
Subclassing vs. Subtyping

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org


Goals

 Discuss the relation between the API of a class and its subclasses
 Discuss the relation between the API of a class and its clients
 Compare subtyping & subclassing
 Impact on design
 Subtyping is good even in dynamically-typed languages

M10-2 2 / 26



Example 1

class Poem extends LinkedList
{
...
}

What do you think about it?
 Yes, we can write this code
 What do you think of it? Does it make sense?

A poem API
 is addWord(word), isAlexandrin(), isHaiku(), ...
 should not contain addBeforeLink(aLinkOrObject, otherLink) (that is part of
LinkedList)

M10-2 3 / 26



Another example

class Stack extends LinkedList
{
...
}

What do you think about it?
 Yes, we can write this code.
 What do you think of it? Does it make sense?

A Stack API
 is pop(),push(el), top(), isEmpty()
 should not contain LinkedList methods.

M10-2 4 / 26



Subclassing

The two previous examples are examples of subclassing, e.g., a subclass does
not have an API in relation with its superclass.
It reuses the superclass code.

M10-2 5 / 26



Subtyping/subclassing and type systems

Did you notice previous code snippets were in Java tiny syntax... because:
 You can use subtyping and subclassing in dynamically-typed languages
 You can use subtyping and subclassing in statically-typed languages

The compiler’s type checker does not check such a point
 It just checks that we can put squares into squares

M10-2 6 / 26



Let us study a simple example

Basic Stack:
>>> s push: 12.
>>> s push: 24.
>>> s top
>>> s pop
24
>>> s isEmpty
false

M10-2 7 / 26



Stack as subclass of OrderedCollection

OrderedCollection << Stack

Stack >> pop
^ self removeFirst

Stack >> push: anObject
self addFirst: anObject

Stack >> top
^ self first

We get size, includes:, do:, collect: for free.

M10-2 8 / 26



Wait!

 What do we do with the rest of the OrderedCollection API?
 Our Stack also understands: add:beforeIndex:,
addAllFirstUnlessAlreadyPresent:, join:...

 A Stack is not an OrderedCollection!
 In a client program we cannot replace an OrderedCollection by a Stack

M10-2 9 / 26



Wait!

Some messages that make sense on the class OrderedCollection do not make
sense on the class Stack
OrderedCollection new add: newObject beforeIndex: index

OrderedCollection new add: newObject ; removeFirst

M10-2 10 / 26



We could cancel some operations

Stack >> removeFirst
self error

M10-2 11 / 26



And get a convoluted pop?

Remember:

Stack >> pop
^ self removeFirst

Jumping over cancelled operation :(

Stack >> pop
^ super removeFirst

 Ugly
 Complexify the solution
 Complexify the evolution

M10-2 12 / 26



Stepping back

 There is not a simple relationship between Stack and OrderedCollection APIs.
 Stack interface is not an extension nor a subset of OrderedCollection interface.

M10-2 13 / 26



Imagine CountingStack

CountingStack >> pop
operations := operations + 1.
^ super pop

CountingStack >> push: anElement
operations := operations + 1.
^ super push: anElement

M10-2 14 / 26



Compare the two uses

insert:after:
removeLast
removeFirst
addFirst

Ordered
Collection

push
pop
top

Stack

... OrderedCollection new 
insert:  ... after: ....
OrderedCollection new 
addFirst    .... removeLast

push
pop
top

Stack

push
pop

Counting
Stack

... Stack new 
push:  ... ; push:  ....
Stack new 
top    ....

M10-2 15 / 26



Compare the two replacements

insert:after:
removeLast
removeFirst
addFirst

Ordered
Collection

push
pop
top

Stack

push
pop
top

Stack

push
pop

Counting
Stack

... Stack new 
insert:  ... after: ....
Stack new 
addFirst    .... removeLast

... CountingStack new 
push:  ... ; push:  ....
CountingStack new 
top    ....

M10-2 16 / 26



Back to Stack

Better use composition! A Stack holds a collection of elements

Object << Stack
slots: {#elements}

Stack >> push: anElement
elements addFirst: anElement

Stack >> pop
^ element ifNotEmpty: [ element removeFirst ]

M10-2 17 / 26



Subclassing inheritance

 Inheritance for code reuse
 Subclass reuses code from superclass, but as a different specification
 It cannot be used everywhere its superclass is used. Usually overrides of code

Cons:
 Lowers understanding
 Hampers future evolution
 Forces strange code

M10-2 18 / 26



Subtyping inheritance

 Reuse of specifications: interface inheritance
 A subclass refines superclass specifications
 A program that works with Numbers should ’work’ with Fractions
 A program that works with Collections should ’work’ with Arrays

M10-2 19 / 26



Subclasses must not cancel methods

Stack >> removeFirst
self error

This is a sign of a bad design decision
 Cheap
 But you will pay later

M10-2 20 / 26



RestrictedStack
Imagine that we have a stack where we can only push elements smaller than the
top elements

push: anElement
self top < anElement
ifTrue: [^ self ]
super push: anElement

What is the good superclass?
 Stack Probably.
 It would be better if the client handles this behavior, but maybe it is not

mandatory or possible.
 A subclass does not have to make sure that the client program works (this is

behavioral subtyping )

M10-2 21 / 26



About Liskov Substitution Principle (LSP)

’if for each object o1 of type S there is another object o2 of type T such that for all
programs P defined in terms of T, the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.’ Barbara Liskov, "Data Abstraction and
Hierarchy," SIGPLAN Notices, 23,5 (May 1988)
 LSP is about behavioral typing (about the same behavior)
 Most of the time when you define subclass to change behavior
 By definition, a subclass often exhibits a slightly different behavior than its

superclass
 Therefore LSP looks useless in such a context.

M10-2 22 / 26



Inheritance and polymorphism

 Polymorphism works best with conforming/substituable interfaces
 Subtyping inheritance creates families of classes with similar interfaces

◦ An abstract class describes an interface fulfilled by its subclasses
 Subtyping inheritance helps software reuse by creating polymorphic objects
 Now classes in different hierarchies implementing the same interface can also

be substituable

M10-2 23 / 26



’extend’ one term for two concepts

 We only have one extend or subclass: construct in programming language
 Still you can express a subtype or subclass relationship between a class and

its subclass.
 Subclassing/subtyping is not related to static typing

M10-2 24 / 26



Conclusion

 Subclassing is about program specification reuse
 Subtyping is about creating family of classes sharing common API
 Avoid subclassing: it is a bad idea when you want subtyping

M10-2 25 / 26



Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

