
Objects vs. Data
An API perspective studying the class Point

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals

 Difference between an object and a data structure
 Difference between a poor and a good API
 APIs and encapsulation play an important role
 Looking at two concrete implementations of Point: in Java and Pharo
 Understanding the impact of strong API

M4-2 2 / 17

Java Points - Getters and setters

 Point getLocation(): returns the location of this point (to be polymorphic with
Component. A location is just a point.)

 void setLocation(double x, double y): sets the location of this point to the
specified double coordinates.

 void setLocation(int x, int y): changes the point to have the specified location.
 void setLocation(Point p): sets the location of the point to the specified location.
 double getX(): returns the X coordinate of this Point2D in double precision.
 double getY(): returns the Y coordinate of this Point2D in double precision.

M4-2 3 / 17

Java Points - the ’rest’

 boolean equals(Object obj): whether or not two points are equal.
 void move(int x, int y): moves this point to the specified location in the (x,y)

coordinate plane.
 void translate(int dx, int dy): translates this point, at location (x,y), by dx along the

x axis and dy along the y axis so that it now represents the point (x+dx,y+dy).
 String toString(): returns a string representation of this point and its location in

the (x,y) coordinate space.

Inherited from Point2D
 distance() and clone()

M4-2 4 / 17

Analysis: Java Points

 A super poor data structure
 A dry holder of integers
 Super limited interface
 Java points do not define behavior beside move, translate and distance!

M4-2 5 / 17

Points in Pharo

Rich API (selected part):
 normalized, normal, transposed, reflectedAbout:
 distanceTo:, squaredDistanceTo:
 crossProduct:, dotProduct:
 \ - *, reciprocal,/, +, min // abs max
 >= > <= min:max: min: < closeTo: closeTo:precision: max: =
 negated, translateBy:, scaleBy:, scaleTo:, scaleFrom:to:, adhereTo:,
 triangleArea:with:, to:intersects:to:, to:sideOf:, isInsideCircle:with:with:, sideOf:,
 rectangle:, extent:, corner:

M4-2 6 / 17

Points in Pharo (Continued)

 degrees, theta,
 onLineFrom:to:, angleWith:, angle, rotateBy:about:, rotateBy:centerAt:,
bearingToPoint:,

 roundUpTo:, ceiling, truncated, truncateTo:, roundTo:, floor, roundDownTo:,
rounded,

 quadrantOf:, le�Rotated, nearestPointAlongLineFrom:to:, flipBy:centerAt:,
nearestPointOnLineFrom:to:, squaredDistanceTo:, insideTriangle:with:with:,
directionToLineFrom:to:, sign, octantOf:, rightRotated,

 fourNeighbors, grid:, eightNeighbors, fourDirections

M4-2 7 / 17

Simple example

Point >> crossProduct: aPoint
"Answer a number that is the cross product of the receiver and the
argument, aPoint."

^ (x * aPoint y) − (y * aPoint x)

 Obvious, but still useful
 No need to duplicate it in clients

M4-2 8 / 17

Simple example: comparing points

< aPoint
"Answer whether the receiver is above and to the le� of aPoint."

^ x < aPoint x and: [y < aPoint y]

M4-2 9 / 17

Example: More challenging
Point >> degrees
"Answer the angle the receiver makes with origin in degrees. right is 0; down is 90."
| tan theta |
^ x = 0
ifTrue: [y >= 0

ifTrue: [90.0]
ifFalse: [270.0]]

ifFalse: [tan := y asFloat / x asFloat.
theta := tan arcTan.
x >= 0
ifTrue: [y >= 0
ifTrue: [theta radiansToDegrees]
ifFalse: [360.0 + theta radiansToDegrees]]

ifFalse: [180.0 + theta radiansToDegrees]]

Nobody wants to be forced to reimplement it.

M4-2 10 / 17

An example in Java

How to make a robot walk a distance from its current direction (in degrees).

public class Bot {
int tilt = 0;
Point position = new Point(0,0);

public void go(int distance){
position = new Point(
(Math.round(Math.cos(Math.toRadians(tilt))) * distance + position.x()),
(Math.round(Math.sin(Math.toRadians(tilt))) * distance + position.y()))) ;
}

}

M4-2 11 / 17

Analysing Java Example

 Have to recreate explicitly a point distance + position.x()
 Arithmetic of Points is defined outside of them!

◦ Points cannot sum themselves
◦ Points cannot shape themselves (rounded, ...)

 When an object exposes a shallow API, it favors logic duplication in clients!

M4-2 12 / 17

Consequences of poor APIs

move()
translate()

Point

degrees
…
…X

degrees
…
…X

degrees
…
…

degrees
…

…B1

move()
translate()
degree()

Point

VS

M4-2 13 / 17

Bot » go: in Pharo
In Java
public void go(int distance){
position = new Point(
(Math.round(Math.cos(Math.toRadians(tilt))) * distance + position.x()),
(Math.round(Math.sin(Math.toRadians(tilt))) * distance + position.y())) ;
}

}

In Pharo
Bot >> go: aDistance
position := position + ((tilt degreeCos @ tilt degreeSin) * aDistance) rounded

 Use Point’s addition, multiplication, and rounding
 Use Number’s sin and cos
 Points know how to *, +, /, ... themselves
 We can compose points, rectangles, and numbers

M4-2 14 / 17

Analysis Pharo Example

 In Pharo Points
◦ are more than a data structure
◦ define advanced behavior

 Functionality is not in clients
 Clients benefit and reuse behavior!

M4-2 15 / 17

What you should know

 Objects are more than a data structure
 Objects are about behavior and services they offer
 An object should encapsulate logic and let its client reuse that logic!

M4-2 16 / 17

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

