
Polymorphic objects
Support for software evolution

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals

 Polymorphic objects are key to software evolution
 What about them in statically typed languages?

◦ why do we need interfaces in statically typed languages?

M10S4 2 / 16

Simple Example

Shape (draw)
Circle (draw)
Rectangle (draw)
Triangle (draw)

Canvas >> display
shapes do: [:s | s draw]

How to support rhombus?

M10S4 3 / 16

Solution 1: subclassing Shape

Shape (draw)
Circle (draw)
Rectangle (draw)
Triangle (draw)
Rhombus (draw)

M10S4 4 / 16

Solution 2: disjoint class

What happens if you cannot subclass Shape?

Shape (draw)
Circle (draw)
Rectangle (draw)
Triangle (draw)

Rhombus (draw)

Rhombus should implement the method draw to be
able to play nicely with Canvas

M10S4 5 / 16

Polymorphic objects

Rhombus instances are polymorphic to shape objects
even if Rhombus is not a subclass of Shape

Canvas >> display
shapes do: [:s | s draw]

M10S4 6 / 16

Step back

Producing polymorphic objects (substituable objects) is KEY to software evolution.
In dynamically-typed languages:
 Objects do not have to be from the same hierarchy to work together
 Objects should understand the messages that are needed to play their role

◦ e.g Rhombus implements draw
 Duck typing

◦ If it walks like a duck and it quacks like a duck, then it is a duck

M10S4 7 / 16

What about statically typed languages?

Static types can get in your way:

Shape s = new Shape();

 s can only contains instances of Shape or its subclasses
 if we cannot define Rhombus as a subclass of Shape (e.g. final class), it will not

work because there is no subtype relationship between Rhombus and Shape

class Rhombus extend Object {...draw() {...} ...}
Shape s = new Rhombus()
> compilation error

M10S4 8 / 16

Interface concept

An interface:
 has a name
 defines a type
 has one or more super-types
 contains a group of method signatures
 may contain default methods

Why interfaces?
 allow developpers to define subtypes out of class hierarchies
 are used by the type checker to check subtype relationships
 support evolution

M10S4 9 / 16

Solution 3: with an interface

interface IShape {
draw();
}

class Shape extend Object implements IShape { ... }

class Canvas {
... display (){
ArrayList<IShape> shapes = new ArrayList<IShape>() ...}

...}

M10S4 10 / 16

Solution 3: Rhombus implements IShape

class Rhombus extend Object implements IShape {
... draw() { ... } ...}

The Rhombus class:
 inherits from Object
 implements IShape expected by Canvas

Rhombus and Shapes instances are subtypes of IShape and compatible with
Canvas

M10S4 11 / 16

Classes and Interfaces

 A class must implement the methods mentioned in the interface
 A class can implement many interfaces
 An interface can be composed out of multiple interfaces

M10S4 12 / 16

Interfaces: step back

 Typing a variable using a class restricts the possible values of that variable to
instances of that class or of one of its subclasses

Shape shape;
Collection<Shape> shapes;

 In statically typed languages, interfaces provide a nice way to define what is
expected without restricting evolution

IShape shape;
Collection<IShape> shapes;

M10S4 13 / 16

Interfaces and nominal types

Interfaces define “nominal types” (different from duck typing)
 type compatibility is only based on the name of the type
 two interfaces with different names but the same contents are NOT compatible
 instances of a class using one interface CANNOT be substituted by instances of

another class using another interface with the same content

M10S4 14 / 16

Conclusion

 Polymorphic objects are key to support software evolution
 Code against an API

◦ Focusing on APIs is better for evolution than typing relationship
 In dynamically-typed languages, polymorphism is free
 In statically typed languages, interfaces are key to create polymorphic objects

not restricted to a specific class hierarchy
 Related to the Adapter Design Pattern

M10S4 15 / 16

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

