODesignWithTDD
https://github.com/pharo-mooc/AdvancedOODesignWithTDD
https://github.com/pharo-mooc/AdvancedOODesignWithTDD
https://github.com/pharo-mooc/AdvancedOODesignWithTDD

4.6 Lecture: Advanced object-oriented design lecture example

• Revisiting basic object-oriented programming

• Test-Driven Design

• Advanced object-oriented design

• Reverse engineering

• Test quality with mutation testing

• Soft skills:

– reporting: how to report activities?

– how to ask help, how to find information?

– how to learn fast a new language?

– how to report problems?

Setup

During the first two weeks they had to learn Pharo and report how they were
learning, and what were their strategies to learn fast. We gave no lectures on
Pharo. We only listed the following resources:

• http://mooc.pharo.org

• https://discord.gg/QewZMZa

• http://books.pharo.org

• http://books.pharo.org

• https://scg.unibe.ch/download/oorp/OORP.pdf

Each week, the students have to watch a couple of videos and one or two
lectures are given by us. During the first 6 weeks, each week they had to do
some exercises following some scripts or exercises such as the ones reported
later in this book. Then in the subsequent weeks, students are asked to de-
velop a little board game as shown in Chapter @games. In the new version of
the lecture, we plan to make the lecture centered around the game design so
that students get more time.

Calendar

Our calendar is the following one:

• 01 Week: Test introduction

• 02 Week: OOP refresh

• 03 Week: Reverse engineering

• 04 Week: Test Quality

15

http://mooc.pharo.org
https://discord.gg/QewZMZa
http://books.pharo.org
http://books.pharo.org
https://scg.unibe.ch/download/oorp/OORP.pdf

Lectures

• 05 Week: Presentation – Presentations on Learning and data structure anal-
ysis

• 06 Week: Hook and templates

• 07 Week: Double dispatch – Examen

Break

• 08 Week Visitor

• 09 Week Composite

• 10 Week Inheritance

• 11 Week Types

– Exam

4.7 Conclusion

Our experience shows that Pharo and its Moocs are excellent material for
teaching a large range of lectures focusing on key and perennial knowledge
that can be mapped to any hype language. In addition, an aspect that is often
not stress enough if the large overhead that teachers are facing when using
language such as Java. Pharo is a out-of-the-box running environment.

All the materials around Pharo are release under permissive licenses and the
Pharo community (with exercism, discord channels) is welcoming newbies.

16

Part II

Guided Exercices

CHA P T E R 5
A basic LAN application

The purpose of this mini-project is to define a little network simulator. If you
understand well basic object-oriented concepts, you can skip this part of the
book even if it is fun to code a little simulator and in particular its less guided
extensions.

From an object-oriented point of view, it is really interesting because it shows
that objects encapsulate responsibilities and that inheritance is used to de-
fine incremental behavior.

You will define step by step an application that simulates a simple Local Area
Network (LAN). You will create several classes: LNPacket, LNNode, LNWork-
station, and LNPrintServer. We start with the simplest version of a LAN.
In subsequent exercises, we will add new requirements and modify the pro-
posed implementation to take them into account.

mac

pc 1

pc 2

prin1

ping

pong

Figure 5-1 An example of a LAN with packets.

19

A basic LAN application

5.1 Creating the class LNNode

The class LNNode will be the root of all the entities that form a LAN: a printer,
a server, and a computer. This class contains the common behavior for all
nodes.

As a network is defined as a linked list of nodes, a node should always know
its next node. A node should be uniquely identifiable with a name. It is the
node’s responsibility to send and receive packets of information. In the next
section, we will define the class that represents packets.

LNNode inherits from Object
Collaborators: LNNode and LNPacket
Responsibility:
- name (aSymbol) - returns the name of the current node.
- hasNextNode - tells if the receiver has a next node.
- accept: aPacket - receives a Packet and processes it. By

default, it is sent to the next node.
- send: aPacket - sends a Packet to its next node.

Exercise: Create a new package SimpleLAN

This package will contain all the code for this project. It will contain the
classes for the simulation as well as the classes of the tests.

Exercise: Create a Test class

To help you write tests, we will define a test class.

TestCase << #LNNodeTest
slots: {};
package: 'SimpleLAN'

We will define some test methods as we go.

Exercise: Class creation

Create a subclass of Object called LNNode, with two instance variables: name
and nextNode.

Exercise: Accessors

Create accessors and mutators for the two instance variables. Document the
mutators to inform users that the argument passed to name: should be a
Symbol, and the arguments passed to nextNode: should be a LNNode. Define
the following test to validate such a simple behavior.

20

5.2 Sending/receiving packets

LNNodeTest >> testName
| node |
node := LNNode new.
node name: #PC1.
self assert: node name equals: #PC1

Exercise: Define the method hasNextNode

Define a method called hasNextNode that returns whether the receiver has
a next LNNode or not. Notice that by default a newly created node does not
have a next node. The following test should pass.

LNNode >> testHasNextNode
self deny: LNNode new hasNextNode

5.2 Sending/receiving packets

A LNNode has two basic messages to send and receive packets.

When a packet is sent to a node, the node has to accept the packet and send
it on. Note that with this simple behavior, the packet can loop infinitely in
the LAN. We will propose some solutions to this issue later. To implement
this behavior, you should add a protocol send-receive, and implement the
following two methods:

LNNode >> accept: aPacket
"Having received aPacket, send it on. This is the default

behavior. My subclasses may override me to do something special."

self send: aPacket

LNNode >> send: aPacket

nextNode ifNotNil: [
self name trace.
' sends a packet to: ' trace.
nextNode name traceCr.
nextNode accept: aPacket]

Note that:

• trace displays in the Transcript the result of sending the message
printOn: to the receiver.

• traceCr has a similar behavior but adds a carriage return at the end.

21

A basic LAN application

A little example.

The following snippet shows basic behavior of an open LAN composed of two
nodes, Mac and PC1.

(LNNode new
name: 'Mac' ;
nextNode: (LNNode new name: 'PC1'))

accept: (LNPacket new addresseeName: 'Mac')

On Transcript:
Mac sends a packet to: PC1

5.3 Better printString

The textual representation of a node is not adequate to debug the code. It
only proposes generic information such as ’aLLNode’. We should address this
problem. For this, you will redefine the method printOn: which is responsi-
ble for the textual representation of an object. Now before coding head first,
let us specify what output we want. We define a couple of tests.

Let us start from the simplest case: we have a node with a name and a next
node. In this case, we want to have the name of the receiver followed by the
name of its next node. The following test captures this behavior.

LNNode >> testPrintingWithANextNode

self
assert: (LNNode new

name: 'LNNode1';
nextNode: (LNNode new name: 'PC1')) printString

equals: 'LNNode1 -> PC1'

The second case is when the receiver does not have a next node. In this case,
we will use / to indicate it. The following test captures this behavior.

LNNode >> testPrintingWithoutNextNode

self
assert: (LNNode new

name: 'LNNode1';
printString)

equals: 'LNNode1 -> /'

Create an instance method named printOn: that puts the class name and
name variable on the argument aStream. We give a partial definition of the
method printOn:. Fill this method definition up to make the tests pass.

22

5.4 Creating the class LNPacket

LNNode >> printOn: aStream

... Your code here ...
nextNode

ifNil: [aStream nextPutAll: '/']
ifNotNil: [aStream nextPutAll: nextNode name]

Now there is one case that we should still cover: when the node was not
given a name. The following test shows the expected result.

LNNode >> testPrintingJustInitializedNode

self
assert: LNNode new printString
equals: 'unamed -> \'

From an implementation perspective, we could add a test in the printOn:
method. There is, however, a better solution. We should make sure that ev-
ery node has a default value for name. For this, we specialize the method
initialize on the class LLNode. This method is automatically called on ob-
ject creation.

Define the method initialize on the class LNNode and make sure that the
tests are all passing.

LNNode >> initialize

super initialize.
... Your code ...

5.4 Creating the class LNPacket

A packet is an object that represents a piece of information that is sent from
node to node. The responsibilities of this object are to allow us to define the
originator of the packet emission, the address of the receiver, and the con-
tents.

LNPacket inherits from Object
Collaborators: LNNode
Responsibility:

- addresseeName - returns the name of the node to which the packet
is sent.

- contents - describes the contents of the message sent.
- originatorName - that sent the packet.

Exercise: defining class LNPacket

In the SimpleLAN package:

23

A basic LAN application

• Create a subclass of Object called LNPacket, with three instance vari-
ables: contents, addresseeName, and originatorName.

• Initialize them to some default value (see test below).

• Create accessors and mutators for each of them in the accessing pro-
tocol.

LNPacketTest >> testInitialized

| p |
p := LNPacket new.
self assert: p addresseeName equals: '/'.
self assert: p originatorName equals: '/'.
self assert: p contents equals: ''

Exercise: Adding isAddressedTo:

Define the method isAddressedTo: aNode which returns whether a packet
is addressed to a given node.

LNPacketTest >> testIsAddressedTo

^ (LNPacket new addresseeName: 'Mac') isAddressedTo: (LNNode new
name: 'Mac')

Exercise: adding a printOn: method

Define the method printOn: aStream that puts a textual representation of
a LNPacket on its argument aStream.

Here is a test that you should make sure it passes.

LNPacketTest >> testPrintString

self
assert: (LNPacket new

addresseeName: 'Mac';
contents: 'Pharo is cool';
yourself) printString

equals: 'a LNPacket: Pharo is cool sentTo: Mac'

5.5 Creating the class LNWorkstation

Up until now our simulation only supports simple nodes whose behavior is
just to pass the packet they receive around. We will now introduce new kinds
of nodes with different behavior.

A workstation is the entry point for new packets onto the LAN network. It
can emit packets to other workstations, printers or file servers. Since it is a

24

5.5 Creating the class LNWorkstation

kind of network node, but provides additional behavior, we will define it as
a subclass of LNNode. Thus, it inherits the instance variables and methods
defined in LNNode. Moreover, a workstation has to process packets that are
addressed to it, therefore it will specialize the method accept:.

LNWorkstation inherits from LNNode
Collaborators: Node, Workstation and Packet
Responsibility: (the ones of LNNode)

- send: aPacket - sends a packet.
- accept: aPacket - performs an action on packets sent to the

workstation (e.g. printing in the transcript). For the other
packets just send them to the following node.

Exercise: Define LNWorkstation

In the package SimpleLAN create a subclass of LNNode called LNWorkstation
without instance variables.

Exercise: Redefining the method accept:

Define the method accept: aPacket so that if the workstation is the des-
tination of the packet, a message is written into the Transcript. When the
packets are not addressed to the workstation they are sent to the next node
of the current one.

The following two scenarios illustrate the expected behavior. First the one
send a packet to the first node.

(LNWorkstation new
name: 'Mac';
nextNode: (LNNode new

name: 'PC1';
nextNode: (LNWorkstation new

name: 'Mac2';
yourself);

yourself) accept: (LNPacket new addresseeName: 'Mac')

produces

Mac accepted packet

The second scenario shows that when the packet is not addressed to a node,
it passes it to its next node.

LNWorkstation new
name: 'Mac';
nextNode: (LNNode new

name: 'PC1';
nextNode: (LNWorkstation new

name: 'Mac2';
yourself);

25

A basic LAN application

yourself)) accept: (LNPacket new addresseeName: 'Mac2')

produces

Mac sends a packet to: PC1
PC1 sends a packet to: Mac2
Mac2 accepted packet

About good design.

To implement the behavior of the accept: method when packet is not ad-
dressed to the workstation, you could copy and paste the code of the LNNode
class. However, this is a bad practice, decreasing the reuse of code and the
”Say it only once” rule. Indeed if we copy and paste, future changes in the
superclass code may not be taken into account. This is why is better to in-
voke the behavior defined in the superclass and that is currently overridden
by using super.

Exercise: Defining the method emit:

Define the method emit: that is responsible for inserting packets in the net-
work in the method protocol send-receive. In particular a packet should be
marked with its originator and then sent.

LNWorkstation >> emit: aLNPacket
"This is how LNPackets get inserted into the network.
This is a likely method to be rewritten to permit
LNPackets to be entered in various ways."

... Your code here ...

This way we can now write the following scenario:

(LNWorkstation new
name: 'Mac';
nextNode: (LNNode new

name: 'PC1';
nextNode: (LNWorkstation new

name: 'Mac2';
yourself);

yourself)) emit: (LNPacket new addresseeName: 'Mac2')

5.6 Creating the class LNPrinter

You will now create a class LNPrinter, a special node that when it receives
packets addressed to it, prints them (on the Transcript). Define the class
LNPrinter.

26

5.7 Simulating the LAN

LNPrinter inherits from LNNode
Collaborators: LNNode and LNPacket
Responsibility:

- accept: aLNPacket - if the packet is addressed to the printer,
prints the packet contents else sends the packet

to the following node.
- print: aLNPacket - prints the contents of the packet (into the

Transcript for example).

Specialize the method accept: on the class LNPrinter to print the contents
of the packet if necessary.

Illustrating scenario

(LNWorkstation new
name: 'Mac';
nextNode: (LNNode new

name: 'PC1';
nextNode: (LNWorkstation new

name: 'Mac2';
nextNode: (LNPrinter new

name: 'Printer1';
yourself);

yourself))) emit: (LNPacket new
addresseeName: 'Printer1';
contents: 'Pharo is cool';
yourself)

produces the following trace:

Mac sends a packet to: PC1
PC1 sends a packet to: Mac2
Mac2 sends a packet to: Printer1
Pharo is cool

5.7 Simulating the LAN

Implement the following method on the class side of the class LNNode, in a
protocol called examples.

LNNode class >> simpleLan
<script>

| mac pc node1 node2 igPrinter |

"create the nodes, workstations and printers"
mac := Workstation new name: 'mac'.
pc := LNWorkstation new name: 'pc'.
node1 := LNNode new name: 'Node1'.

27

A basic LAN application

node2 := LNNode new name: 'Node2'.
node3 := LNNode new name: 'Node3'.
igPrinter := LNPrinter new name: 'IGPrinter'.

"connect the different LNNodes."
mac nextNode: node1.
node1 nextNode: node2.
node2 nextNode: igPrinter.
igPrinter nextNode: node3.
node3 nextNode: pc.
pc nextNode: mac.

"create a LNPacket and start simulation"
packet := LNPacket new

addresseeName: 'IGPrinter';
contents: 'This LNPacket travelled around to the printer
IGPrinter'.

mac emit: packet.

As you will notice the system does not handle loops, so we will propose a so-
lution to this problem in the future. To break the loop, use Command.

5.8 Conclusion

You created a simple simulator of a local network. In the following chapters,
we will revisit such a project to illustrate different points.

28

CHA P T E R 6
Crafting a simple embedded DSL

with Pharo

In this chapter, you will develop a simple domain-specific language (DSL) for
rolling dice. Players of games such as Dungeons & Dragons are familiar with
such DSL. An example of such DSL is the following expression: 2 D20 + 1
D6 which means that we should roll two 20-faces dice and one 6-face die. It
is called an embedded DSL because the DSL uses the syntax of the language
used to implement it. Here we use the Pharo syntax to implement the Dun-
geons & Dragons rolling die language.

This little exercise shows how we can (1) simply reuse traditional operators
such as +, (2) develop an embedded domain-specific language and (3) use
class extensions (the fact that we can define a method in another package
than the one of the class of the method).

6.1 Getting started

Using the code browser, define a package named Dice or any name you like.

Create a test

It is always empowering to verify that the code we write is always working as
we are defining it. For this purpose you should create a unit test. Remember
unit testing was promoted by K. Beck first in the ancestor of Pharo. Nowa-
days this is a common practice but it is always useful to remember our roots!

Define the class DieTest as a subclass of TestCase as follows:

29

Crafting a simple embedded DSL with Pharo

TestCase <<#DieTest
package: 'Dice'

What we can test is that the default number of faces of a die is 6.

DieTest >> testInitializeIsOk
self assert: Die new faces equals: 6

If you execute the test, the system will prompt you to create a class Die. Do
it.

Define the class Die

The class Die inherits from Object and it has an instance variable, faces
to represent the number of faces one instance will have. Figure 6-1 gives an
overview of the messages.

faces:
roll
withFaces:

faces
Die

Figure 6-1 A single class with a couple of messages. Note that the method

withFaces: is a class method.

Object <<
... Your solution ...

In the initialization protocol, define the method initialize so that it
simply sets the default number of faces to 6.

Die >> initialize
... Your solution ...

Do not hesitate to add a class comment.

Now define a method to return the number of faces an instance of Die has.

Die >> faces
^ faces

Now your tests should all pass (and turn green).

6.2 Rolling a die

To roll a die you should use the method from Number atRandom which draws
randomly a number between one and the receiver. For example 10 atRan-
dom draws number between 1 to 10. Therefore we define the method roll:

30

6.3 Creating another test

Die >> roll
... Your solution ...

Now we can create an instance Die new and send it the message roll and
get a result. Do Die new inspect to get an inspector and then type in the
bottom pane self roll. You should get an inspector like the one shown in
Figure 6-2. With it you can interact with a die by writing an expression in the
bottom pane.

Figure 6-2 Inspecting and interacting with a die.

6.3 Creating another test

But better, let us define a test that verifies that rolling a newly created dice
with a default 6 faces only returns a value comprised between 1 and 6. This is
what the following test method actually specifies.

DieTest >> testRolling
| d |
d := Die new.
10 timesRepeat: [self assert: (d roll between: 1 and: 6)]

Important Often it is better to define the test even before the code it tests.
Why? Because you can think about the API of your objects and a scenario
that illustrates their correct behavior. It helps you to program your solution.

6.4 Instance creation interface

We would like to get a simpler way to create Die instances. For example, we
want to create a 20-face die as follows: Die withFaces: 20 instead of al-
ways having to send the new message to the class as in Die new faces: 20.
Both expressions are creating the same die but one is shorter.

31

Crafting a simple embedded DSL with Pharo

Let us look at it:

• In the expression Die withFaces:, the message withFaces: is sent to
the class Die. It is not new, we constantly send the message new to Die
to create instances.

• Therefore we should define a method that will be executed

Let us define a test for it.

DieTest >> testCreationIsOk
self assert: (Die withFaces: 20) faces equals: 20

What the test clearly shows is that we are sending a message to the class Die
itself.

Defining a class method

Define the class method withFaces: as follows:

• Click on the class button in the browser to make sure that you are edit-
ing a classmethod.

• Define the method as follows:

Die class >> withFaces: aNumber
"Create and initialize a new die with aNumber faces."
| instance |
instance := self new.
instance faces: aNumber.
^ instance

Let us explain this method

• The method withFaces: creates an instance using the message new.
Since self represents the receiver of the message and the receiver of
the message is the class Die itself then self represents the class Die.

• Then the method sends the message faces: to the instance and

• Finally returns the newly created instance.

Pay attention that a class method withFaces: is sent to a class, and an in-
stance method is sent to the newly created instance faces:. Note that the
class method could have also named faces: or any name we want, it does
not matter, it is executed when the receiver is the class Die.

If you execute it will not work since we did not yet create the method faces:.
Now is the time to define it. Pay attention that method faces: is sent to an
instance of the class Die and not the class itself. It is an instance method,
therefore make sure that you deselect the class button before editing it.

Die >> faces: aNumber
faces := aNumber

32

6.5 First specification of a die handle

Now your tests should run. So even if the class Die could implement more
behavior, we are ready to implement a die handle.

Important A class method is a method executed in reaction to messages sent
to a class. It is defined on the class side of the class. In Die withFaces: 20,
the message withFaces: is sent to the class Die. In Die new faces: 20,
the message new is sent to the class Die and the message faces: is sent to
the instance returned by Die new.

[Optional] Alternate instance creation definition

In a first reading, you can skip this section. The class method definition with-
Faces: above is strictly equivalent to the one below.

Die class >> withFaces: aNumber
^ self new faces: aNumber; yourself

Let us explain it a bit. self represents the class Die itself. Sending it the
message new, we create an instance and send it the faces: message. And we
return the expression. So why do we need the message yourself. The mes-
sage yourself is needed to make sure that whatever value the instance mes-
sage faces: returns, the instance creation method we are defining returns
the newly created instance. You can try to redefine the instance method
faces: as follows:

Die >> faces: aNumber
faces := aNumber.
^ 33

Without the use of yourself, Die withFaces: 20 will return 33. With your-
self it will return the instance.

The trick is that yourself is a simple method defined in Object class: The
message yourself returns the receiver of a message. The use of ; sends the
message to the receiver of the previous message (here faces:). The mes-
sage yourself is then sent to the object resulting from the execution of the
expression self new (which returns a new instance of the class Die), as a
consequence it returns the new instance.

6.5 First specification of a die handle

Let us define a new class DieHandle that represents a die handle. Here is the
API that we would like to offer for now (as shown in Figure 6-3). We create a
new handle and then add some dice to it.

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

33

Crafting a simple embedded DSL with Pharo

faces:
roll

faces
Die

roll
addDie:
+ aDieHandle

dice
DieHandle

Figure 6-3 A die handle is composed of dice.

Of course we will define tests first for this new class. We define the class
DieHandleTest.

TestCase << #DieHandleTest
package: 'Dice'

Testing a die handle

We define a new test method as follows. We create a new handle and add one
die of 6 faces and one die of 10 faces. We verify that the handle is composed
of two dice.

DieHandleTest >> testCreationAdding
| handle |
handle := DieHandle new

addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself.

self assert: handle diceNumber equals: 2.

In fact we can do it better. Let us add a new test method to verify that we can
even add two dice having the same number of faces.

DieHandleTest >> testAddingTwiceTheSameDice
| handle |
handle := DieHandle new.
handle addDie: (Die withFaces: 6).
self assert: handle diceNumber equals: 1.
handle addDie: (Die withFaces: 6).
self assert: handle diceNumber equals: 2.

Now that we specified what we want, we should implement the expected
class and messages. Easy!

6.6 Defining the DieHandle class

The class DieHandle inherits from Object and it defines one instance vari-
able to hold the dice it contains.

34

6.6 Defining the DieHandle class

Object << ...
... Your solution ...

We simply initialize it so that its instance variable dice contains an instance
of OrderedCollection.

DieHandle >> initialize
... Your solution ...

Then define a simple method addDie: to add a die to the list of dice of the
handle. You can use the message add: sent to a collection.

DieHandle >> addDie: aDie
... Your solution ...

Now you can execute the code snippet and inspect it. You should get an in-
spector as shown in Figure 6-4

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

Figure 6-4 Inspecting a DieHandle.

Finally, we should add the method diceNumber to the DieHandle class to be
able to get the number of dice of the handle. We just return the size of the
dice collection.

DieHandle >> diceNumber
^ dice size

Now your tests should run and this is a good moment to save and publish
your code.

35

Crafting a simple embedded DSL with Pharo

6.7 Improving programmer experience

Now when you open an inspector you cannot see well the dice that compose
the die handle. Click on the dice instance variable and you will only get a list
of a Dice without further information. What we would like to get is some-
thing like a Die (6) or a Die (10) so that at a glance we know the faces a
die has.

DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself

This is the message printOn: that is responsible for providing a textual rep-
resentation of the message receiver. By default, it just prints the name of the
class prefixed with 'a' or 'an'. So we will enhance the printOn: method
of the Die class to provide more information. Here we simply add the num-
ber of faces surrounded by parenthesis. The printOn: message is sent with
a stream as an argument. It is in this stream that we should add information.
We use the message nextPutAll: to add several characters to the stream.
We concatenate the characters to compose () using the message , comma
defined on collections (and that concatenate collections and strings).

Die >> printOn: aStream

super printOn: aStream.
aStream nextPutAll: ' (', faces printString, ')'

Now in your inspector, you can see effectively the number of faces a die han-
dle has as shown by Figure 6-5 and it is now easier to check the dice con-
tained inside a handle (See Figure 6-6).

Optimization Remark.

Note that this implementation of printOn: is suboptimal since it is creating
a separate stream (during the invocation of faces printString) instead
of reusing the stream passed as an argument. A better solution is to rewrite
printOn: as follows:

Die >> printOn: aStream

super printOn: aStream.
aStream nextPutAll: ' ('.
aStream print: faces.
aStream nextPutAll: ')'

As an exercise we let you browse the methods printString on class Object
and print: on class Stream.

36

Figure 6-5 Die details.

Figure 6-6 A die handle with more information.

Crafting a simple embedded DSL with Pharo

6.8 Rolling a die handle

Now we can define the rolling of a die handle by simply summing the result
of rolling each of its dice. Implement the rollmethod of the DieHandle
class. This method must collect the results of rolling each dice of the handle
and sum them.

You may want to have a look at the method sum in the class Collection or
use a simple loop.

DieHandle >> roll
... Your solution ...

Now we can send the message roll to a die handle.

handle := DieHandle new
addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself.

handle roll

Define a test to cover such behavior. Rolling a handle of n dice should be be-
tween n and the sum of the face number of each die.

DieHandleTest >> testRoll
... Your solution ...

6.9 About Dice and DieHandle API

It is worth spending some time looking at the relationship between DieHan-
dle and Dice. A die handle is composed of dice. What is an important design
decision is that the API of the main behavior (roll) is the same for a die or a
die handle. You can send the message roll to a die or a die handle. This is an
important property.

Why? Because it means that from a client’s perspective, they can treat the
receiver without having to take care about the kind of object it is manipulat-
ing. A client just sends the message roll to an object and gets back a number
(as shown in Figure 6-7). The client is not concerned by the fact that the re-
ceiver is composed of a simple object or a complex one. Such design decision
supports the Don’t ask, tell principle.

Important Offering polymorphic API is a tenet of good object-oriented de-
sign. It enforces the Don’t ask, tell principle. Clients do not have to worry
about the type of the objects to which they talk to.

For example, we can write the following expression that adds a die and a
dieHandle to a collection and collects the different values (we convert the
result into an array so that we can print it in the book).

38

6.10 Handle’s addition

aDie(6)

aDieHandleroll

aDie (6)roll

aDie(10)
roll

client

client

Figure 6-7 A polymorphic API supports the Don’t ask, tell principle.

| col |
col := OrderedCollection new.
col add: (Die withFaces: 20).
col add: (DieHandle new addDie: (Die withFaces: 4); yourself).
(col collect: [:each | each roll]) asArray
>>> #(17 3)

About composition

Composite objects such as document objects (a book is composed of chapters,
a chapter is composed of sections, a section is composed of paragraphs) often
have a more complex composition relationship than the composition be-
tween a die and a die handle. Often the composition is recursive in the sense
that an element can be the whole: for example, a diagram can be composed
of lines, circles, and other diagrams. We will see an example of such compo-
sition in the Expression Chapter 11.

6.10 Handle’s addition

Now what is missing is the possibility to add several handles together to form
a new one. Of course, let’s write a test first to be clear on what we mean.

DieHandleTest >> testSumOfHandles
| hd1 hd2 hd3 |
hd1 := DieHandle new addDie: (Die withFaces: 20); addDie: (Die

withFaces: 20); yourself.
hd2 := DieHandle new addDie: (Die withFaces: 10); addDie: (Die

withFaces: 10); yourself.
hd3 := hd1 + hd2.
self assert: hd3 diceNumber equals: 4.

We will define a method + on the DieHandle class. In other languages, this
is often not possible or is based on operator overloading. In Pharo + is just a
message as any other, therefore we can define it in the classes we want.

39

Crafting a simple embedded DSL with Pharo

Now we should ask ourselves what is the semantics of adding two handles.
Should we modify the receiver of the expression or create a new one? We
preferred a more functional style and chose to create a third one.

The method + creates a new handle then adds the dice of the receiver to it,
and then one of the handles is passed as an argument to the message. Finally,
we return it.

DieHandle >> + aDieHandle
... Your solution ...

Now we want to be able to execute the method (2 D20 + 1 D6) roll nicely
and start playing role playing games, of course. So let us see that.

6.11 Role-playing syntax

Now we are ready to offer a syntax following the practice of role role-playing
games, i.e., using 2 D20 to create a handle of two dice with 20 faces each. For
this purpose we will define class extensions: we will define methods in the
class Integer but these methods will be only available when the package
Dice is loaded.

But first, let us specify what we would like to obtain by writing a new test
in the class DieHandleTest. Remember to always take any opportunity to
write tests. When we execute 2 D20 we should get a new handle composed of
two dice and can verify that. This is what the method testSimpleHandle is
doing.

DieHandleTest >> testSimpleHandle
self assert: 2 D20 diceNumber equals: 2.

Verify that the test is not working! It is much more satisfactory to get a test
running when it was not working before. Now define the method D20 with a
protocol named *NameOfYourPackage ('*Dice’ if you named your package
'Dice'). The * (star) prefixing a protocol name indicates that the protocol
and its methods belong to another package than the package of the class.
Here we want to say that while the method D20 is defined in the class Inte-
ger, it should be saved with the package Dice.

The method D20 simply creates a new die handle, adds the correct number of
dice to this handle, and returns the handle.

Integer >> D20
... Your solution ...

About class extensions

We asked you to place the method D20 in a protocol starting with a star and
having the name of the package ('*Dice') because we want this method to

40

6.12 Conclusion

be saved (and packaged) together with the code of the classes we already cre-
ated (Die, DieHandle,...) Indeed in Pharo, we can define methods in classes
that are not defined in our package. Pharoers call this action a class exten-
sion: we can add methods to a class that is not ours. For example D20 is de-
fined on the class Integer. Now such methods only make sense when the
package Dice is loaded. This is why we want to save and load such meth-
ods with the package we created. This is why we are defining the protocol as
'*Dice'. This notation is a way for the system to know that it should save
the methods with the package and not with the package of the class Integer.

Now your tests should pass and this is probably a good moment to save your
work either by publishing your package and to save your image.

We can do the same for the default dice with different face numbers: 4, 6,
10, and 20. But we should avoid duplicating logic and code. So first we will
introduce a new method D: and based on it we will define all the others.

Make sure that all the new methods are placed in the protocol '*Dice'. To
verify you can press the button Browse of the Monticello package browser
and you should see the methods defined in the class Integer.

Integer >> D: anInteger
... Your solution ...

Integer >> D4
^ self D: 4

Integer >> D6
^ self D: 6

Integer >> D10
^ self D: 10

Integer >> D20
^ self D: 20

We obtain a compact form to create dice and we are ready for the last part:
the addition of handles. We can write a new test named testSumming.

DiceHandleTest >> testSumming

| handle |
handle := 2 D20 + 3 D10.
self assert: handle diceNumber equals: 5.

6.12 Conclusion

This chapter illustrates how to create a small DSL based on the definition of
some domain classes (here Dice andDieHandle) and the extension of core
classes such as Integer. It also shows that we can create packages with all
the methods that are needed even when such methods are defined on classes

41

Crafting a simple embedded DSL with Pharo

external (here Integer) to the package. It shows that in Pharo we can use
usual operators such as + to express natural models.

42

CHA P T E R 7
Stone paper scissors

As we already saw sending a message is in fact making a choice. Indeed when
we send a message, the method associated with the method in the class hier-
archy of the receiver will be selected and executed.

Now we often have cases where we would like to select a method based on
the receiver of the message and one argument. Again there is a simple solu-
tion named double dispatch that consists of sending another message to the
argument hence making two choices one after the other.

This technique while simple can be challenging to grasp because program-
mers are so used to thinking that choices are made using explicit condi-
tionals. In this chapter, we will show an example of double dispatch via the
paper-stone-scissors game.

This exercise will show you an important paradigmatic shift where you will
go from asking questions (conditionals) to sending orders. It is a clear illus-
tration of the ’Don’t ask, Tell’ design principle.

ROCK PAPER

SCISSORS

Figure 7-1 Stone paper scissors.

43

Stone paper scissors

7.1 Starting with a couple of tests

We start by implementing a couple of tests. Let us define a test class named
StonePaperScissorsTest.

TestCase << #StonePaperScissorsTest
package: 'StonePaperScissors'

Now we can define a couple of tests showing for example that a paper is win-
ning when a stone plays against a paper. We consider that the following tests
are self-explanatory.

StonePaperScissorsTest >> testStoneAgainstPaperIsWinning
self assert: (Stone new play: Paper new) equals: #paper

StonePaperScissorsTest >> testScissorAgsinstPaperIsWinning
self assert: (Scissors new play: Paper new) equals: #scissors

StonePaperScissorsTest >> testStoneAgainsStone
self assert: (Stone new play: Stone new) equals: #draw

Define them because we will use the tests in the future.

7.2 Creating the classes

First, let us create the classes that will correspond to the different players.

Object << #Paper
package: 'StonePaperScissors'

Object << #Scissors
package: 'StonePaperScissors'

Object << #Stone
package: 'StonePaperScissors'

They could share a common superclass but we left it to you.

7.3 With messages

We are ready to make sure that the first test is passing. Let us work on test-
PaperIsWinning.

StonePaperScissorsTest >> testStoneAgainstPaperIsWinning
self assert: (Stone new play: Paper new) = #paper

The first method that we define is play: and it takes another player as an
argument.

Stone >> play: anotherTool
... Your code ...

44

7.3 With messages

To implement this method we will use the fact that we know when its body
is executed what is the receiver of the message. Here we are sure that the
receiver is an instance of the class Stone.

So let us imagine that we have another method named playAgainstStone:

In the class Paper, it is clear that the method should return #paper because
a paper wins against a stone. So just define it.

Paper >> playAgainstStone: aStone
... Your code ...

Now using the method playAgainstStone:, we can easily implement the
previous method play: in the class Stone.

Do it and the test should pass now.

playAgainstStone:

Since we have started to implement playAgainstStone:, let us continue
and implement two other methods one in the class Scissors and the other
in the class Stone.

In the class Scissors the method should return that a stone wins.

Scissors >> playAgainstStone: aStone
... Your code ...

In the class Stone, the method should return a draw.

Stone >> playAgainstStone: aStone
... Your code ...

Let us verify that the following tests are passing. For this, we only execute
the tests whose receiver of the play: message are stone instance.

First, we add a test to check the new scenario and now we have all the sce-
narios where a stone is the receiver.

StonePaperScissorsTest >> testStoneAgainstScissorsIsWinning
self assert: (Stone new play: Scissors new) equals: #stone

StonePaperScissorsTest >> testStoneAgainsStone
self assert: (Stone new play: Stone new) equals: #draw

The case where a stone is the receiver of the message play is handled and we
can pass to another class, for example, Scissors.

Scissors now

Let us write first a test if this is already done. What we see is that a scissor is
winning against a paper.

45

Stone paper scissors

StonePaperScissorsTest >> testScissorIsWinning
self assert: (Scissors new play: Paper new) equals: #scissors

Now we are ready to define the corresponding methods. First, we define the
methods playAgainstScissors: in the corresponding classes.

Scissors >> playAgainstScissors: aScissors
... Your code ...

Paper >> playAgainstScissors: aScissors
... Your code ...

Stone >> playAgainstScissors: aScissors
... Your code ...

Now we are ready to we define the method play: in the class Scissors.

Scissors >> play: anotherTool
... Your code ...

You can define a couple of tests to make sure that your code is correct.

StonePaperScissorsTest >> testScissorAgainstStoneIsLosing
self assert: (Scissors new play: Stone new) equals: #stone

StonePaperScissorsTest >> testScissorAgainstScissors
self assert: (Scissors new play: Scissors new) equals: #draw

Paper now

We are now ready to do the same with the case of Paper. You should start
to see the pattern. Define the method playAgainstPaper: in their corre-
sponding classes.

Scissors >> playAgainstPaper: aPaper
... Your code ...

Paper >> playAgainstPaper: aPaper
... Your code ...

Stone >> playAgainstPaper: aPaper
... Your code ...

And now we can define the method play: in the Paper class.

Paper >> play: anotherTool
... Your code ...

Let us add more tests to cover the new cases.

StonePaperScissorsTest >> testPaperAgainstScissorIsLosing
self assert: (Paper new play: Scissor new) equals: #scissors

StonePaperScissorsTest >> testPaperAgainstStoneIsWinning
self assert: (Paper new play: Stone new) equals: #paper

46

7.4 About double dispatch

StonePaperScissorsTest >> testPaperAgainstPaper
self assert: (Paper new play: Paper new) equals: #draw

vs: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Stone

vs:
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

SPSElement

vs: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Paper
vs: anElement
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Scissors

Figure 7-2 An overview of a possible solution using double dispatch.

The methods could return a value such as 1 when the receiver wins, 0 when
there is a draw and -1 when the receiver loses. Add new tests and check this
version.

7.4 About double dispatch

This exercise about double dispatch is really simple and it has two aspects
that you may not find in other situations:

First, it is symmetrical. You play a stone against a paper or the inverse. Not
all the double dispatches are symmetrical. For example, when drawing an
object against a canvas the operation for example drawOn: aCanva is di-
rected. It does not change much about the double dispatch but we wanted to
make clear that it does not have to be this way.

Second, the secondary methods (playAgainstXXX) do not use the argument
and this is because the example is super simple. In real-life examples, the
secondary methods do use the argument for example to call back behavior
on the argument. We will see this with the visitor design pattern.

7.5 A Better API

Both previous approaches either returning a symbol or a number are work-
ing but we can ask ourselves how the client will use this code.

Most of the time he will have to check again the returned result to perform
some actions.

(aGameElement play: anotherGameElement) = 1
ifTrue: [do something for aGameElement]
(aGameElement play: anotherGameElement) = -1

47

Stone paper scissors

So all in all, while this was a good exercise to help you understand that we do
not need to have explicit conditionals and that we can use message passing
instead, it felt a bit disappointing.

But there is a much better solution using double dispatch. The idea is to pass
the action to be executed to the object and the object decides what to do.

Paper new competeWith: Paper new
onDraw: [Game incrementDraw]
onReceiverWin: []
onReceiverLose: []

Paper new competeWith: Stone new
onDraw: []
onReceiverWin: [Game incrementPaper]
onReceiverLose: []

Propose an implementation.

7.6 About alternative implementations

Here is a possible alternate implementation.

Paper >> play: anElement
onDraw: aDrawBlock
onWin: aWinBlock
onLose: aLoseBlock

^ anElement
playAgainstPaper: self
onDraw: aDrawBlock
onReceiverWin: aWinBlock
onReceiverLose: aLoseBlock

Paper >> playAgainstPaper: anElement
onDraw: aDrawBlock onReceiverWin:
aWinBlock
onReceiverLose: aLoseBlock
^ aDrawBlock value

What we see is that this new API is not that nice. Being forced to create blocks
is not that great. A possibility would be to pass an object that knows what to
do.

Paper new competeWith: Paper new
result: aResultHolder

Here is a sketch of a possible implementation:

Paper >> competeWith: anElement result: aResultHolder
^ anElement playAgainstPaper: self result: aResultHolder

48

7.7 Conclusion

We still have the double dispatch but we only need one object taking take of
the results.

Stone >> playAgainstPaper: anElement result: aResultHolder
aResultHolder paperWins

7.7 Conclusion

Sending a message is making a choice among several methods. Depending
on the receiver of a message the correct method will be selected. Therefore
sending a message is making a choice and the different classes represent the
possible alternatives.

Now this example illustrates this point but goes even further. Here we wanted
to be able to make a choice depending on both an object and the argument of
the message. The solution shows that it is enough to send back another mes-
sage to the argument to perform a second selection that because of the first
message now realizes a choice based on a message receiver and its argument.

49

CHA P T E R 8
Revisiting the Die DSL: a case for

double dispatch

In Chapter 6, using the Die DSL we could only sum die handles together as in
2 D20 + 1 D4. In this new chapter, we extend the Die DSL implementation
to support the sum of a die with another one or with a die handle (and vice
versa).

One of the challenges is that the message + should be able to manage differ-
ent types of receivers and arguments. The message will have either a die or
a die handle as receiver and arguments, so we should manage the following
possibilities: die + die handle, die + die, die handle + die handle, and die han-
dle + die. While this extension at first may look trivial, we will take it as a
way to explore double dispatch.

Double dispatch is a technic that avoids hardcoding type checks and also
can define incrementally the behavior handling all the possible cases. In-
deed double dispatch does not use any explicit conditionals and is the basis
of more advanced Design Patterns such as the Visitor.

Double dispatch is based on the Don’t ask, tell object-oriented principle ap-
plied twice. In the case of the +message, there is a first dispatch to select the
adequate method. Then a second dispatch happens when in this method a
new message is sent to the argument of the +message telling this argument
the way the current receiver should be summed. This description is too ab-
stract so we will go over a full example to explain it.

51

Revisiting the Die DSL: a case for double dispatch

8.1 A little reminder

In a previous chapter, you implemented a small DSL to add dice and manage
die handles. With this DSL, you could create dice and add them to a die han-
dle. Later on, you could sum two different die handles and obtain a new one
following the ”Dungeons and Dragons” ruling book.

The following tests show these two behaviors: First the dice handle creation
and second the sum of die handles.

DieHandleTest >> testCreationAdding
| handle |
handle := DieHandle new

addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself.

self assert: handle diceNumber equals: 2

DieHandleTest >> testSummingWithNiceAPI
| handle |
handle := 2 D20 + 3 D10.
self assert: handle diceNumber equals: 5

The implementation of + was simple since we could only sum die handles
together. The method + creates a new handle, adds the dice of the receiver
and of the argument to the newly created handle and returns it.

DieHandle >> + aDieHandle
"Returns a new handle that represents the addition of the receiver

and the argument."
| handle |
handle := self class new.
self dice do: [:each | handle addDie: each].
aDieHandle dice do: [:each | handle addDie: each].
^ handle

8.2 [Optional] Alternate way

We could also implement + using by asking the argument die handle to add
its own dice as follows:

DieHandle >> + aDieHandle
"Returns a new handle that represents the addition of the receiver

and the argument."
| handle |
handle := self class new.
self dice do: [:each | handle addDie: each].
aDieHandle addDiceTo: handle.
^ handle

52

8.3 New requirements

Implement the corresponding method addDiceTo: and verify that your tests
still pass.

8.3 New requirements

The first requirement we have is that we want to be able to add two dice to-
gether and of course we should obtain a die handle as illustrated by the fol-
lowing test.

We want to add two dice together:

(Die withFaces: 6) + (Die withFaces: 6)

The second requirement is that we want to be able to mix and add a die to a
die handle or vice versa as illustrated below:

2 D20 + (Die withFaces: 6)

(Die withFaces: 6) + 2 D20

8.4 Turning requirements into tests

Since we are test-infested, we turn such expected behavior into automati-
cally testable expected behavior: we write them as tests.

We want to add two dice together:

DieTest >> testAddTwoDice
| hd |
hd := (Die withFaces: 6) + (Die withFaces: 6).
self assert: hd diceNumber equals: 2.

The second requirement is that we want to be able to mix and add a die to a
die handle or vice versa as illustrated by the two following tests:

DieTest >> testAddingADieAndHandle
| hd |
hd := (Die withFaces: 6)

+
(DieHandle new

addDie: (Die withFaces: 10);
yourself).

self assert: hd diceNumber equals: 2

DieHandleTest >> testAddingAnHandleWithADie
| handle res |
handle := DieHandle new

addDie: (Die withFaces: 6);
addDie: (Die withFaces: 10);
yourself.

res := handle + (Die withFaces: 20).

53

Revisiting the Die DSL: a case for double dispatch

self assert: res diceNumber equals: 3

The two previous tests are not really robust so we will introduce a little be-
havior to make sure that we can have much better tests.

8.5 Introducing faces on DieHandle

The previous test testAddingADieAndHandle is not really good because it
can pass just if we add two objects in the die handle and this is not satisfac-
tory. We will introduce numberOfFaces. This method should satisfy the fol-
lowing test:

DieTest >> testNumberOfFaces
| hd |
hd := (DieHandle new

addDie: (Die withFaces: 10);
addDie: (Die withFaces: 6);
yourself).

self assert: hd faces equals: 16

Define the method faces on DieHandle. It is following nearly the same logic
as the method roll.

DieHandle >> faces
"return the number of faces of the receiver"
...

Now we are ready to implement such requirements.

8.6 The first implementation

The first solution is to explicitly type-check the argument to decide what to
do.

DieHandle >> + aDieOrADieHandle

^ (aDieOrADieHandle class = DieHandle)
ifTrue: [| handle |

handle := self class new.
self dice do: [:each | handle addDie: each].
aDieOrADieHandle dice do: [:each | handle addDie: each].
handle]

ifFalse: [| handle |
handle := self class new.
self dice do: [:each | handle addDie: each].
handle addDie: aDieOrADieHandle.
handle]

54

8.7 Sketching double dispatch

Die >> + aDieOrADieHandle
| selfAsDieHandle |
selfAsDieHandle := DieHandle new addDie: self.
^ selfAsDieHandle + aDieOrADieHandle

The problem with this solution is that it does not scale. As soon as we will
have other kinds of arguments we will have to check more and more cases.
You may think that this is just a spurious argument. But when you have a
model that has around 35 different kinds of nodes as in Pillar, the document
processing system used to produce this book, this kind of testing logic be-
comes a nightmare to maintain and extend.

8.7 Sketching double dispatch

We can do better. The logic of the solution we have in mind is quite simple
but it may be destabilizing at first. Let us sketch it.

• When we execute a method we know its receiver and the kind of re-
ceiver we have: it can be a die or a die handle. The method dispatch
will select the correct method at runtime. Imagine that we have two
+methods for each class Die and DieHandle. When a given method +
will be executed, we will know the exact kind of the receiver. For ex-
ample, when the method + defined on the class Die is executed, we will
know that the receiver is a die (instance of this class). Similarly, when
the method + defined on the class DieHandle is executed, we will know
that the message receiver is a die handle. This is the power of method
dispatch: it selects the right method based on the message receiver.

• Then the idea is to tell the argument that we want to sum it with that
given receiver. It means that each +method on a different class has
just to send a different message based on the fact that the receiver was
a die or a die handle to its argument and let the method dispatch to
act once again. After this second dispatch, the correct method will be
selected.

But let us make this concrete.

8.8 Adding two dice

Let us step back and start by supporting the sum of two dice. This is rather
simple we create and return a die handle to which we add the receiver and
the argument.

Die >> + aDie

^ DieHandle new
addDie: self;
addDie: aDie; yourself

55

Revisiting the Die DSL: a case for double dispatch

Our first test should pass testAddTwoDice. But this solution does not sup-
port the fact that the argument can be either a die or a die handle.

8.9 Adding a die and a die or a handle

Now we want to handle the fact that we can add a die or a die handle to the
receiver as illustrated by the test testAddingADieAndHandle.

DieTest >> testAddingADieAndHandle
| hd |
hd := (Die withFaces: 6)

+
(DieHandle new

addDie: 6;
yourself).

self assert: hd diceNumber equals: 2

The previous method + is definitively what we want to do when we have two
dice. So let us rename it as sumWithDie: so that we can invoke it later.

Die >> sumWithDie: aDie
... Your code ...

Now what we can do is to implement + as follows. Notice that we named the
argument aDicable because we want to convey that the argument can be
either a die or a die handle.

Die >> + aDicable
... Your code ...

We tell the argument aDicable (which can be a die or a die handle) that
we want to add a die to it (we know that self in this method is a Die be-
cause this is the method of this class that is executed). When rewriting the +
method, we switched self and aDicable to send the new message sumWith-
Die: to the argument (aDicable). This switch kicks a new method dispatch
and we finally have a double dispatch (one of + and one for sumWithDie:).

In our two tests testAddTwoDice and testAddingADieAndHandle we know
that the receiver is a die because the method is defined in the class of Die. At
this point, the test testAddTwoDice should pass because we are adding two
dice as shown in Figure 8-1.

8.10 When the argument is a die handle

Now we still have to find a solution for the case where the argument to the
message + is a die handle. In fact, the argument will receive the message
sumWithDie:. Therefore if we define a method with that name in the class
DieHandle it will be executed when the argument of message + is a die han-
dle.

56

8.11 Stepping back

+ aDicable
sumWithDie: aDie

Die
sumWithDie: aDie

DieHandle

+ aDicable
 ^ aDicable sumWithDie: self

: aDie(6) : aDie(10) +

sumWithDie: aDie

 ^ DieHandle new

addDie: self;
addDie: aDie;

 yourself

sumWithDie: aDie

 | handle |
 handle := self class new.
 self dice do: [:each | handle addDie: each].
 handle addDie: aDie.
 ^ handle

Message 1

Message 2

Figure 8-1 Summing two dice and be prepared for more.

We know how to sum a die with a die handle: we simply create a new die
handle, add all the die of the previous die handle to the new one and add the
argument too.

So we just have to define the method sumWithDie: to the class DieHandle
implementing this logic.

DieHandle >> sumWithDie: aDie
... Your code ...

Now we can sum a die with a die handle as shown in Figure 8-2. The test tes-
tAddingADieAndHandle should now pass.

+ aDicable
sumWithDie: aDie

Die
sumWithDie: aDie

DieHandle

+ aDicable
 ^ aDicable sumWithDie: self

: aDie(6) : 2 D20 +

sumWithDie: aDie

 ^ DieHandle new

addDie: self;
addDie: aDie;

 yourself

sumWithDie: aDie

 | handle |
 handle := self class new.
 self dice do: [:each | handle addDie: each].
 handle addDie: aDie.
 ^ handle

Message A

Message B

Figure 8-2 Summing a die and a dicable.

8.11 Stepping back

You may ask why this is working. We defined two methods sumWithDie: one
on the class Die and one in the class DieHandle and when the method + on

57

Revisiting the Die DSL: a case for double dispatch

class Die will send the message sumWithDie: to either a die or a die handle,
the message dispatch will select the correct method sumWithDie: for us as
shown in Figure 8-3.

+ aDicable
sumWithDie: aDie

Die
sumWithDie: aDie

DieHandle

+ aDicable
 ^ aDicable sumWithDie: self

: aDie(6) : aDie(10) +

: aDie(6) : 2 D20 +

sumWithDie: aDie

 ^ DieHandle new

addDie: self;
addDie: aDie;

 yourself

sumWithDie: aDie

 | handle |
 handle := self class new.
 self dice do: [:each | handle addDie: each].
 handle addDie: aDie.
 ^ handle

Message 1

Message 2

Message A

Message B

Figure 8-3 Summing a die and a dicable

8.12 Now a DieHandle as receiver

Our solution does not handle the case where the receiver is a die handle. This
is what we will address now. Now we are ready to apply the same pattern as
before but for the case where the receiver is a die handle. We will just say to
the argument of the message + that we want to sum it with a die handle this
time.

We know how to sum two die handles, it is the code we already defined in the
previous chapter. We rename the +method as sumWithHandle: to be able
to invoke it while redefining the method +. Basically, this method creates a
new handle, then adds the dice of the receiver and the argument to it, and
returns the new handle.

DieHandle >> sumWithHandle: aDieHandle
... Your code ...

Now we can define a more powerful version of + by simply sending the mes-
sage sumWithHandle: to the argument (aDicable) of the message +. Again
we send a message to the argument (aDicable) to kick in a new message
lookup and dispatch for the message sumWithHandle:.

DieHandle >> + aDicable
... Your code ...

58

8.13 sumWithHandle: on Die class

We said that this version of + is more powerful than the one of sumWithHan-
dle: because once we will implement the missing method sumWithHandle:
on the class Die, the +method will be able to sum a die handle with a die or
two die handles.

+ aDicable
sumWithDie: aDie
sumWithDieHandle:
aDieHandle

Die
+ aDicable
sumWithDie: aDie
sumWithDieHandle:
aDieHandle

DieHandle

+ aDicable
 ^ aDicable sumWithDie: self

sumWithDie: aDie

 ^ DieHandle new

addDie: self;
addDie: aDie;

 yourself

sumWithDie: aDie

 | handle |
 handle := self class new.
 self dice do: [:each | handle addDie: each].
 handle addDie: aDie.
 ^ handle

+ aDicable
 ^ aDicable sumWithHandle: self

sumWithHandle: aDieHandle

 | hd |
hd := DieHandle new.
aDieHandle dice

 do: [:each | hd addDie: each].
hd addDie: self
^ hd

sumWithHandle: aDieHandle

 | hd |
 hd := self class new.
 self dice do: [:each | hd addDie: each].
 aDieHandle dice do: [:each | hd addDie: each].
 ^ hd

Figure 8-4 Handling all the cases: summing a die/die handle with a die/die han-

dle .

Up until here, we did not change much and all the tests adding two die han-
dles should continue to run.

8.13 sumWithHandle: on Die class

To get the possibility to sum a die handle with a single die, we just have to
define a new method sumWithHandle: on the Die class. The logic is similar
to the one adding one die to one die handle

Die >> sumWithHandle: aDieHandle
... Your code ...

Note that we could have sent the message aDieHandle sumWithDie: self
as the body of sumWithHandle: definition.

Figure 8-4 shows the full setup. We suggest following the execution of mes-
sages for the different cases to understand that just sending a new message
to the argument and relying on method dispatch produces modular condi-
tional execution. Now the following test should pass and we are done.

59

Revisiting the Die DSL: a case for double dispatch

DieHandleTest >> testAddingAnHandleWithADie
| handle res |
handle := DieHandle new

addDie: (Die faces: 6);
addDie: (Die faces: 10);
yourself.

res := handle + (Die withFaces: 20).
self assert: res diceNumber equals: 3

8.14 Conclusion

When we step back, we see that we applied the Don’t ask, tell principle twice:
First the message + selects the corresponding methods in either Die or DieHan-
dle classes. Then a more specific message is sent to the argument and the
dispatch kicks in again selecting the correct method for the messages sumWith-
Die: or sumWithHandle:.

In this chapter, we presented double dispatch. The idea is to use the method
of dispatch two times. While the resulting design is simple, it is not trivial to
deeply understand and it requires time to digest double dispatch. At its core,
double dispatch relies on the fact that sending a message to an object selects
the correct method – and sending another message to the message argument
will select a new method. Therefore we have effectively selected a method
according to the receiver and the argument of a message.

Double dispatch is the basis for the Visitor Design pattern that is effective
when dealing with complex data structures such as documents, and compil-
ers. In such context, it is not rare to have more than 30 or 40 different nodes
that should be manipulated together to produce specific behavior.

60

CHA P T E R 9
A little Ssaturn PathFinder

We launched a pathfinder robot on Saturn and the communication with the
robot is difficult. To interact with this robot we send it orders in scripts from
Earth and the robot executes them. Energy and communication are limited
so we use a compact representation of scripts.

Your mission is to define different orders and functionalities such as replay,
way back home, and path optimizations.

Figure 9-1 A 2D space and a robot in ascii.

Doing this project you will learn the Command design pattern and delegation
to objects that encapsulate their behavior.

61

A little Ssaturn PathFinder

9.1 A robot in its space

A robot lives in a 2D space. It starts in a location. The following code snippet
is producing Figure 9-1.

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb x: 4 y: 1.
rb inspect

A board is composed of cells. Pay attention that a cell in the board only con-
tains one element: a ground tile or a robot. So when moving a robot to a cell
will ’erase’ the background. So when moving a robot should put back the
previous tile.

atX:atY:
atX:at:y:put:

Board position:
setBoard:
character

Tile

move:
direction:
startLocation:
execute:

Robot Background

Figure 9-2 A minimal design.

9.2 Scripts

A robot receives a script as strings containing orders. The following test illus-
trates this.

• First a robot is created.

• Second a board is created. The robot is placed in the space.

• Third the robot can execute a script.

testExecute

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb x: 4 y: 1.
rb execute:

62

9.3 Getting the code

'dir #east
mov 2
mov 3
dir #north
mov 3'.

self assert: rb position equals: 9@4

The script contains different orders: such as mov 3, dir #north.

9.3 Getting the code

To help you develop this project we provide some core behavior. The robot
code is available at: https://github.com/pharo-mooc/AdvancedDesignMoocProjectCode.

• To start, load the baseline name RobotsProject, it contains the board
logic, and board tests in addition to basic behavior for tiles composing
the space. Note that this

• Once you define the class RbsRobot (for example in a package named
Robots) as a subclass of RbsAbstractRobot, load the package Robots-
Tests. It contains the tests for the behavior you will have to define.

9.4 Basic robot behavior

Define methods direction: and direction to define the direction of the
robot and initialize it for example to point to the east.

testRobotDefaultDirection

| rb |
rb := RbsRobot new.
self assert: rb direction equals: #east

9.5 Robot move

The first step is to implement orders such as mov, dir. Each order can be im-
plemented by defining a method such as move: aDistance and direction:.
Propose an implementation for these methods. Here is a possible test for the
move:.
testRobotMove

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb x: 4 y: 1.
"should make sure that previous tile is put back"

63

A little Ssaturn PathFinder

self assert: (rb board atX: 4 atY: 1) equals: rb.
rb move: 10.
self assert: (rb board atX: 14 atY: 1) equals: rb.
self assert: (rb board atX: 14 atY: 1) equals: rb

Pay attention that move: should put back the ground after moving.

To help you we propose to use the following method computeNewPosition:,
but there is a bug (it does not return a point). Write a couple of tests and fix
the method.

computeNewPosition: anInteger
"Returns a point representing the location of the next move."
^ direction = #east

ifTrue: [self x + anInteger]
ifFalse: [direction = #west

ifTrue: [self x - anInteger]
ifFalse: [direction = #north

ifTrue: [self y + anInteger]
ifFalse: [self y - anInteger].

]
]

The method move: now handles the fact that we put back the background
tile when moving the robot. But we were tired and there was a bug in that
method, fix it!

move: anInteger

| newPosition |
newPosition := self computeNewPosition: anInteger.
self previousTile position: newPosition.
previousTile := self board atPosition: newPosition.
self position: newPosition.

The following test should pass:

testRobotMovePreservesGround

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb x: 4 y: 1.
self assert: rb previousTile class equals: RbsGround.
self assert: rb previousTile x equals: 4.
rb move: 10.
self assert: (rb board atX: 4 atY: 1) class equals: RbsGround.
self assert: (rb board atX: 14 atY: 1) equals: rb.
self assert: rb previousTile position equals: 14@1

64

9.6 Sending order to robots

9.6 Sending order to robots

Now we are ready to implement the method execute: that will execute the
orders. The following helper method splits the script into line based orders.

RbsRobot >> identifyOrdersOf: aString

| orders |
orders := aString splitOn: Character cr.
orders := orders collect: [:each | each splitOn: Character space

].
^ orders

In addition you can use the following expression Object readFrom: aS-
tring to get the Pharo object represented by the string.

Object readFrom: '1'
> 1

Object readFrom: 'true'
> true

You should make the following test passes:

testExecute

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb x: 4 y: 1.
rb execute:

'dir #east
mov 2
mov 3
dir #north
mov 3'.

self assert: rb position equals: 9@4

9.7 Adding new orders

We propose now to introduce new orders.

Base

It was strange to not have the base position as part of the script so we pro-
pose to introduce a new order base taking two numbers as x and y.

base 10 20

65

A little Ssaturn PathFinder

Here is a test that should pass.

testStartPositionAsOrder

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb execute:

'base 4 1
dir #east
mov 2
mov 3
dir #north
mov 3'.
self assert: rb position equals: 9@4

Dropping an item

Introduce the possibility for the robot to drop an item on the map. Introduce
the class RbsItem with, for example, the character o as textual representa-
tion and handle the order in the execute: method.

dropL

9.8 Introducing commands

Imagine that you originally defined the execute: method as follows:

execute: aString

(self identifyOrdersOf: aString)
do: [:each |
each first = #mov

ifTrue: [self move: (Object readFrom: each second)]
ifFalse: [
each first = #dir ifTrue: [

self direction: (Object readFrom: each second)]]]

You certainly saw that adding a new order is tedious and make the condi-
tional statements more and more complex. This can get even more com-
plex if we want to implement a replay of the orders. We propose to use Com-
mands. Commands are objects representing actions.

Load the package named Robots-BasicCommands-Tests. It contains some
tests to help you creating commands.

66

9.8 Introducing commands

atX:atY:
atX:at:y:put:

Board position:
setBoard:
character

Tile

move:
direction:
startLocation:
execute:
executeCommand:

Robot

Background

handleArtguments:
printArguments:
executeOn:

Command

distance:
handleArguments:
executeOn:

MoveCommand

direction:
handleArguments:
executeOn:

DirectionCommand

Figure 9-3 A design with Command.

Command

Each command can have its own state and in addition its should know how
to execute itself and convert the order arguments into a Pharo object. Here
is an example for the RbsMoveCommand. What you see is that it has its own
state, an executeOn: method and a way to handle the arguments of the
script.

RbsCommand << #RbsMoveCommand
slots: { #distance };
package: 'Robots'

RbsMoveCommand >> executeOn: aRobot
aRobot move: distance

RbsMoveCommand >> handleArguments: aCol
distance := Object readFrom: aCol first

Registering commands

We need a way to associate orders to commands. We do it by defining the
method commandName on the class side of the command class.

RbsMoveCommand class >> commandName
^ 'mov'

The robot class should have a way to map ’mov’ to the class of the command
Something like:

initializeCommandMapping

cmdMap := Dictionary new.
RbsCommand allSubclassesDo: [:each |

cmdMap at: each commandName put: each
]

67

A little Ssaturn PathFinder

that the executeCommandBased: aString should use when creating and
executing commands.

executeCommandBased: aString

(self identifyOrdersOf: aString) do: [:each |
((self commandClassFor: each first) new

handleArguments: each allButFirst; yourself) executeOn: self]

Implement all the commands so that the following test should pass.

testExecuteCommandBased

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb x: 4 y: 1.
rb executeCommandBased:

'dir #east
mov 2
mov 3
dir #north
mov 3'.
self assert: rb position equals: 9@4

9.9 Challenge: Replay

We would like to monitor what the robot is doing to be able to replay it. Load
the package Robots-Replay-Tests. Here is a typical script and we can re-
play it with another starting position.

testReplay

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb executeCommandBased:

'base 4 1'.
rb executeCommandBased:

'dir #east
mov 2
mov 3
dir #north
mov 3'.
self assert: rb position equals: 9@4.
rb x: 5 y: 1.
rb replay.
self assert: rb position equals: 10@4

68

9.9 Challenge: Replay

Let us imagine that the method execute commandBased: was implemented as

RbsRobot >> executeCommandBased: aString

(self identifyOrdersOf: aString) do: [:each |
((self commandClassFor: each first) new

handleArguments: each allButFirst; yourself) executeOn: self]

You should introduce a way to keep the created commands so that they can
be replayed. For example consider adding an instance variable path initial-
ized as an OrderedCollection and add commands when you create them in
the previous method.

Introduce new commands to control replay

Note that in the test above we used rb x:5 y: 1. instead of rb executeCom-
mandBased: 'base 5 1'. This is due to the fact that we cannot control
when the recording is starting and that we cannot reset it or stop it either.
We propose you to introduce the following commands: startM, stopM, restM,
and replay.

Add a new instance variable monitoring to the robot class and two methods
to control it as well as an initialization.

startMonitoring
monitoring := true

stopMonitoring
monitoring := false

The following test shows that we are registering stopM as a command. We
will fix that below.

testMonitoringIsOnPerDefault

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb executeCommandBased:

'base 5 1
dir #east
stopM
mov 3'.

self assert: rb path size equals: 3

The following test verifiess that once the monitoring is stopped and the path
reset, the path is empty

69

A little Ssaturn PathFinder

testReset

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb executeCommandBased:

'base 5 1
dir #east
stopM
resM
mov 3'.
self assert: rb path size equals: 0

9.10 Non recording commands

The following test may loop so pay attention because replay will replay the
sequence that will replay itself endlessly.

testReplayAsCommand

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb executeCommandBased:

'base 4 1'.
rb executeCommandBased:

'resM
dir #east
mov 2
mov 3
dir #north
mov 3'.
self assert: rb position equals: 9@4.

rb executeCommandBased: 'base 5 1
replay'.
self assert: rb position equals: 10@4

We could rely on the script programmer to always stop the monitoring be-
fore placing a replay order. But to have better security and avoid endless
loop because replay would be replaying itself, it is important that replay
is not added to the path of commands. The following test loops because the
replay order is causing itself to be kicked.

Propose one solution where replay is not added to the path. Such a solution
can be defined without any conditional by giving each command the respon-
sibility to add itself to the path.

70

9.10 Non recording commands

Instead of doing a conditional before adding the command the path, we can
just ask the command to add itself to the path of the robot. This way the
replay command can ignore it. So introducing a hook in place of calling di-
rectly the path addition (path addLast: cmd.) is a nice solution because
each command can define its own behavior.

executeCommandBased: aString
...
path addLast: cmd.
...

becomes

executeCommandBased: aString
...
cmd addToPathOf: self
...

This forces us to introduce a method named for example addToPath: in the
robot class to expose path addition. Once the corresponding logic is added
and used the following test will pass.

testAddToPathCommandsDoesNotContainReplay

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb executeCommandBased:

'base 5 1
dir #east
mov 3
replay'.

self assert: rb path size equals: 3

Once the command stop, start, reset and replay are not recorded any-
more the tests should be changed. For example testMonitoringIsOnPerDe-
fault checks that the path is now only containing two commands.

testMonitoringIsOnPerDefault

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb executeCommandBased:

'base 5 1
dir #east
stopM
mov 3'.

self assert: rb path size equals: 2

71

A little Ssaturn PathFinder

Now we are ready to use replay as an order. The following test verifies it.

testReplayAsCommand

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb executeCommandBased:

'base 4 1'.
rb executeCommandBased:

'resM
dir #east
mov 2
mov 3
dir #north
mov 3'.
self assert: rb position equals: 9@4.

rb executeCommandBased: 'stopM
base 5 1
replay'.
self assert: rb position equals: 10@4

9.11 Challenge: Automatic way back home

It can be tedious to bring back the robot to its location be inverting one by
one the orders that compose a script. We propose to enhance our robots with
a wayBack order. Load the package Robots-WayBack-Tests. A way back ac-
tion with take a list of commands and produce a new list of commands with
the opposite actions. Figure 9-4 illustrates the behavior:

When we have a simple path

dir #east
mov 5
dir #north
mov 3
dir #east
mov 4
wback

the robot should perform the following path back. We stressed that the di-
rections should be inversed.

dir #east => west
mov 4
dir #north
mov 3
dir #east => west
mov 5

72

9.11 Challenge: Automatic way back home

What we see is that we should not only

• remove the way back order

• reverse the list

• but also convert direction in the opposite ones.

X X

X X

east mov

mov

mov
east

north X X

X X

mov

mov

mov
south

west

west

Figure 9-4 A simple path and a way back home.

Notice that multiple mov orders can be before a change direction as in the
equivalent path:

dir #east => west
mov 2
mov 2
dir #north
mov 1
mov 1
mov 1
dir #east => west
mov 5

A a first step we propose to introduce a simple message on the direction
command class and the root of command.

RbsCommand >> asWayBack

^ self

Imagine the implementation for the direction commands.

testDirectionWyaBAck
| opposite |
opposite := (RbsDirectionCommand new direction: #east) asWayBack.
self assert: opposite direction equals: #west.
opposite := (RbsDirectionCommand new direction: #west) asWayBack.
self assert: opposite direction equals: #east.

To help you in this challenge we propose you to use the following method
ifCutOn: isSplitterBlock doWithCutAndUncuts: aTwoArgBlock fi-
nally: aBlock. If it is not available in Pharo, just define it on Sequence-
ableCollection. The following tests should illustrate clearly what the method
does.

73

A little Ssaturn PathFinder

testCut

| res |
res := OrderedCollection new.
#(2 2 #east 1 1 1 #north 5 #east 666)

ifCutOn: [:s | s isSymbol]
doWithCutAndUncuts: [:cut :before | res addLast: cut; addAll:
before]
finally: [:u | res addLast: u].

self assert: res equals: #(#east 2 2 #north 1 1 1 #east 5 666)
asOrderedCollection

SequenceableCollection >> ifCutOn: isSplitterBlock
doWithCutAndUncuts: aTwoArgBlock finally: aBlock

"Applies aTwoArgBlock (with current splitter objects and previous
unsplit objects) to the receiver. When uncuts are left executes
aBlock with them.

An optimised version could work with indexes to avoid creating
intermediate collections."

| uncuts cut current |
uncuts := OrderedCollection new.
1 to: self size do: [:i |

current := self at: i.
cut := isSplitterBlock value: current.
cut

ifFalse: [uncuts addLast: current]
ifTrue: [

aTwoArgBlock value: current value: uncuts.
uncuts := OrderedCollection new]].

uncuts isEmpty
ifFalse: [aBlock value: uncuts]

Extensions

• We could introduce a turn back message that given a command return
its opposite based on its previous state. Given a path sequence east
mov 5 north mov 3 east mov 7 it would generate the sequence west
mov 7 north mov 3 south mov 5...

9.12 Challenge: Path optimizations

This extension is about supporting path optimizations. Load the package
’Robots-Optimize-Tests. Let us imagine that the treatment of a
command is costly on Saturn. Then it can be better to optimize
the received script before executing it. Optimization can be

74

9.12 Challenge: Path optimizations

quite simple, indeed n mov‘ commands can be merged as a single move
command with the sum of the commands.

The following orders

move 10
move 20
move 5

can be replaced by a single one:

move 35

Several following direction commands can be merged as the last command.

The following sequence

dir #east
dir #south
dir #north

is optimized as

dir #north

We suggest the following design. Introduce a message aCommand merge-
With: anotherCommand that returns a list containing the situation after
trying to merge:

• When two commands can merge, returns a list containing the com-
mand resulting from the merge.

• When two commands do not merge, returns a list containing the two
original commands.

You can use double dispatch to determine how commands of different classes
are merged. As a default you can decide that different commands do not
merge.

RbsRobotTest >> testMergeMoveCommandsProducesTheSum

| cmdList |
cmdList := (RbsMoveCommand new distance: 10; yourself)

mergeWith: (RbsMoveCommand new distance: 10; yourself).
self assert: cmdList size equals: 1.
self assert: cmdList first distance equals: 20.

RbsRobotTest >> testMergeUNmergeableCommandsBecauseDifferent

| cmdList |
cmdList := (RbsMoveCommand new distance: 10; yourself)

mergeWith: (RbsDirectionCommand new direction: #east; yourself).
self assert: cmdList size equals: 2.
self assert: cmdList first distance equals: 10.

75

A little Ssaturn PathFinder

Once the merge semantics is in place you can use this logic to optimize full
paths as illustrated by the following test. Pay attention because this is a bit
tricky in particular since

mov 1
mov 2
mov 3
dir #east

leads to

mov 3
mov 3
dir #east

and then finally to

mov 6
dir #east

The following test should pass.

testOptimizeMergeThreeMovesAndOthers

| rb b |
rb := RbsRobot new.
b := RbsBoard new.
rb setBoard: b.
rb x: 4 y: 1.
rb optimizePath:

'mov 2
mov 3
mov 4
dir #east'.
self

assert: (rb path collect: [:each | each printString])
equals: #('mov 9' 'dir #east')

Extensions

You can also add the fact that a mov 5 followed by a mov -5 does not produce
any command. Returning an empty list should be managed.

9.13 Extensions

Here is a list of extensions:

• The robot should be able to pick an item.

• It can have a certain capacity and cannot carry too many items.

76

9.14 Conclusion

• Passing a symbol to the direction is bad because the script developer
may mistype it and exposing the internal logic is a bad idea. Propose a
solution.

• The definition of the new location of a robot is based on a boring con-
ditional. Can you imagine a better way?

computeNewPosition: anInteger
"Returns a point representing the location of the next move."
^ direction = #east

ifTrue: [self x + anInteger]
ifFalse: [direction = #west

ifTrue: [self x - anInteger]
ifFalse: [direction = #north

ifTrue: [self y + anInteger]
ifFalse: [self y - anInteger].

]
]

To give you a hint, we could have a little hierarchy with direction and each
direction would decide the new location when told to compute it.

East computeFor: 4@1 distance: 10
> 14@1

9.14 Conclusion

This micro project shows you that representing actions as objects lets us ma-
nipulate programs at the right level of abstractions. Functionality as undo,
replay, or path optimizations are easier to develop using commands. In ad-
dition refraining from using conditions is interesting because it forces us
to delegate responsibilities to the objects and this makes your design more
modular.

77

CHA P T E R 10
Finding the North with Compass

In this chapter, we will work on an alternative way to represent directions
and move computation in the 2D plan.

10.1 Existing situation

Computing new position based on a direction.

In the Robot implementation proposed in Chapter 9, we computed the new
position of a robot as follows:

computeNewPosition: anInteger
"Returns a point representing the location of the next move."

^ direction = #east
ifTrue: [self x + anInteger @ self y]
ifFalse: [direction = #west

ifTrue: [self x - anInteger @self y]
ifFalse: [direction = #north

ifTrue: [self x @ (self y + anInteger)]
ifFalse: [self x @ (self y - anInteger)].

]
]

This is not that nice.

Opposite direction

Similarly, we computed the opposite direction as follows:

79

Finding the North with Compass

computeOppositeDirection: aDirection
"Returns the opposite direction.
Note that this implementation should be rewritten taking into

account Compass' way of representing direction and their
computation'"

^ aDirection = #east
ifTrue: [#west]
ifFalse: [aDirection = #west

ifTrue: [#east]
ifFalse: [aDirection = #north

ifTrue: [#south]
ifFalse: [#north].

]
]

10.2 Representing directions

We propose that you define a little hierarchy with the class CpDirection as
a root and as subclasses the four main directions and based on it compute the
opposite and a new position in an adjacent position.

Note that by design we avoided directly referring to subclasses but use the
root as a factory of instances of its subclasses.

Make sure that the following tests pass and define new ones for each sce-
nario.

testSouthReturnOneRowDownPosition

| newPos |
newPos := CpDirection south * (3 @ 2).
self assert: newPos x equals: 3.
self assert: newPos y equals: 3.

testWestReturnLeftPosition

| newPos |
newPos := CpDirection west * (3 @ 2).
self assert: newPos x equals: 2.
self assert: newPos y equals: 2.

New position at a given distance

While the message * was given the next adjacent position, define tests and
introduce the message in: aDistance from: aPosition.

80

10.3 Introducing NorthWest, SouthEast, and friends

testEastInDistanceReturnRightPosition

| newPos |
newPos := CpDirection east in: 3 from: (3 @ 2).
self assert: newPos x equals: 6.
self assert: newPos y equals: 2.

10.3 Introducing NorthWest, SouthEast, and friends

Now that you have got your four positions and all your tests green. Introduce
the missing directions: NorthWest, NorthEast, SouthEast, and SouthWest.
And enjoy this design.

81

CHA P T E R 11
A little expression interpreter

In this chapter, you will build a small mathematical expression interpreter.
For example, you will be able to build an expression such as (3 + 4) * 5 and
then ask the interpreter to compute its value. You will revisit tests, classes,
messages, methods, and inheritance. You will also see an example of expres-
sion trees similar to the ones that are used to manipulate programs. For ex-
ample, compilers and code refactorings as offered in Pharo and many mod-
ern IDEs are doing such manipulation with trees representing code. In addi-
tion, we will extend this example to present the Visitor Design Pattern.

11.1 Starting with constant expression and a test

We start with a constant expression. A constant expression is an expression
whose value is always the same, obviously.

Let us start by defining a test case class as follows:

TestCase << #EConstantTest
package: 'Expressions'

We decided to define one test case class per expression class and this even if
at the beginning the classes will not contain many tests. It is easier to define
new tests and navigate them.

Let us write a first test making sure that when we get a value, sending it the
evaluatemessage returns its value.

EConstantTest >> testEvaluate
self assert: (EConstant new value: 5) evaluate equals: 5

When you compile such a test method, the system should prompt you to get
a class EConstant defined. Let the system drive you. Since we need to store

83

A little expression interpreter

the value of a constant expression, let us add an instance variable value to
the class definition.

At the end you should have the following definition for the class EConstant.

Object << #EConstant
slots: {'value'};
package: 'Expressions'

We define the method value: to set the value of the instance variable value.
It is simply a method taking one argument and storing it in the value in-
stance variable.

EConstant >> value: anInteger
value := anInteger

You should define the method evaluate: it should return the value of the
constant.

EConstant >> evaluate
... Your code ...

Your test should pass.

11.2 Negation

Now we can start to work on expression negation. Let us write a test and for
this define a new test case class named ENegationTest.

TestCase << #ENegationTest
package: 'Expressions'

The test testEvaluate shows that a negation applies to an expression (here
a constant) and when we evalute we get the negated value of the constant.

ENegationTest >> testEvaluate
self assert: (ENegation new expression: (EConstant new value: 5))

evaluate equals: -5

Let us execute the test and let the system help us to define the class. A nega-
tion defines an instance variable to hold the expression that it negates.

Object << #ENegation
slots: { #expression };
package: 'Expressions'

We define a setter method to be able to set the expression under negation.

ENegation >> expression: anExpression
expression := anExpression

84

11.3 Adding expression addition

Now the evaluatemethod should request the evaluation of the expression
and negate it. To negate a number the Pharo library proposes the message
negated.

ENegation >> evaluate
... Your code ...

Figure 11-1 A flat collection of classes (with a suspect duplication).

Following the same principle, we will add expression addition and multi-
plication. Then we will make the system a bit more easy to manipulate and
revisit its first design.

11.3 Adding expression addition

To be able to do more than constant and negation we will add two extra ex-
pressions: addition and multiplication and after we will discuss about our
approach and see how we can improve it.

To add an expression that supports addition, we start to define a test case
class and a simple test.

TestCase << #EAdditionTest
package: 'Expressions'

A simple test for addition is to make sure that we add correctly two con-
stants.

EAdditionTest >> testEvaluate
| ep1 ep2 |
ep1 := (EConstant new value: 5).
ep2 := (EConstant new value: 3).
self assert: (EAddition new right: ep1; left: ep2) evaluate

equals: 8

You should define the class EAddition: it has two instance variables for the
two subexpressions it adds.

85

A little expression interpreter

EExpression << #EAddition
slots: { #left . #right};
package: 'Expressions'

Define the two corresponding setter methods right: and left:.

Now you can define the evaluatemethod for addition.

EAddition >> evaluate
... Your code ...

To make sure that our implementation is correct we can also test that we can
add negated expressions. It is always good to add tests that cover different
scenario.

EAdditionTest >> testEvaluateWithNegation
| ep1 ep2 |
ep1 := ENegation new expression: (EConstant new value: 5).
ep2 := (EConstant new value: 3).
self assert: (EAddition new right: ep1; left: ep2) evaluate

equals: -2

11.4 Multiplication

We do the same for multiplication: create a test case class named EMulti-
plicationTest, a test, a new class EMultiplication, a couple of setter
methods and finally a new evaluatemethod. Let us do it fast and without
much comments.

TestCase << #EMultiplicationTest
package: 'Expressions'

EMultiplicationTest >> testEvaluate
| ep1 ep2 |
ep1 := (EConstant new value: 5).
ep2 := (EConstant new value: 3).
self assert: (EMultiplication new right: ep1; left: ep2) evaluate

equals: 15

Object subclass: #EMultiplication
slots: { #left . #right};
package: 'Expressions'

EMultiplication >> right: anExpression
right := anExpression

EMultiplication >> left: anExpression
left := anExpression

EMultiplication >> evaluate
... Your code ...

86

11.5 Stepping back

11.5 Stepping back

It is interesting to look at what we built so far. We have a group of classes
whose instances can be combined to create complex expressions. Each ex-
pression is in fact a tree of subexpressions as shown in Figure 11-2. The fig-
ure shows two main trees: one for the constant expression 5 and one for the
expression -5 + 3. Note that the diagram represents the number 5 as an
object because in Pharo even small integers are objects in the same way the
instances of EConstant are objects.

anENegation

anEAddition

anEConstant

5

anEConstant

5

anEConstant

3

5

-5 + 3

expression

value

left

right
value

value

Figure 11-2 Expressions are composed of trees.

Messages and methods

The implementation of the evaluatemessage is worth discussing. What we
see is that different classes understand the same message but execute dif-
ferent methods as shown in Figure 11-3. A message represents an intent: it
represents what should be done. A method represents a specification of how
something should be executed. What we see is that sending a message eval-
uate to an expression is making a choice among the different implementa-
tions of the message. This point is central to object-oriented programming.
Sending a message is making a choice among all the methods with the same
name.

About common superclass

So far we did not see the need to have an inheritance hierarchy because
there is not much to share or reuse. Now adding a common superclass would

87

A little expression interpreter

be useful to convey to the reader of the code or a future extender of the li-
brary that such concepts are related and are different variations of expres-
sion.

Object

value:
evaluate

value
Constant

left:
right:
evaluate

left
right

Addition

expression:
evaluate

expression
Negation

left:
right:
evaluate

left
right

Multiplication

evaluate
 ^ value

evaluate
 ^ expression evaluate negated

evaluate
 ^ right evaluate + left evaluate

evaluate
 ^ right evaluate * left evaluate

Figure 11-3 Evaluation: one message and multiple method implementations.

Design corner: About addition and multiplication model

We could have just one class called for example BinaryOperation and it can
have an operator and this operator will be either the addition or multiplica-
tion. This solution can work and as usual having a working program does not
mean that its design is any good.

In particular having a single class would force us to start to write conditional
based on the operator as follows

BinaryExpression >> evaluate
operator = #+

ifTrue: [left evaluate + right evaluate]
ifFalse: [left evaluate * right evaluate]

There are ways in Pharo to make such code more compact but we do not
want to use it at this stage. For the interested reader, look for the message
perform: that can execute a method based on its name.

This is annoying because the execution engine itself is made to select meth-
ods for us so we want to avoid to bypass it using explicit condition. In addi-
tion when we will add power, division, subtraction we will have to have more
cases in our condition making the code less readable and more fragile.

As we will see as a general message in this book, sending a message is mak-
ing a choice between different implementations. Now to be able to choose
we should have different implementations and this implies having differ-
ent classes. Classes represent choices whose methods can be selected during
message passing. Having more little classes is better than few large ones.
What we could do is to introduce a common superclass between EAddition

88

11.6 Negated as a message

and EMultiplication but keep the two subclasses. We will probably do it in
the future

11.6 Negated as a message

Negating an expression is expressed in a verbose way. We have to create ex-
plicitly each time an instance of the class ENegation as shown in the follow-
ing snippet.

ENegation new expression: (EConstant new value: 5)

We propose to define a message negated on the expressions themselves that
will create such instance of ENegation. With this new message, the previous
expression can be reduced too.

(EConstant new value: 5) negated

negated message for constants

Let us write a test to make sure that we capture well what we want to get.

EConstantTest >> testNegated
self assert: (EConstant new value: 6) negated evaluate equals: -6

And now we can simply implement it as follows:

EConstant >> negated
^ ENegation new expression: self

negated message for negations

ENegationTest >> testNegationNegated
self assert: (EConstant new value: 6) negated negated evaluate

equals: 6

ENegation >> negated
^ ENegation new expression: self

This definition is not the best we can do since in general it is a bad practice
to hardcode the class usage inside the class. A better definition would be

ENegation >> negated
^ self class new expression: self

But for now we keep the first one for the sake of simplicity

negated message for additions

We proceed similarly for additions.

89

A little expression interpreter

EEAdditionTest >> testNegated
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EAddition new right: ep1; left: ep2) negated

evaluate equals: -8

EAddition >> negated
... Your code ...

negated message for multiplications

We proceed similarly for multiplications.

EMultiplicationTest >> testEvaluateNegated
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EMultiplication new right: ep1; left: ep2) negated

evaluate equals: -15

EMultiplication >> negated
... Your code ...

Now all your tests should pass. And it is a good moment to save your pack-
age.

11.7 Annoying repetition

Let us step back and look at what we have. We have a working situation but
again object-oriented design is to bring the code to a better level.

Similarly to the situation of the evaluatemessage and methods we see that
the functionality of negated is distributed over different classes. Now what
is annoying is that we repeat the exact same code over and over and this is
not good (see Figure 11-4). This is not good because if tomorrow we want to
change the behavior of negation we will have to change it four times while in
fact one time should be enough.

What are the solutions?

• We could define another class Negator that would do the job and each
current classes would delegate to it. But it does not really solve our
problem since we will have to duplicate all the message sends to call
Negator instances.

• If we define the method negated in the superclass (Object) we only
need one definition and it will work. Indeed, when we send the mes-
sage negated to an instance of EConstant or EAddition the system

90

11.8 Introducing Expression class

Object

value:
evaluate
negated

value
Constant

left:
right:
evaluate
negated

left
right

Addition

expression:
evaluate
negated

expression
Negation

left:
right:
evaluate
negated

left
right

Multiplication

negated
 ^ ENegation new expression: self

negated
 ^ ENegation new expression: self

negated
 ^ ENegation new expression: self

negated
 ^ ENegation new expression: self

Figure 11-4 Code repetition is a bad smell.

will not find it locally but in the superclass Object. So no need to de-
fine it four times but only one in class Object. This solution is nice
because it reduces the number of similar definitions of the method
negated but it is not good because even if in Pharo we can add meth-
ods to the class Object this is not a good practice. Object is a class
shared by the entire system so we should take care not to add behavior
only making sense for a single application.

• The solution is to introduce a new superclass between our classes and
the class Object. It will have the same property than the solution with
Object but without poluting it (see Figure 11-5). This is what we do in
the next section.

11.8 Introducing Expression class

Let us introduce a new class to obtain the situation depicted by Figure 11-5.
We can simply do it by adding a new class:

Object << #EExpression
package: 'Expressions'

and changing all the previous definitions to inherit from EExpression in-
stead of Object. For example the class EConstant is then defined as follows.

EExpression << #EConstant
slots: { #value};
package: 'Expressions'

We can also use for the first transformation the class refactoring Insert super-
class. Refactorings are code transformations that do not change the behavior

91

A little expression interpreter

Figure 11-5 Introducing a common superclass.

of a program. You can find it under the refactorings list when you bring the
menu on the classes. Now it is only useful for the first changes.

Once the classes EConstant, ENegation, EAddition, and EMultiplication
are subclasses of EEXpression, we should focus on the method negated.
Now the method refactoring Push up will help us.

• Select the method negated in one of the classes

• Select the refactoring Push up

The system will define the method negated in the superclass (EExpression)
and remove all the negated methods in the classes. Now we obtain the situa-
tion described in Figure 11-5. It is a good moment to run all your tests again.
They should all pass.

Now you could think that we can introduce a new class named Arithmetic-
Expression as a superclass of EAddition and EMultiplication. Indeed this
is something that we could do to factor out common structure and behav-
ior between the two classes. We will do it later because this is basically just a
repetition of what we have done.

11.9 Class creation messages

Until now we always sent the message new to a class followed by a setter
method as shown below.

EConstant new value: 5

We would like to take the opportunity to show that we can define simple
classmethods to improve the class instance creation interface. In this ex-
ample it is simple and the benefits are not that important but we think that

92

11.9 Class creation messages

this is a nice example. With this in mind the previous example can now be
written as follows:

EConstant value: 5

Notice the important difference that in the first case the message is sent to
the newly created instance while in the second case it is sent to the class it-
self.

To define a class method is the same as to define an instance method (as we
did until now). The only difference is that using the code browser you should
click on the classSide button to indicate that you are defining a method that
should be executed in response to a message sent to a class itself.

Better instance creation for constants

Define the following method on the class EConstant. Notice the definition
now use EConstant class and not just EConstant to stress that we are
defining the class method.

EConstant class >> value: anInteger
^ self new value: anInteger

Now define a new test to make sure that our method works correctly.

EConstantTest >> testCreationWithClassCreationMessage
self assert: (EConstant value: 5) evaluate equals: 5

Better instance creation for negations

We do the same for the class ENegation.

ENegation class >> expression: anExpression
... Your code ...

We write of course a new test as follows:

ENegationTest >> testEvaluateWithClassCreationMessage
self assert: (ENegation expression: (EConstant value: 5)) evaluate

equals: -5

Better instance creation for additions

For the addition we add a class method named left:right: taking two ar-
guments

EAddition class >> left: anInteger right: anInteger2
^ self new left: anInteger ; right: anInteger2

Of course, since we are test infested we add a new test.

93

A little expression interpreter

EEAdditionTest >> testEvaluateWithClassCreationMessage
| ep1 ep2 |
ep1 := EConstant value: 5.
ep2 := EConstant value: 3.
self assert: (EAddition left: ep1 right: ep2) evaluate equals: 8

Better instance creation for multiplications

We let you do the same for the multiplication.

EMultiplication class >> left: anExp right: anExp2
... Your code ...

And another test to check that everything is ok.

EMultiplicationTest >> testEvaluateWithClassCreationMessage
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EMultiplication new left: ep1; right: ep2) evaluate

equals: 15

Run your tests! They should all pass.

11.10 Introducing examples as class messages

As you saw when writing the tests, it is quite annoying to repeat all the time
the expressions to get a given tree. This is especially the case in the tests
related to addition and multiplication as the one below:

EEAdditionTest >> testNegated
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
self assert: (EAddition new right: ep1; left: ep2) negated

evaluate equals: -8

One simple solution is to define some class method returning typical in-
stances of their classes. To define a class method remember that you should
click the class side button.

EConstant class >> constant5
^ self new value: 5

EConstant class >> constant3
^ self new value: 3

This way we can define the test as follows:

94

11.11 Printing

EEAdditionTest >> testNegated
| ep1 ep2 |
ep1 := EConstant constant5.
ep2 := EConstant constant3.
self assert: (EAddition new right: ep1; left: ep2) negated

evaluate equals: -8

The tools in Pharo support such a practice. If we tag a class method with the
special annotation <sampleInstance> the browser will show a little icon
on the side and when we click on it, it will open an inspector on the new in-
stance.

EConstant class >> constant3
<sampleInstance>
^ self new value: 3

using the same idea we defined the following class methods to return some
examples of our classes.

EAddition class >> fivePlusThree
<sampleInstance>
| ep1 ep2 |
ep1 := EConstant new value: 5.
ep2 := EConstant new value: 3.
^ self new left: ep1 ; right: ep2

EMultiplication class >> fiveTimesThree
<sampleInstance>
| ep1 ep2 |
ep1 := EConstant constant5.
ep2 := EConstant constant3.
^ EMultiplication new left: ep1 ; right: ep2

What is nice about such examples is that

• they help to document the class by providing objects that we can di-
rectly use,

• they support the creation of tests by providing objects that can serve
as input for tests,

• they simplify the writing of tests.

So think about using them.

11.11 Printing

It is quite annoying that we cannot really see an expression when we inspect
it. We would like to get something better than 'aEConstant' and 'anEAd-
dition' when we debug our programs. To display such information the de-
bugger and inspector send to the objects the message printString which by
default just prefix the name of the class with ’an’ or ’a’.

95

A little expression interpreter

Let us change this situation. For this, we will specialize the method printOn:
aStream. The message printOn: is called on the object when a program or
the system send to the object the message printString. From that perspec-
tive printOn: is a system customization point that developers can take ad-
vantage to enhance their programming experience.

Note that we do not redefine the method printString because it is more
complex and printString is reused for all the objects in the system. We
just have to implement the part that is specific to a given class. In object-
oriented design jargon, printString is a template method in the sense that
it sets up a context that is shared by other objects and it hosts hook methods
which are program customization points. printOn: is a hook method. The
term hook comes from the fact that code of subclasses is invoked in the hook
place (see Figure 11-6).

The default definition of the method printOn: as defined on the class Ob-
ject is the following: it grabs the class name, checks if it starts with a vowel
or not and writes to the stream the ’a/an class’. This is why by default we got
'anEConstant' when we printed a constant expression.

Object >> printOn: aStream
"Append to the argument, aStream, a sequence of characters that
identifies the receiver."
| title |
title := self class name.
aStream

nextPutAll: (title first isVowel ifTrue: ['an '] ifFalse: ['a
']);
nextPutAll: title

A word about streams

A stream is a container for a sequence of objects. Once we get a stream we
can either read from it or write to it. In our case we will write to the stream.
Since the stream passed to printOn: is a stream expecting characters we will
add characters or strings (sequence of characters) to it. We will use the mes-
sages: nextPut: aCharacter and nextPutAll: aString. They add to the
stream the arguments at the next position and following. We will guide you
and it is simple. You can find more information on the chapter about Stream
in the book: Pharo by Example available at http://books.pharo.org

Printing constant

Let us start with a test. Here we check that a constant is printed as its value.

EConstantTest >> testPrinting
self assert: EConstant constant5 printString equals: '5'

96

http://books.pharo.org
http://books.pharo.org

11.11 Printing

printString
printOn:

Object

value:
evaluate
printOn:

value
Constant

left:
right:
evaluate
printOn:

left
right

Addition

expression:
evaluate
printOn:

expression
Negation

left:
right:
evaluate
printOn:

left
right

Multiplication

negated

Expression

printString

 self printOn: aStream

printOn: aStream

 | title |
title := self class name.
aStream

nextPutAll: (title first isVowel ifTrue: ['an '] ifFalse: ['a ']);
nextPutAll: title

printOn: aStream

 aStream nextPutAll: value printString

printOn: aStream

 aStream nextPutAll: '- '.
aStream nextPutAll: expression printString

printOn: aStream

 ...

printOn: aStream

 ...

Figure 11-6 printOn: and printString a ”hooks and template” in action.

The implementation is then simple. We just need to put the value converted
as a string to the stream.

EConstant >> printOn: aStream
aStream nextPutAll: value printString

Printing negation

For a negation we should first put a ’-’ and then recurvisely call the print-
ing process on the negated expression. Remember that sending the message
printString to an expression should return its string representation. At
least until now it will work for constants.

(EConstant value: 6) printString
>>> '6'

Here is a possible definition

ENegation >> printOn: aStream
aStream nextPutAll: '- '
aStream nextPutAll: expression printString

By the way since all the messages are sent to the same object, this method
can be rewritten as:

97

A little expression interpreter

ENegation >> printOn: aStream
aStream

nextPutAll: '- ';
nextPutAll: expression printString

We can also define it as follows:

ENegation >> printOn: aStream
aStream nextPutAll: '- '.
expression printOn: aStream

The difference between the first solution and the alternate implementation
is the following: In the solution using printString, the system creates two
streams: one for each invocation of the message printString. One for print-
ing the expression and one for printing the negation. Once the first stream
is used the message printString converts the stream contents into a string
and this new string is put inside the second stream which at the end is con-
verted again as a string. So the first solution is not really efficient. With the
second solution, only one stream is created and each of the methods just
put the needed string elements inside. At the end of the process, the single
printStringmessage converts it into a string.

Printing addition

Now let us write yet another test for addition printing.

EAdditionTest >> testPrinting
self assert: (EAddition fivePlusThree) printString equals: '(5 +

3)'.
self assert: (EAddition fivePlusThree) negated printString equals:

'- (5 + 3)'

Printing an addition is: put an open parenthesis, print the left expression,
put ’ + ’, print the right expression and put a closing parenthese in the stream.

EAddition >> printOn: aStream
... Your code ...

Printing multiplication

And now we do the same for multiplication.

EMultiplicationTest >> testPrinting
self assert: (EMultiplication fiveTimesThree) negated printString

equals: '- (5 * 3)'

EMultiplication >> printOn: aStream
... Your code ...

98

11.12 Revisiting negated message for Negation

11.12 Revisiting negated message for Negation

Now we can go back to negating an expression. Our implementation is not
nice even if we can negate any expression and get the correct value. If you
look at it carefully negating a negation could be better. Printing a negated
negation illustrates well the problem: we get two minus operations instead
of none.

(EConstant value: 11) negated
>> '- 11'

(EConstant value: 11) negated negated
>> '- - 11'

A solution could be to change the printOn: definition and to check if the ex-
pression that is negated is a negation and in such case to not emit the minus.
Let us say it now, this solution is not nice because we do not want to write
code that depends on explicitly checking if an object is of a given class. Re-
member we want to send a message and let the object do some actions.

A good solution is to specialize the message negated so that when it is sent
to a negation it does not create a new negation that points to the receiver but
instead returns the expression itself, otherwise the method implemented in
EExpression will be executed. This way the trees created by a negatedmes-
sage can never have negated negation but the arithmetic values obtained are
correct. Let us implement this solution, we just need to implement a differ-
ent version of the method negated for ENegation.

Let us write a test! Since evaluating a single expression or a double negated
one gives the same results, we need to define a structural test. This is what
we do with the expression exp negated class = ENegation below.

NegationTest >> testNegatedStructureIsCorrect
| exp |
exp := EConstant value: 11.
self assert: exp negated class = ENegation.
self assert: exp negated negated equals: exp.

Now you should be able to implement the negatedmessage on ENegation.

ENegation >> negated
... Your code ...

Understanding method override

When we send a message to an object, the system looks for the correspond-
ing method in the class of the receiver then if it is not defined there, the
lookup continues in the superclass of the previous class.

By adding a method in the class ENegation, we created the situation shown
in Figure 11-7. We said that the message negated is overridden in ENega-

99

A little expression interpreter

tion because for instances of ENegation it hides the method defined in the
superclass EExpression.

It works the following:

• When we send the message negated to a constant, the message is not
found in the class EConstant and then it is looked up in the class EEx-
pression and it is found there and applied to the receiver (the in-
stance of EConstant).

• When we send the message negated to a negation, the message is
found in the class ENegation and executed on the negation expression.

Figure 11-7 The message negated is overridden in the class ENegation.

11.13 Introducing BinaryExpression class

Now we will take a moment to improve our first design. We will factor out
the behavior of EAddition and EMultiplication.

EExpression << #EBinaryExpression
package: 'Expressions'

EBinaryExpression << #EAddition
slots: { #left . #right'};
package: 'Expressions'

EBinaryExpression << #EMultiplication
slots: { #left . #right};
package: 'Expressions'

100

11.13 Introducing BinaryExpression class

Now we can use again a refactoring to pull up the instance variables left
and right, as well as the methods left: and right:.

Select the class EMuplication, bring the menu, and select in the Refactoring
menu the instance variables refactoring Push Up. Then select the instance
variables.

Now you should get the following class definitions, where the instance vari-
ables are defined in the new class and removed from the two subclasses.

EExpression << #EBinaryExpression
slots: { #left . #right };
package: 'Expressions'

EBinaryExpression << #EAddition
package: 'Expressions'

EBinaryExpression << #EMultiplication
package: 'Expressions'

We should get a situation similar to the one in Figure 11-8. All your tests
should still pass.

Figure 11-8 Factoring instance variables.

Now we can move the same way the methods. Select the method left: and
apply the refactoring Pull Up Method. Do the same for the method right:.

Creating a template and hook method

Now we can look at the methods printOn: of additions and multiplications.
They are really similar: Just the operator is changing. Now we cannot sim-
ply copy one of the definitions because it will not work for the other. But

101

A little expression interpreter

what we can do is apply the same design point that was implemented for
printString and printOn:: we can create a template and hooks that will
be specialized in the subclasses.

We will use the method printOn: as a template with a hook redefined in
each subclass.

Let define the method printOn: in EBinaryExpression and remove the
other ones from the two classes EAddition and EMultiplication.

EBinaryExpression >> printOn: aStream
aStream nextPutAll: '('.
left printOn: aStream.
aStream nextPutAll: ' + '.
right printOn: aStream.
aStream nextPutAll: ')'

Then you can do it manually or use the Extract Method Refactoring: This refac-
toring creates a new method from a part of an existing method and sends a
message to the new created method: select the ’ + ’ inside the method pane
and bring the menu and select the Extract Method refactoring, and when
prompt gives the name operatorString.

Here is the result you should get:

EBinaryExpression >> printOn: aStream
aStream nextPutAll: '('.
left printOn: aStream.
aStream nextPutAll: self operatorString.
right printOn: aStream.
aStream nextPutAll: ')'

EBinaryExpression >> operatorString
^ ' + '

Now we can just redefine this method in the EMultiplication class to re-
turn the adequate string.

EMultiplication >> operatorString
^ ' * '

11.14 What did we learn

The introduction of the class EBinaryExpression is a rich experience in
terms of lessons that we can learn.

• Refactorings are more than simple code transformations. Usually,
refactorings pay attention that their application does not change the
behavior of programs. As we saw refactorings are powerful operations
that really help doing complex operations in a few actions.

102

11.15 About hook methods

Figure 11-9 Factoring instance variables and behavior.

• We saw that the introduction of a new superclass and moving instance
variables or methods to a superclass does not change the structure or
behavior of the subclasses. This is because (1) for the state, the struc-
ture of an instance is based on the state of its class and all its super-
classes, (2) the lookup starts in the class of the receiver and looks in
superclasses.

• While the method printOn: is by itself a hook for the method printString,
it can also play the role of a template method. The method opera-
torString reuses the context created by the printOn: method which
acts as a template method. In fact, each time we do a self-send we cre-
ate a hook method that subclasses can specialize.

11.15 About hook methods

When we introduced EBinaryExpression we defined the method opera-
torString as follows:

EBinaryExpression >> operatorString
^ ' + '

EMultiplication >> operatorString
^ ' * '

And you may wonder if it was worth to create a new method in the super-
class and so that such one subclass redefines it.

Creating hooks is always good

First creating a hook is also a good idea. Because you rarely know how your
system will be extended in the future. On this little example, we suggest you

103

A little expression interpreter

to add raising to power, division and this can be done with one class and two
methods per new operator.

Avoid not documenting hooks

Second, we could have just defined one method operatorString in each
subclass and no method in the superclass EBinaryExpression. It would
have worked because EBinaryExpression is not meant to have direct in-
stances. Therefore there is no risk that a printOn: message is sent to one
of its instances and causes an error because no method operatorString is
found.

The code would have looked like the following:

EAddition >> operatorString
^ ' + '

EMultiplication >> operatorString
^ ' * '

value:
evaluate
printOn:

value
Constant

evaluate
operatorString

Additionexpression:
evaluate
printOn:

expression
Negation

evaluate
operatorString

Multiplication

negated

Expression

left:
right:
printOn:
operatorString

left
right

Binary
Expression

operatorString

 ^ self subclassResponsibility

operatorString

 ^ ' + '

operatorString

 ^ ' * '

Figure 11-10 Better design: Declaring an abstract method as a way to document

a hook method.

Now such design is not really good because as a potential extender of the
code, developers will have to guess reading the subclass definitions that they
should also define a method operatorString. A much better solution in that
case is to define what we can an abstract method in the superclass as follows:

EBinaryExpression >> operatorString
^ self subclassResponsibility

Using the message subclassResponsibility declares that a method is ab-
stract and that subclasses should redefine it explicitly. Using such an ap-
proach we get the final situation represented in Figure 11-10.

104

11.16 Variables

In the solution presented before (section 11.13) we decided to go for the sim-
plest solution and it was to use one of the default value (’ + ’) as a default defi-
nition for the hook in the superclass EExpression. It was not a good solution
and we did it on purpose to be able to have this discussion. It was not a good
solution since it was using a specific subclass. It is better to define a default
value for a hook in the superclass when this default value makes sense in the
class itself.

Note that we could also define evaluate as an abstract method in EExpres-
sion to indicate clearly that each subclass should define an evaluate.

11.16 Variables

Up until now our mathematical expressions are rather limited. We only ma-
nipulate constant-based expressions. What we would like is to be able to ma-
nipulate variables too. Here is a simple test to show what we mean: we de-
fine a variable named 'x' and then we can later specify that 'x' should take
a given value.

Let us create a new test class named EVariableTest and define a first test
testValueOfx.
EVariableTest >> testValueOfx

self assert: ((EVariable new id: #x) evaluateWith: {#x -> 10}
asDictionary) equals: 10.

Some technical points

Let us explain a bit what we are doing with the expression {#x -> 10} as-
Dictionary. We should be able to specify that a given variable name is as-
sociated with a given value. For this we create a dictionary: a dictionary is a
data structure for storing keys and their associated value. Here a key is the
variable and the value its associated value. Let us present some details first.

Dictionaries

A dictionary is a data structure containing pairs (key value) and we can ac-
cess the value of a given key. It can use any object as key and any object as
values. Here we simply use a symbol #x since symbols are unique within the
system and as such we are sure that we cannot have two keys looking the
same but having different values.

| d |
d := Dictionary new

at: #x put: 33;
at: #y put: 52;
at: #z put: 98.

d at: y

105

A little expression interpreter

>>> 52

The previous dictionary can be easily expressed more compactly using {#x
-> 33 . #y -> 52 . #z -> 98} asDictionary.

{#x -> 33 . #y -> 52 . #z -> 98} asDictionary at: #y
>>> 52

Dynamic Arrays

The expression { } creates a dynamic array. Dynamic arrays executes their
expressions and store the resulting values.

{2 + 3 . 6 - 2 . 7-2 }
>>> ==#(5 4 5)==

Pairs

The expression #x -> 10 creates a pair with a key and a value.

| p |
p := #x -> 10.
p key
>>> #x
p value
>>> 10

Back to variable expressions

If we go a step further, we want to be able to build more complex expressions
where instead of having constants we can manipulate variables. This way we
will be able to build more advanced behavior such as expression derivations.

EExpression << #EVariable
slots: { #id};
package: 'Expressions'

EVariable >> id: aSymbol
id := aSymbol

EVariable >> printOn: aStream
aStream nextPutAll: id asString

What we see is that we need to be able to pass bindings (a binding is a pair
key, value) when evaluating a variable. The value of a variable is the value of
the binding whose key is the name of the variable.

EVariable >> evaluateWith: aBindingDictionary
^ aBindingDictionary at: id

106

11.16 Variables

Your tests should all pass at this point.

For more complex expressions (the ones that interest us) here are two tests.

EVariableTest >> testValueOfxInNegation
self assert: ((EVariable new id: #x) negated

evaluateWith: {#x -> 10} asDictionary) equals: -10

What the second test shows is that we can have an expression and given a
different set of bindings the value of the expression will differ.

EVariableTest >> testEvaluateXplusY
| ep1 ep2 add |
ep1 := EVariable new id: #x.
ep2 := EVariable new id: #y.
add := EAddition left: ep1 right: ep2.

self assert: (add evaluateWith: { #x -> 10 . #y -> 2 }
asDictionary) equals: 12.

self assert: (add evaluateWith: { #x -> 10 . #y -> 12 }
asDictionary) equals: 22

Non working approaches

A non working solution would be to add the following method to EExpres-
sion
EEXpression >> evaluateWith: aDictionary

^ self evaluate

However, it does not work for at least the following reasons:

• It does not use its argument. It only works for trees composed exclu-
sively of constant.

• When we send a message evaluateWith: to an addition, this message
is then turned into an evaluatemessage sent to its subexpression
and such subexpression do not get an evaluateWith: message but
an evaluate.

Alternatively we could add the binding to the variable itself and only provide
an evaluatemessage as follows:

(EVariable new id: #x) bindings: { #x -> 10 . #y -> 2 } asDictionary

But it fully defeats the purpose of what a variable is. We should be able to
give different values to a variable embedded inside a complex expression.

The solution: adding evaluateWith:

We should transform all the implementations and message sends from eval-
uate to evaluateWith: Since this is a tedious task we will use the method

107

A little expression interpreter

refactoring Add Parameter. Since a refactoring applies itself to the complete
system, we should be a bit cautious because other Pharo classes implement
methods named evaluate and we do not want to impact them.

So here are the steps that we should follow.

• Select the Expression package

• Choose Browse Scoped (it brings a browser with only your package)

• Using this browser, select a method evaluate

• Select the Add Parameter refactoring: type evaluateWith: as the method
selector and proceed when prompted for a default value Dictionary
new. This last expression is needed because the engine will rewrite all
the messages evaluate but evaluateWith: Dictionary new.

• The system is performing many changes. Check that they only touch
your classes and accept them all.

A test like the following one:

EConstant >> testEvaluate
self assert: (EConstant constant5) evaluate equals: 5

is transformed as follows:

EConstant >> testEvaluate
self assert: ((EConstant constant5) evaluateWith: Dictionary new)

equals: 5

Your tests should nearly all pass except the ones on variables. Why do they
fail? Because the refactoring transformed message sends evaluate but eval-
uateWith: Dictionary new and this even in methods evaluate.

EAddition >> evaluateWith: anObject
^ (right evaluateWith: Dictionary new) + (left evaluateWith:

Dictionary new)

This method should be transformed as follows: We should pass the binding
to the argument of the evaluateWith: recursive calls.

EAddition >> evaluateWith: anObject
^ (right evaluateWith: anObject) + (left evaluateWith: anObject)

Do the same for the multiplications.

ENegation >> evaluateWith: anObject
^ (expression evaluateWith: anObject) negated

Figure 11-11 shows the final situation.

108

11.17 Conclusion

value:
printOn:
evaluateWith:

value
Constant

operatorString
evaluateWith:

Addition

expression:
printOn:
evaluateWith:

expression
Negation

operatorString
evaluateWith:

Multiplication

negated

Expression

left:
right:
printOn:
operatorString

left
right

Binary
Expression

printOn:
evaluateWith:

id
Variable

Figure 11-11 Variables and their evaluation.

11.17 Conclusion

This little exercise was full of learning potential. Here is a little summary of
what we explained and we hope you understood.

• A message specifies an intent while a method is a named list of execu-
tion. We often have one message and a list of methods with the same
name.

• Sending a message is finding the method corresponding to the mes-
sage selector: this selection is based on the class of the object receiving
the message. When we look for a method we start in the class of the
receiver and go up the inheritance link.

• Tests are a really nice way to specify what we want to achieve and then
to verify after each change that we did not break something. Tests do
not prevent bugs but they help us build confidence in the changes we
make by identifying fast errors.

• Refactorings are more than simple code transformations. Usually refac-
torings pay attention to their application does not change the behavior
of program. As we saw refactorings are powerful operations that really
help do complex operations in a few action.

• We saw that the introduction of a new superclass and moving instance
variables or methods to a superclass does not change the structure or
behavior of the subclasses. This is because (1) for the state, the struc-
ture of an instance is based on the state of its class and all its super-
classes, (2) the lookup starts in the class of the receiver and look in su-
perclasses.

• Each time we send a message, we create a potential place (a hook) for
subclasses to get their code definition used in place of the superclass’s

109

A little expression interpreter

one.

110

CHA P T E R 12
Understanding visitors

In a previous chapter, you built a simple mathematical expression inter-
preter. You were able to build an expression such as (3 + 4) * 5 and then
ask the interpreter to compute its value. In this chapter we will introduce
Visitors. A Visitor is a way to represent an action on a structure (often a
tree) as its own object. The action can be complex and need its own specific
state. What is nice about a visitor is that it embeds its own state and behav-
ior which would be otherwise mixed with the ones of the structure and other
actions. In addition we can have multiple visitors visiting the same structure
without mixing their concerns. Finally a visitor is modular because you may
execute one and not another one or even load another one.

value:
printOn:
evaluateWith:

value
Constant

operatorString
evaluateWith:

Addition

expression:
printOn:
evaluateWith:

expression
Negation

operatorString
evaluateWith:

Multiplication

negated

Expression

left:
right:
printOn:
operatorString

left
right

Binary
Expression

printOn:
evaluateWith:

id
Variable

Figure 12-1 A simple hierarchy of expressions.

You will build two simple visitors that evaluate and print an expression.

Let us start with the previous situation.

111

Understanding visitors

12.1 Existing situation: expression trees

Figure 12-1 shows the simple hierarchy of expressions that we developed
in a previous chapter. We basically have the different possible parts of an
expression (variable, addition, value...) represented by their own node. Each
node holds some state and in addition specifies how it computes its value.
This is often done by a recursive call sending message evaluateWith: to
subexpressions.

Note that expression trees are similar to the ones that are used to manipu-
late programs. For example, compilers and code refactorings as offered in
Pharo and many modern IDEs are doing such manipulation with trees repre-
senting code (often called Abstract Syntax Trees).

In the rest of this chapter we will introduce step by step a visitor and we will
incrementally replace the recursive calls by calls to the a visitor. Doing so we
will make sure that all the tests still pass.

12.2 Visitor’s key principle

The previous solution is using a simple recursive process to compute the
value of an expression. Now we will define the evaluation using a visitor.

The key principle about visitor is the following one: a visitor declares to a
structure that it wants to visit it (i.e., apply a treatment to it) and then the
structure replies by indicating to the visitor how this visitor should visit
it. This interaction is a double dispatch: it means that given a visitor and a
structure, the correct method will be executed without having to explicitly
test the class of the structure.

You do not have to deeply understanding this now. This interaction will
emerge from the exercise.

Here is a typical illustration: The class EConstant defines the method ac-
cept: to say to the visitor that it should visit the expression using the mes-
sage visitConstant:.

EConstant >> accept: aVisitor
^ aVisitor visitConstant: self

The visitor defines the specific action that he will perform:

EEvaluatorVisitor >> visitConstant: aConstant
^ aConstant value

Here is how the interaction starts: We ask the structure to accept a visitor.

| constant |
constant := EConstant value: 5.
constant accept: EEvaluatorVisitor new.

112

12.3 Introducing an evaluating Visitor

Object

value:
accept:

value
Constant

accept:

Addition

…

accept:

Multiplication

negated
accept: aVisitor

Expression

visitConstant: aConstant
visitNegation: aNegation
visitAddition: anAddition
…

Visitor

left:
right:
printOn:
operatorString

left
right

Binary
Expression

accept: aVisitor
 ^ aVisitor visitConstant: self

visitConstant: aConstant
 ^ aConstant value

Figure 12-2 Visitor principle.

Let us step by step implement an evaluating visitor.

12.3 Introducing an evaluating Visitor

We start by adding an abstract method accept: in the Expression class to
document that any expression can welcome a visitor and tells it how to react.

Here is the definition of the the abstract method accept::

EExpression >> accept: aVisitor

self subclassResponsibility

Now we take a concrete node expression: we start with constant expressions.
When the visitor visit a constant, the constant tells the visitor that it should
visit the constant as a constant. This is literaly what the following method is
doing.

EConstant >> accept: aVisitor

^ aVisitor visitConstant: self

Defining the visitor class

Now it is time to define class representing the evaluating visitor.

113

Understanding visitors

Object subclass: #EEvaluatorVisitor
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions-Model'

Once the class is created we can define what is it to visit a constant expres-
sion. This is simple, it is just to return the constant value. We define the
visitConstant: as follows:

EEvaluatorVisitor >> visitConstant: aConstant

^ aConstant value

Adding a test class

To make sure that we control what we are doing, we add a test class.

TestCase subclass: #EEvaluatorVisitorTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions-Test'

We are ready to write our first test

EEvaluatorVisitorTest >> testVisitConstantReturnsConstantValue

| constant result |
constant := EConstant value: 5.
result := constant accept: EEvaluatorVisitor new.
self assert: result equals: 5

We can rewrite the old method evaluateWith: method to invoke the visitor.

EConstant >> evaluateWith: anObject

^ self accept: EEvaluatorVisitor new

You can execute your new and old tests and both should work. Note that
once the visitor is in place, we will remove this method and only define it
once in the superclass.

12.4 Now handling addition

We will do the same with adddition. First we define a new accept: method
on the Addition class to say to the visitor which method it should execute
on the structure.

EAddition >> accept: aVisitor

... Your code ...

114

12.5 Supporting negation

Notice again that the visitor announces itself and that the addition tells it
that it should be treated this time as an addition. This pattern is key to the
visitor logic. You will see that we will repeat again and again. Each expres-
sion will declare how it should considered by the visitor.

Adding a new test

Now we can define a new test to validate that the execution of an addition is
correct.

EEvaluatorVisitorTest >> testVisitAdditionReturnsAdditionResult

| expression result |
expression := EAddition

left: (EConstant value: 7)
right: (EConstant value: -2).

result := expression accept: EEvaluatorVisitor new.
self assert: result equals: 5

We create the accessors left and right.

EBinaryExpression >> left
^ left

EBinaryExpression >> right
^ right

Defining visitAddition:

Now we are ready to define the method visitAddition: so that it adds the
value returned by each sub expression:

EEvaluatorVisitor >> visitAddition: anEAddition
... Your code ...

The method visitAddition: should pass the visitor to each subexpression.
And once each value is known the visitor will perform the addition.

We also redefine the method evaluateWith: to use the visitor. As you rec-
ognize it, it is the same as in the class EConstant. We will remove it later.

EAddition >> evaluateWith: anObject
^ self accept: EEvaluatorVisitor new

Again all your new and old tests should pass.

12.5 Supporting negation

We will focus on the negation. Again we start by defining a test method.

115

Understanding visitors

EEvaluatorVisitorTest >> testVisitNegationReturnsNegatedConstant

| expression result |
expression := (EConstant value: 7) negated.
result := expression accept: EEvaluatorVisitor new.
self assert: result equals: -7

We follow the same process. We define the accept: method for the nega-
tion.

ENegation >> accept: aVisitor
... Your code ...

We add the expression accessor.

ENegation >> expression
^ expression

Defining visitNegation:

We define the visitNegation: as follows:

EEvaluatorVisitor >> visitNegation: anENegation
... Your code ...

What you should see is that again the method visitNegation: is invoking
the visitor on a subexpression, here the negated expression.

Again redefining evaluateWith:

We redefine the evaluateWith: method on a negation to invoke the visitor.

ENegation >> evaluateWith: anObject
^ self accept: EEvaluatorVisitor new

12.6 Supporting Multiplication

You start to get it and we will do exactly the same for multiplication.

Adding a test

EEvaluatorVisitorTest >>
testVisitMultiplicationReturnsMultiplicationResult

| expression result |
expression := EMultiplication

left: (EConstant value: 7)
right: (EConstant value: -2).

result := expression accept: EEvaluatorVisitor new.
self assert: result equals: -14

116

12.7 Supporting Division

Defining the accept: method

We define the accept: method on the Multiplication class.

EMultiplication >> accept: aVisitor

... Your code ...

Defining the visitMultiplication

We are not ready to define the method visitMultiplication: on the eval-
uating visitor. Its logic is similar to the one of the addition: get the value of
the children and multiplying it.

EEvaluatorVisitor >> visitMultiplication: anEMultiplication

... Your report ...

Figure 12-3 describes the situation.

accept:
value

Constant

accept:

Addition

…

accept:

Multiplication

accept: aVisitor
negated

Expression

visitConstant: aConstant
visitNegation: aNegation
visitAddition: anAddition
visitMultiplication: aMultiplication
…

Visitor

printOn:
operatorString

left
right

Binary
Expression

accept: aVisitor
 ^ aVisitor visitConstant: self

visitConstant: aConstant
 ^ aConstant value

accept: aVisitor
 ^ aVisitor visitAddition: self

accept: aVisitor
 ^ aVisitor visitMultiplication: self

Figure 12-3 Visitor at work.

12.7 Supporting Division

As you can guess the logic is exactly the same to support division. You should
start to get the pattern.

117

Understanding visitors

First two tests

EEvaluatorVisitorTest >> testVisitDivisionReturnsDivisionResult

| expression result |
expression := EDivision

numerator: (EConstant value: 6)
denominator: (EConstant value: 3).

result := expression accept: EEvaluatorVisitor new.
self assert: result equals: 2

EEvaluatorVisitorTest >> testVisitDivisionByZeroThrowsException

| expression result |
expression := EDivision

numerator: (EConstant value: 6)
denominator: (EConstant value: 0).

self
should: [expression accept: EEvaluatorVisitor new]
raise: EZeroDenominator

Improving the creation API

We introduce the class message numerator:denominator: to ease division
creation.

EDivision class >> numerator: aNumeratorExpression denominator:
aDenominatorExpression

^ self new
numerator: aNumeratorExpression;
denominator: aDenominatorExpression;
yourself

We define accessors so that the visitor can access to subexpression.

EDivision >> numerator
^ numerator

EDivision >> denominator
^ denominator

Defining accept:

Then we define the method accept: for divisions.

EDivision >> accept: aVisitor

... Your code ...

118

12.8 Moving up evaluateWith:

Defining the visitDivision:

We define the visitDivision: method as follows. It is similar to others. In
addition here we prevent division by Zero and raise an exception instead.

EEvaluatorVisitor >> visitDivision: aDivision
... Your code ...

12.8 Moving up evaluateWith:

Since we get bored to always redefine the method evaluateWith: we de-
fine it in the superclass, the class Expression and we remove it from all the
subclasses except Variable since we will still have to transform it.

EExpression >> evaluateWith: anObject

^ self accept: EEvaluatorVisitor new

12.9 Supporting variables

Now we can focus on supporting variable in the expression. The following
test show that we can have an expression which is a variable (here named
answerToTheQuestion) and that we can set the value of this variable using
the message at:put:. The test then shows that when we are evaluating the
expression we should get the corresponding value, (here 42).

EEvaluatorVisitorTest >> testVisitVariableReturnsVariableValue
| expression result visitor |
expression := EVariable id: #answerToTheQuestion.

visitor := EEvaluatorVisitor new.
visitor at: #answerToTheQuestion put: 42.

result := expression accept: visitor.
self assert: result equals: 42

Extending the visitor state

To support variable the visitor should hold a kind of environment with the
value of each variable. We introduce an instance variable named bindings.
This is a good example that shows that a visitor is the natural place to store
state about the specific behavior it represents.

Object subclass: #EEvaluatorVisitor
instanceVariableNames: 'bindings'
classVariableNames: ''
package: 'Expressions-Model'

119

Understanding visitors

We initialize this variable to a dictionary.

EEvaluatorVisitor >> initialize

super initialize.
bindings := Dictionary new

We define a little helper to set the value of a variable.

EEvaluatorVisitor >> at: anId put: aValue
bindings at: anId put: aValue

We define a class method id: to name a variable.

EVariable class >> id: anId

^ self new id: anId; yourself

Visiting a variable

We have to define a method accept: on the class EVariable.

EVariable >> accept: aVisitor
... Your code ...

Now we are ready to define the meaning of evaluating a variable. The method
visitVariable: of the EEvaluatorVisitor is responsible of this.

EEvaluatorVisitor >> visitVariable: aVariable

... Your code ...

12.10 Redefine evaluateWith:

We modify the method evaluateWith: to make sure that the initial bindings
are stored in the visitor.

EExpression >> evaluateWith: anEnvironment

| visitor |
visitor := EEvaluatorVisitor new.
visitor bindings: anEnvironment.
^ self accept: visitor.

EEvaluatorVisitor >> bindings: aDictionary

bindings := aDictionary

120

12.11 A new visitor

12.11 A new visitor

Using a visitor is particularly interesting when we have multiple behavior
that we want to encapsulate. Such behaviors are applied on a structure with-
out mixing the state of the structure with the state of the behavior or mixing
multiple behaviors together.

Now that each kind of expression is declaring in its respective methods how
a visitor should visit it, other visitors can be easily expressed. And this is
what we will show now.

Defining a new visitor

Now we show how we can have another visitor, an expression printer. Let us
define the following class.

Object subclass: #EPrinterVisitor
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions-Model'

Define some tests to make sure that you are getting the correct results. We
let you do it.

TestCase subclass: #EPrinterVisitorTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions-Model'

12.12 Visiting methods

We start by defining some typical visit methods as follows:

EPrinterVisitor >> visitConstant: aConstant
^ aConstant value asString

EPrinterVisitor >> visitMutiplication: aMultiplication

| left right |
left := aMultiplication left accept: self.
right := aMultiplication right accept: self.
^ '(', left , ' * ', right, ')'

Now you should be in position to finish the implementation.

EPrinterVisitor >> visitAddition: anAddition
... Your code ...

EPrinterVisitor >> visitDivision: aDivision
... Your code ...

121

Understanding visitors

EPrinterVisitor >> visitNegation: aNegation
... Your code ...

EPrinterVisitor >> visitVariable: aVariable
... Your code ...

12.13 Conclusion

In this chapter we show how you can pass from a behavior inside a class hi-
erarchy to a separate object and how once this architecture is in place (basi-
cally the accept: methods) other visitors can be easily expressed.

The visitor pattern is a nice design. It supports encapsulate behavior on com-
plex structure. In addition it lets users develop their own functionality inde-
pently of others.

Now you should pay attention not to over use it. It is also more suitable for
systems whose domain does not change because else each time you add a
kind of object in your composite (here the expression) you would have to
touch each visitor.

122

Part III

Unguided exercises

12.13 Conclusion

In this part, we propose two less-guided projects and multiple extensions to
the previous projects. It is fun to challenge ourselves to see how we could
support the proposed variations.

125

CHA P T E R 13
Tamagotchi Mechanics

13.1 Problem Context

Bandai, the creator of the Tamagotchi game hires us to create a new version
of the game. We have to implement the behavior logic behind the simulated
pets. In this new version, we are going to have two Tamagotchis interacting
with each other and performing some basic activities together.

Our virtual pet can be sad, hungry, or happy. And its behavior depends on its
state. The state of the virtual pet changes only when an action is performed.

A new pet starts with a happiness level of 0 and it is in a happy state. If a pet
is already in a given state, nothing should happen if it is required to change
to that state (e.g., if it is happy, and I tell the pet to be happy, nothing should
change in its state).

13.2 Behavior

You will have to implement the following behavior.

Eating.

A pet can eat then:

• If it is hungry, it gets happy.

• If it is happy, it increases its happiness level by one.

• If it is sad, it will not eat, and an error should happen.

127

Tamagotchi Mechanics

Playing Alone.

A pet can play with itself then:

• If it is hungry, its happiness level is reduced by 4.

• If it is happy, it increases its happy level by two. If it plays two times
since eating,

it gets hungry.

• If it is sad, it gets happy.

Playing With Other Pets.

A pet can play with another pet then:

• If any of them is hungry, they don’t play and nothing changes.

• If the pet is happy, it increases its happy level by four. If it plays two
times since

eating, it gets hungry.

• If any of them is sad, it gets happy.

13.3 Extensions

As the game got so popular, we have to add new mechanics to it. We are go-
ing to add two additional types of Pets.

Dog.

• Whenever it eats, its happiness level rises to 5, then it rises normally
by 1.

Lonely Cat.

• Whenever it plays with another pet, it gets sad.

13.4 Tests

It is required to implement a set of test cases covering all features. It is im-
portant to select what test cases to write, having an excessive number of
dummy or uninteresting tests is not good. Test cases should cover the differ-
ent states and the possible actions. For the added extensions is only needed
to test the variation of behavior, e.g., for the Lonely Cat is only needed to
make it play.

128

13.5 About behavior description

13.5 About behavior description

All the rules, descriptions, and requirements are open to different under-
standing. If a point is unclear or it raises different alternatives, you are free
to choose the one that better suits you. The only condition is to explain it
and that test cases cover the variation.

129

CHA P T E R 14
Civilization

In this chapter you will design a simplified version of the combat mechan-
ics in turn-based strategy games such as Civilization or FreeCiv as an open-
source alternative (See https://en.wikipedia.org/wiki/Freeciv).

14.1 General Rules

Here are some general rules:

• We have a game board made of a grid of tiles, each tile may contain (or
not) one unit.

• Each unit has a given type (e.g. Archer, Marine, Pikeman, Knight, etc),
a health and experience level.

• The health level is a percentage and goes from 0% to 100%.

• The experience level is a value from 1 to 3.

• Units in neighbor tiles can attack each other.

• The attacking unit will provoke damage to the defending unit and also
it will receive damage from it.

• The amount of damage received from each of the units is calculated
independently using two math formulas, one for the attacker and one
for the defender.

• After the battle, the health of the attacker will be reduced by the amount
calculated and the same will happen to the defending unit.

• If the attacking unit gets to zero or lower health, it should be removed
from the board.

131

https://en.wikipedia.org/wiki/Freeciv).

Civilization

• If the defending unit gets to zero or lower health it should be removed
from the board.

• If the defending unit is removed from the board, the attacking unit will
move into the tile occupied by the defending unit.

14.2 Defending Unit Damage Formula

The calculation of the impact on the defending unit is calculated by the for-
mula by the following formulae: Dd = Ap * Atm + Dti

Defending Unit Damage (Dd).

It is the impact on the health of the defending unit. This value is calculated
by the formula Figure 1 and depends on the attacking unit’s offensive power,
the attacking unit’s type and the terrain occupied by the defending unit.

Attacking Unit Power (Ap).

It is the power of the attacking unit type multiplied by the factor of experi-
ence. The factor of experience is equal to 1 for level 1, 1.5 for level 2, and 2
for level 3.

Defending / Attacking Unit Types Combination Modifier (Atm).

This value depends on the combination of the types of defending and attack-
ing units. Some units have benefits when fighting against other units. For
example, If a Knight attacks a Warrior unit, the Knight has a modifier of 2,
as the Knight can charge a Warrior unit. If a Knight attacks a Pikeman unit,
the Knight has a modifier of 1 as the Pikeman can repeal the charge of the
knight. For a complete list, see the table of units (Section 3).

Defending Unit Terrain Impact (Dti).

The combat is performed in the tile occupied by the defending unit. Each tile
has a given type of terrain, and each type of terrain provides its own Defend-
ing Unit Terrain Impact value. For a complete list, see the table of terrains
(Section 4).

14.3 Attacking Unit Damage Formula

The calculation of the impact on the attacking unit is calculated by the for-
mula: Ad = Dp * Dtm + Ati

132

14.4 Units

tacking Unit Damage (Ad).

It is the impact on the health of the attacking unit. This value is calculated by
the formula Figure 2 and depends on the defending unit’s defensive power,
the defending unit’s type and the terrain occupied by the defending unit.

Defending Unit Power (Dp).

It is the power of the defending unit type multiplied by the factor of experi-
ence. The factor of experience is equal to 1 for level 1, 1.75 for level 2, and 2.5
for level 3.

Defending / Attacking Unit Types Combination Modifier (Dtm).

This value depends on the combination of the types of defending and attack-
ing units. Some units have benefits when fighting against other units. For
example, if a Knight attacks a Pikeman unit, the Pikeman has a modifier of 2
as it can repeal the charge of the knights. If a Knight attacks a Warrior unit,
the warrior has a modifier of 1, as it does not have any advantage in the de-
fense. For a complete list, see the table of units (Section 3).

Attacking Unit Terrain Impact (Ati).

The combat is performed in the case occupied by the defending unit. Each
case has a given type of terrain, and each type of terrain provides its own
Attacking Unit Terrain Impact value. For a complete list, see the table of ter-
rains (Section 4).

14.4 Units

We consider the following units: warrior, archer, pikeman, and knight.

Warrior.

A basic foot soldier holding a sword

• Attacking Unit Power: 10

• Defense Unit Power: 10

• Relations with other units: N/A

Archer.

A basic foot soldier with a bow and arrows.

• Attacking Unit Power: 20

133

Civilization

• Defense Unit Power: 5

• Relations with other units: N/A

Pikeman.

A soldier armed with a Pike. Effective against charges from the Knights.

• Attacking Unit Power: 5

• Defense Unit Power: 20

• Relations with other units: When it is attacked by a knight, it has a Dtm

value of 2.

Knight.

The Knight is a heavy cavalry unit.

• Attacking Unit Power: 20

• Defense Unit Power: 5

• Relations with other units: When charging on any non-Pikeman unit, it
has a Atm value of 2.

14.5 Terrains

We consider the following terrains:

Flat Terrain.

This terrain does not have an impact on the combat. It has Ati and Dti equals
to 0.

Hilly Terrain.

This terrain makes it easier for the attacking part. It has an Ati of 0 and a Dti
of 10. If the attacking unit is a Knight, the Dti is doubled.

14.6 Tests

You should at least implement tests for the following use cases. Note that
there should be asserts for the health of the units, and the discounted points
for each of them.

• Make combat two warrior units of level 1 in a flat terrain.

134

14.6 Tests

• Make a Knight (level 2) attack a Warrior (level 3) in hilly terrain.

• Make a Knight (level 2) attack a Pikeman (level 3) in hilly terrain.

• Make a Knight (level 2) attack a Pikeman (level 3) in a flat terrain.

• Make an Archer (level 1) attack a Pikeman (level 3) in a flat terrain.

• Make an Archer (level 1) attack a Pikeman (level 3) in a hilly terrain.

135

CHA P T E R 15
Little unguided projects

In this chapter, we present a list of small projects that we encourage you to
code. Such projects are fun and playing with them will force you to practice
different coding idioms or design patterns. In many exercises, you should
avoid relying on conditionals.

15.1 LAN simulator

As shown in Chapter 5, a LAN is composed of different kinds of nodes. Pack-
ets circulate inside the LAN from node to node.

A node has an address and a next node to which it forwards packets that are
not addressed to it. When the packet is addressed to a node, then depending
on the node kind it performs its action. A packet has an address and con-
tents.

A simple LAN is composed of simple nodes. Simple nodes just forward the
packets that are not addressed to them to their next node. Check the tests
that are provided to get an understanding.

15.2 Loading LAN code.

If you did not follow Chapter 5, the code is available at:

Metacello new
baseline: 'SimpleLAN';
repository: 'github://Ducasse/SimpleLAN/src';
load.

137

Little unguided projects

15.3 LAN extensions

There are several possible extensions:

Hook for accept

Subclasses such as LNWorkstation or LNPrinter redefine the accept: method
and systematically check that the packet is sent to the receiver to perform a
specific action else they pass it to the next node. The following method illus-
trates this behavior:

LNPrinter >> accept: aPacket

(aPacket isAddressedTo: self)
ifTrue: ['Node ' , aPacket originatorName , ' sent to printer: '
, aPacket contents traceCr]

ifFalse: [super accept: aPacket]

This repetition indicates that this behavior could be factored out in the su-
perclass. So define such behavior in the superclass and introduce a new
method called treatPacket:. Such a new method will be redefined in all
the subclasses.

Understanding execution flow

Better way to follow the execution of the simulation. In the default imple-
mentation, the accept: method writes on the Transcript. This is not good
since the trace is mixed with other program traces. (Note that the Transcript
is a global variable shared by the complete environment). In addition, it is
not easy to write tests for the send: and accept: methods. One solution is
to have a stream shared by all the nodes of a simulation, stream on which all
the messages written to the Transcript are now written to. Propose one so-
lution. To validate your solution, write some tests for send: and accept:.
They should be able to run without writing to the Transcript.

Star node

Introduce a star node that supports the creation of star network. A star node
does not have one but many following nodes.

Avoiding some conditions.

The way the instance variable nextNode is managed (having nil or a node as
value) is based on conditions in different places: the method accept: or the
method send:. Propose a solution to be able to remove such conditions. One
possible solution is to apply the NullObject design pattern.

138

15.4 Die players

Trottling node

This node accumulates packets and waits before forwarding them. They wait
to have received a certain number of packets before sending a batch of col-
lected packets.

Handling loops

Introduce an origin to the packet and make sure that if it reaches the node
that emitted it is not propagated.

Limited packet distance

We decided that a packet can only be forwarded a given number of times.
After that, it should reemitted or is not propagated if it did not reach its des-
tination. Introduce a repeating node that recharges the distance number of
packet can have.

Different kinds of packets

In this extension we introduce several kinds of packet.

• Some packets can auto replicate themselves to flood the LAN, it means
that when they are accepted by a node and even if they are addressed
to a node receiving them they force their forwarding.

• Urgent packets cannot be trottled by trollting nodes.

Signing node

A signing node encodes the contents of a package and only nodes with the
same signing behavior can decode the contents. We would like to have differ-
ent combinations of contents encodings. One possible design is to use a Deco-
rator design pattern, where the decorators will expose the same API that the
packet but they implement different encodings. Here is a list of encodings:

• adding one to each character of the contents,

• substituing one character by another one based on a map, or

• uuencoding - Check the base64 encoder available in Pharo.

15.4 Die players

We want to model dice (as in the DSL chapter) but with different kinds of
players and dices. Let us imagine that we have die and die handle and that
we can roll a die and a die handle.

139

Little unguided projects

A normal player is one player that roll normally its die handle. Introduce the
class Player and make sure that it gets the possibility to roll die handles.

Kind of players

Now we want to introduce different kind of players.

• A cheater player is one player that will take the max of value of its die
handle value and multiply by the number of dices. For example if he
gets 2,3,4, after rolling its dice, he will say that he hot 4,4,4.

• A lucky player is a player that will always have plus one to its roll. For
example, rolling its dice returns, 2,3,4 and the lucky player will have 10
and not 9.

• A super lucky player is a player that will always have plus one to the
values of all the value of its dices. For example, rolling its dice returns
2,3,4 and the super lucky player will return 3,4,5 i.e. 12.

Different kinds of die

Now we introduce different kinds of dice.

• A normal die has equi proportional values from 1 to its max face num-
ber: e.g., 1, 2, 3, 4, 5, 6.

• A middle die has no 1 and 6 but two 3 and two 4: e.g. 2, 3, 3, 4, 4, 5.

• A cheated die has no 1 and 2 but 3 6 values: e.g. 3, 4, 5, 6, 6, 6.

Pairs of player and die

Now certain dices can only be played by certain player:

• A middle die can only be played by a lucky or super lucky player.

• A cheating dice that can only be played by a cheater.

15.5 About the die DSL

In Chapter 8 we introduce double dispatch to mix die and dice handles, we
can implement the expected behavior without double dispatch. Do it.

15.6 About Visitors

Pharo has a Visitor library for its Abstract Syntax Tree (AST). Browse the
class RBProgramNodeVisitor. This class is an abstract class. It defines all
the methods available for building specialized Visitors. All the nodes in an

140

15.6 About Visitors

AST are subclasses of RBProgramNode. The following shows the core ele-
ments where the indentation reflects the inheritance.

RBProgramNode
RBComment
RBMethodNode
RBPragmaNode
RBReturnNode
RBSequenceNode
RBValueNode

RBArrayNode
RBAssignmentNode
RBBlockNode
RBCascadeNode
RBLiteralNode

RBLiteralArrayNode
RBLiteralValueNode

RBMessageNode
RBSelectorNode
RBVariableNode

RBArgumentNode
RBGlobalNode
RBInstanceVariableNode
RBSelfNode
RBSuperNode
RBTemporaryNode
RBThisContextNode

The following script shows how to execute a visitor on the AST of the method
Point>>#degrees.

MyVisitor new visit: (Point>>#degrees) ast

Here is a list of possible Visitors that you can simply define:

• a visitor that checks whether a method is a utility method: it does not
access instance variables not self or super.

• a visitor that returns the list of instance variables accessed by the
method.

• a visitor that checks all the self-message sends of a method and returns
the list of the compiled method found in the class or its superclass. You
can use the method lookupSelector: defined on Class to find the
corresponding method.

• a visitor that adds a return to the expression given. For SequenceNode
it will put the return node on the last statement of the sequence node.

141

Part IV

Unguided Projects

15.6 About Visitors

In this part, we propose you design some simple board games using the Bloc
graphical framework taking as an example the games of the Myg project.

145

CHA P T E R 16
Designing little board games

This chapter lists some game descriptions. The idea is to be able to use el-
ements of such a list as design exercises. We suggest to focus first on de-
signing the model of the game with tests. In a second step you can add an
UI layer based on the new Bloc framework.

16.1 Support

All the games in this chapter requires a 2D grid that can be found in the
package Array2D of the following http://github.com/Pharo-contribution
repository.

Metacello new
baseline: 'ContainersArray2D';
repository: 'github://pharo-containers/Containers-Array2D/src';
load.

16.2 Loading Myg and Bloc

You can get some ideas how to develop your game UI by studying the Myg
framework. The Myg framework is a framework to build little 2D board games.
A Miner, Sokoban, Memory, and Takuzu have been built on top of it. It pro-
vides ways to build levels and other facilities.

Metacello new
baseline: 'Myg';
repository: 'github://Ducasse/Myg:v1.0.1/src';
onConflictUseIncoming;
load

147

http://github.com/Pharo-contribution

Designing little board games

You will just need to execute MygSokoban open to get a little Sokoban game.

16.3 Bloc

Bloc is a new graphical library that will be part of Pharo. If you see the name
Toplo, Toplo is a new widget library built on top of Bloc. It is still under heavy
development.

You can find some slides:

• https://www.slideshare.net/esug/bloc-for-pharo-current-state-and-
future-perspective

• http://www.github.com/pharo-graphics/Bloc

• You can find the presentations of Bloc at ESUG 2022 and 2023 on youtube.

16.4 Possible Games

Here is a list of possible games to develop:

• Light Beamer

• Mimesweeper

• Flood it

• 2048

• Memory

• Tetris

• Picross (nonogram)

• SlideOut

• SameGame

• Taquin

• Bomberman

• Maze generators

16.5 Other resources

Besides the Myg framework mentioned above, there are some resources
available that you can study.

The book Learning Object-oriented Design with TDD in Pharo available on
http://books.pharo.org contains a chapter building step by step a model of
Snakes and Ladders.

148

https://www.slideshare.net/esug/bloc-for-pharo-current-state-and-future-perspective
https://www.slideshare.net/esug/bloc-for-pharo-current-state-and-future-perspective
http://www.github.com/pharo-graphics/Bloc
http://books.pharo.org

16.6 Some generic extensions

In addition the book ”Building a memory game with Bloc” available on http://-
book.pharo.org and https://github.com/SquareBracketAssociates/Booklet-
BuildingMemoryGameWithBloc presents how to build a simple memory
game. It does not use Myg.

In the Tutorial project of the Bloc repository there is an implementation of
the 2048 game. It is in draft mode but you can get inspiration from it too.

Metacello new
baseline: 'BlocTutorials';
repository: 'github://pharo-graphics/Tutorials:dev-1.0/src';
load

Note that the implementation of 2048 is a sketch and was used to brainstorm
on skinning. It should be rewritten using more recent implementations of
Bloc.

16.6 Some generic extensions

Here is a list of generic extensions that can be applied to many games:

• Support the definition of levels by proposing a progression in terms of
difficulties or different challenges.

• Offer the possibility to replay a given level.

• Offer the possibility to save a game.

• Offer the possibility to replay a game up to a certain point.

• Record the time or the number of moves to finish a game with high
score management.

Figure 16-1 Minesweeper: identifying mines based on the number of adjacent

cells containing a bomb.

16.7 Minesweeper

The user should identify the bombs using hints based on the number of adja-
cent bombs in the 8 directions.

149

http://book.pharo.org
http://book.pharo.org
https://github.com/SquareBracketAssociates/Booklet-BuildingMemoryGameWithBloc
https://github.com/SquareBracketAssociates/Booklet-BuildingMemoryGameWithBloc

Designing little board games

The user has two kinds of action:

• declare that a cell contains a bomb or

• declare that a cell is free and ask for a validation.

Free cell declaration:

If the user is wrong and there is a bomb then he loses the game. If the user is
right then the cell displays the number of adjacent bomb around the cell.

Bomb declaration:

when a cell is declared as a bomb a bomb is displayed.

When all the cells have been revealed or marked as a bomb, the game pro-
ceeds to the validation. If the bombs are correctly identified the user wins.

Since the Myg framework already propose an implementation we suggest the
following possible extensions:

Specific extensions:

• Define multiple algorithms to place the bombs. Right now it is fully
random. For example make sure that the user with all the information
does not have to select a tile randomly.

Figure 16-2 Flood it: change the color of any adjacent tiles with the same color.

16.8 Flood it

A certain configuration of tiles of different colors is placed on the board (See
Figure 16-2) The player can do a ”flood fill” on the top left tile, changing the
color of any adjacent tiles of the same color. The player wins if he is able to
make the entire board a single color within a certain number of moves.

150

16.9 Tetris and variations

Specific extensions:

• you can introduce a color that matches multiple ones

• tiles that do not match any colors

• tiles that change colors every n actions

16.9 Tetris and variations

With Tetris, shapes fall from the top of the screen and lines can be elimi-
nated only when they are entirely filled up.

Specific extensions

Here are some possible extensions:

• Add tiles that cannot be removed.

• Add shapes that shrink/expand when placed.

Using Tetris like tile shapes, many games can be built with different game-
play. Figure 16-3 shows a game where the shapes do not fall from the top of
the screen but the player has to select them and drop them. When a line is
full it is removed not changing the lines on top.

Specific extensions

• Adding special tiles with diamonds and others and we different scoring
and objectives.

• Placing tiles that cannot be matched and removed.

Figure 16-3 Tetris variations: Here the user places forms to remove rows and

lines.

151

Designing little board games

16.10 2048

The user should merge multiple of two numbers that are randomly drawn.
Two numbers of the same value are merged. The resulting number of the
sum replaces the sum. The user decides the merge by choosing one direction.
All the numbers that can merge are merged in the chosen direction.

The game starts with 2 and continues with the sum e.g., 4, 8, 16, 64.... It should
adapt the numbers that are placed on the board in the sense that it does not
have to 2 when the average numbers are 512.

Figure 16-4 2048

The game ends when the board is full.

Specific extensions

• Merging two numbers could produce an explosion and destroy un-
mergeable tiles that are close to the resulting tile.

16.11 Memory

With the memory game, two pictures are revealed one by one and the user
should pair them across the game. Each player gets points based on the pairs
he found.

Specific extensions

• Pairing three similar tiles. Instead of identify two similar tiles, the
game would have three similar tiles.

• Some tiles could be blurry and provide more points when paired.

152

16.12 SlideOut

Figure 16-5 Memory

• Pairing many similar tiles could be a different game and the largest
sequence could give more points: 2 for 1 points, 3 for 3 points, 4 for 6
points.

• Adding joker tiles. Joker tiles could pair with any tiles.

16.12 SlideOut

Figure 16-6 describes the game: it is composed on shapes that slide in one
direction. By sliding the different pieces, the player should be able to move
the red elements to the exit.

Figure 16-6 SlideOut: Elements can slide in one direction but are blocked by oth-

ers. The goal is to get the red element out.

153

Designing little board games

16.13 Laser game

A laser beam is activated from a source specific location. As the laser beam
traverses the grid it can hit deflecting mirrors. These mirrors will divert the
laser beam’s direction as it travels. Ultimately the beam should hit a target
location inside our grid.

Figure 16-7 (a) Starting from its origin, the laser beam should reach the target.

(b) Rotating a mirror changes the path of the laser beam

It becomes more interesting to have the user manipulate the mirrors to find
the longest possible path to the target.

That’s the general idea. We can add laser cell-path counters and other game
instrumentation as we develop.

16.14 Same game

The goal of the game is to eliminate all the colored cells of the game. A group
of connected cells of the same color are eliminated. When a column is empty,
it is eliminated so that the two sides are touching each other. Figure 16-8
shows a same game instance.

Figure 16-8 SameGame: collapsing columns by removing one by one colored of

the cell of the same color.

154

16.15 Nonogram

16.15 Nonogram

Nonograms are logic puzzles where you use the number clues around the
sides to color the cells in the grid to reveal a picture. The other names of
nonograms are Griddler or Picross (Nintendo game).

https://delightfulpaths.com/what-are-nonograms-or-griddlers explains the
rules of the game. You can see an example in Figure 16-9. Nonograms can be
in black and white or with colors. The player should select a tile and declare
whether it contains or not a color. The players can make a certain number of
mistakes before losing the game.

Figure 16-9 Nonograms: coloring cells based on number clues.

16.16 Conclusion

Developing such games using Testing Driven Development is pedagogically
worth because each test can validate a given aspect of the game. In addi-
tion, a bunch of UML diagrams do not easily capture the essence of a game,
as some new developers may think. Adding new features may invalidate cer-
tain previously passing tests and often require refactoring the model.

We definitively encourage you to play the game and develop a game and
variations to exercise your object-oriented skills.

155

https://delightfulpaths.com/what-are-nonograms-or-griddlers
https://delightfulpaths.com/what-are-nonograms-or-griddlers

CHA P T E R 17
Microdown miniprojects

Microdown is a markup language compatible with a subset of markdown. It
is used by the Pharo community to produce slides, booklets, and documenta-
tion. Microdown heavily uses Visitors. The repository is at

https://github.com/pillar-markup/microdown

17.1 Blog and its posts

A nice little project is to use Microdown to define a blog and its posts. A po-
tential roadmap is the following:

• Given a file repository we should generate a little table of contents. For
this, we can reuse the HTML generation of Microdown. To do so we
can do it either by generating a microdown document using the mi-
crodown builder and passing it to the HTML visitor. Or by creating the
tree of objects for the table of contents and applying the HTML genera-
tion on it.

• You can also render all the post to generate HTML files.

• Finally having a visitor that extract the title of a post and a couple of
line of the first paragraph so that the user can see a summary before
clicking to get access to the full post can be nice.

17.2 Link checker

In Microdown, the writer can refer to figures and anchors as well as to web
site as shown here after.

157

Microdown miniprojects

A Section
@anchor1

![A caption](figures/fig.png label=figanchor)

[Pharo web site](https://pharo.org)
https://pharo.org

In Section *@anchor1@* we can find Fig. *@figanchor@*.

We would like to have a checker that reports to the users the set of refer-
ences (defined using the *@xxx@* instruction that are not found.

17.3 Table of contents

We would like to have a table of content builder. Given a book, the Toc builder
will generate a microdown document tree containing references to the cor-
responding book entities (chapter, section)

17.4 Book Sanitizer

When writing documents, we often have some writing guidelines.

Guideline sample

Here are some guidelines about writing style and spelling

• Write ”backend”, not ”back-end” or ”back end”.

• Write ”subpresenter”, not ”sub-presenter”.

• Methods without comment have an empty line after the method selec-
tor.

• Methods do not have a period on the last line.

• Write ”Pharo image”, not ”Pharo Image.

• Do not use protocol references because they are not useful and may
change.

• Write ”Section 6.1”, not ”section 6.1”.

• Write ”Figure 6.2”, not ”figure 6.2”.

• Caption should start with an uppercase and terminate by a period.

• Titles (section, chapter, ...) should just have the first letter capitalized.

The great book.

• Figure caption should end with a period and be capitalized.

158

17.5 Automatic Numbering

![The great figure.]()

• Class names should be surrounded by ‘

• Only use tab for code indentation

• For paragraphs terminate the label with a period

Cap.

Job

A book sanitizer can perform modifications of the document tree to reflect
them. A subsequent version could change the files to reflect such change so
that the user can save them.

A sanitizer should be configurable to take into account book guidelines.

17.5 Automatic Numbering

When writing a book users do not want to be forced to write in the exact
same level of nesting than the template interpretation. For example, in this
book # is to represent a LaTeX part, and ## for a chapter. However, it would
possible to simply change the numbering so that a writer can write # for title
and to use meta data at the level of the file to control this.

{ "nesting":0 }

could mean that # is for a chapter title, ## a section, ### a paragraph

Conversely

{ "nesting":1 }

could mean that ## is for a chapter title, ### a section,

17.6 Rendered math downloader

To render math in non latex mode, the microdown renderer in Pharo per-
forms a request to an online service. A cool feature is to change the logic to
do change the logic so that

• After each request to the server, save the gif or png representing the
render math expression with a unique name in the ressources folder
of the current file directory. A possible name is to take two letters of
path elements plus a counter. So the 3 expressions in foo/bar/ will be
named foba3.png

• [optional] Change the math code to reflect that the corresponding ren-
dered expression is available

159

Microdown miniprojects

$$
\frac{1}{2}

$$

into

$$ % renderedAs=foba3.png
\frac{1}{2}

$$

• Modify the system so that the request is only performed if there is no
ressources for the given expression. When the ressources is found, it
should use the corresponding rendered result graphic object.

Better contents encoding

Note that computing the name based on the order of appareance in the text
is not really robust to change. If the user inserts a new math expression this
will invalidate the pre existing renderer. Propose a better system based on
the expression contents for example the hash of a zip.

160

	Illustrations
	Introduction
	Module Exercises
	Default flow
	Exercises proposition per Module
	Module 1.
	Module 2.
	Module 3.
	Module 4.
	Module 5.
	Module 6.
	Module 7, 8, 9, 10.

	Teacher corner
	About Pharo and Moocs
	A truly excellent and pedagogical language
	Some testimonies
	In french
	In English

	Conclusion

	Lectures
	Possible pedagogical objectives
	Lecture: Essence of OO design from 1/2 to 1 day
	Lecture: Pharo in 1 day
	Lecture: Basic OOP in 1/2 to 1 day
	Lecture: Pharo and Object-oriented design in 2 days
	Lecture: Advanced object-oriented design lecture example
	Setup
	Calendar

	Conclusion

	Guided Exercices
	A basic LAN application
	Creating the class LNNode
	Exercise: Create a new package SimpleLAN
	Exercise: Create a Test class
	Exercise: Class creation
	Exercise: Accessors
	Exercise: Define the method hasNextNode

	Sending/receiving packets
	A little example.

	Better printString
	Creating the class LNPacket
	Exercise: defining class LNPacket
	Exercise: Adding isAddressedTo:
	Exercise: adding a printOn: method

	Creating the class LNWorkstation
	Exercise: Define LNWorkstation
	Exercise: Redefining the method accept:
	About good design.

	Exercise: Defining the method emit:

	Creating the class LNPrinter
	Illustrating scenario

	Simulating the LAN
	Conclusion

	Crafting a simple embedded DSL with Pharo
	Getting started
	Create a test
	Define the class Die

	Rolling a die
	Creating another test
	Instance creation interface
	Defining a class method
	[Optional] Alternate instance creation definition

	First specification of a die handle
	Testing a die handle

	Defining the DieHandle class
	Improving programmer experience
	Optimization Remark.

	Rolling a die handle
	About Dice and DieHandle API
	About composition

	Handle's addition
	Role-playing syntax
	About class extensions

	Conclusion

	Stone paper scissors
	Starting with a couple of tests
	Creating the classes
	With messages
	playAgainstStone:
	Scissors now
	Paper now

	About double dispatch
	A Better API
	About alternative implementations
	Conclusion

	Revisiting the Die DSL: a case for double dispatch
	A little reminder
	[Optional] Alternate way
	New requirements
	Turning requirements into tests
	Introducing faces on DieHandle
	The first implementation
	Sketching double dispatch
	Adding two dice
	Adding a die and a die or a handle
	When the argument is a die handle
	Stepping back
	Now a DieHandle as receiver
	sumWithHandle: on Die class
	Conclusion

	A little Ssaturn PathFinder
	A robot in its space
	Scripts
	Getting the code
	Basic robot behavior
	Robot move
	Sending order to robots
	Adding new orders
	Base
	Dropping an item

	Introducing commands
	Command
	Registering commands

	Challenge: Replay
	Introduce new commands to control replay

	Non recording commands
	Challenge: Automatic way back home
	Extensions

	Challenge: Path optimizations
	Extensions

	Extensions
	Conclusion

	Finding the North with Compass
	Existing situation
	Computing new position based on a direction.
	Opposite direction

	Representing directions
	New position at a given distance

	Introducing NorthWest, SouthEast, and friends

	A little expression interpreter
	Starting with constant expression and a test
	Negation
	Adding expression addition
	Multiplication
	Stepping back
	Messages and methods
	About common superclass
	Design corner: About addition and multiplication model

	Negated as a message
	negated message for constants
	negated message for negations
	negated message for additions
	negated message for multiplications

	Annoying repetition
	Introducing Expression class
	Class creation messages
	Better instance creation for constants
	Better instance creation for negations
	Better instance creation for additions
	Better instance creation for multiplications

	Introducing examples as class messages
	Printing
	A word about streams
	Printing constant
	Printing negation
	Printing addition
	Printing multiplication

	Revisiting negated message for Negation
	Understanding method override

	Introducing BinaryExpression class
	Creating a template and hook method

	What did we learn
	About hook methods
	Creating hooks is always good
	Avoid not documenting hooks

	Variables
	Some technical points
	Dictionaries
	Dynamic Arrays
	Pairs

	Back to variable expressions
	Non working approaches
	The solution: adding evaluateWith:

	Conclusion

	Understanding visitors
	Existing situation: expression trees
	Visitor's key principle
	Introducing an evaluating Visitor
	Defining the visitor class
	Adding a test class

	Now handling addition
	Adding a new test
	Defining visitAddition:

	Supporting negation
	Defining visitNegation:
	Again redefining evaluateWith:

	Supporting Multiplication
	Adding a test
	Defining the accept: method
	Defining the visitMultiplication

	Supporting Division
	First two tests
	Improving the creation API
	Defining accept:
	Defining the visitDivision:

	Moving up evaluateWith:
	Supporting variables
	Extending the visitor state
	Visiting a variable

	Redefine evaluateWith:
	A new visitor
	Defining a new visitor

	Visiting methods
	Conclusion

	Unguided exercises
	Tamagotchi Mechanics
	Problem Context
	Behavior
	Eating.
	Playing Alone.
	Playing With Other Pets.

	Extensions
	Dog.
	Lonely Cat.

	Tests
	About behavior description

	Civilization
	General Rules
	Defending Unit Damage Formula
	Defending Unit Damage (Dd).
	Attacking Unit Power (Ap).
	Defending / Attacking Unit Types Combination Modifier (Atm).
	Defending Unit Terrain Impact (Dti).

	Attacking Unit Damage Formula
	tacking Unit Damage (Ad).
	Defending Unit Power (Dp).
	Defending / Attacking Unit Types Combination Modifier (Dtm).
	Attacking Unit Terrain Impact (Ati).

	Units
	Warrior.
	Archer.
	Pikeman.
	Knight.

	Terrains
	Flat Terrain.
	Hilly Terrain.

	Tests

	Little unguided projects
	LAN simulator
	Loading LAN code.
	LAN extensions
	Hook for accept
	Understanding execution flow
	Star node
	Avoiding some conditions.
	Trottling node
	Handling loops
	Limited packet distance
	Different kinds of packets
	Signing node

	Die players
	Kind of players
	Different kinds of die
	Pairs of player and die

	About the die DSL
	About Visitors

	Unguided Projects
	Designing little board games
	Support
	Loading Myg and Bloc
	Bloc
	Possible Games
	Other resources
	Some generic extensions
	Minesweeper
	Free cell declaration:
	Bomb declaration:
	Specific extensions:

	Flood it
	Specific extensions:

	Tetris and variations
	Specific extensions
	Specific extensions

	2048
	Specific extensions

	Memory
	Specific extensions

	SlideOut
	Laser game
	Same game
	Nonogram
	Conclusion

	Microdown miniprojects
	Blog and its posts
	Link checker
	Table of contents
	Book Sanitizer
	Guideline sample
	Job

	Automatic Numbering
	Rendered math downloader
	Better contents encoding

