
About global variables

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org


Goals/Roadmap

 Understand that globals (but also Singleton) are not nice because globally
shared

 Difficult to test
 See that globals may take different forms
 Study some cases
 Think modular
 Polymorphic dispatch requires instances of different classes

M4S3 2 / 18



Autopsy of an error

... >> menu
...
icon: (Smalltalk icons iconNamed: #window)
...

 Smalltalk class namespace of Pharo
 Smalltalk icons refers to an icon manager

M4S3 3 / 18



Case 1: Smalltalk icons

 Smalltalk icons acts as a global variable
 What if we want to have icons specific to an specific application
 We cannot have two icon sets used by widgets side by side at the same time to

compare them

M4S3 4 / 18



Case 2: A disguised global variable

Since in Pharo we can extend core libraries we could think this is any better.

MyApp >>menu
...
icon: #window asIcon
...

Here we extend Symbol class

Symbol >> asIcon
^ Smalltalk icons iconNamed: self

M4S3 5 / 18



Case 2: A disguised global variable

MyApp >>menu
...
icon: #window asIcon
...

 Does not duplicate Smalltalk icons iconNamed:
 This is already something!
 But still a global

M4S3 6 / 18



Case 2: A disguised global variable

 One global variable but disguised: only one place to edit but still fundamentally
one global variable

 There is only one icon table
 We cannot dispatch to a different object (there is only one Symbol class)
 MyApp cannot extend or slightly change icons for my application only!
 I cannot simply have two icon sets at the same time to compare them

M4S3 7 / 18



A better approach

MyApp >>menu
...
icon: (self iconNamed: #window)
...

MyAppSuperclass >> iconNamed: aSymbol
...
^ self iconProvider at: aSymbol

M4S3 8 / 18



Why is this better?

 Modular
 Each receiver may do something different
 Each user may be configured differently
 Still we may share the common behavior

M4S3 9 / 18



Case 3: asClass

Accessing programmatically a class is usually done as:

Smalltalk globals at: #Point

People wanted a shorter version for scripting

#Point asClass

Symbol >> asClass
^ Smalltalk globals at: self

 But there is a difference!

M4S3 10 / 18



Case 3: asClass analysis

Same limits as before:
 Another global entry point
 What if we want to remotely access a class in another system
 We can only have one namespace
 We cannot inject a special namespace for test for example
 No way to dispatch to a different object

M4S3 11 / 18



Case 3: Possible solution

Delegate to the class to get its environment

self class environment at: #Point

This supports different environments

M4S3 12 / 18



Case 4: Smalltalk tools - The ugly

browseMethodFull
"Create and schedule a full Browser and then select the current class andmessage."

self currentClassOrMetaClass ifNotNil: [
Smalltalk tools browser
openOnClass: self currentClassOrMetaClass
selector: self currentMessageName ]

M4S3 13 / 18



Case 4: Smalltalk tools Analysis

browseMethodFull
"Create and schedule a full Browser and then select the current class andmessage."

self currentClassOrMetaClass ifNotNil: [
Smalltalk tools browser
openOnClass: self currentClassOrMetaClass
selector: self currentMessageName ]

 One global entry point
 Everybody refers to this single point!
 Yes this is called monolithic thinking
 Only one toolset possible at the same time (could be ok)

M4S3 14 / 18



Case 4: Smalltalk tools possible solution

 Objects should refer to instance variables and messages
 Avoid direct reference to a global

MyApp >> initialize
toolEnvironment := ToolEnvironment new

MyApp >> browseMethodFull
self toolEnvironment browser
openOnClass: self currentClassOrMetaClass
selector: self currentMessageName

M4S3 15 / 18



Points to consider

 With a global, when it changes, all its users are updated for free
 How to manage the fact that a tool may change?
 Browsers may register to a ToolEnvironment to be notified and update its

instance

M4S3 16 / 18



Conclusion

 Avoid global
 Think modular
 Give a chance to objects to specialize messages

M4S3 17 / 18



Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

