
Singleton
a highly misunderstood pattern

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Outline

 Singleton
 Singleton discussions
 Singleton misunderstanding

M4S5 2 / 18

Singleton intent

 From the book: Ensure that a class has only one instance, and provide a
global point of access to it

 Better: Ensure that a class has only one instance available at the any time

M4S5 3 / 18

Problem/Solution

 Problem: Need
◦ a way to keep some persistent objects around
◦ or a class with a unique instance

 Solution: Store the first time an instance is created and return it each time a
new instance is requested

Most of the time think twice because you probably do not need it!

M4S5 4 / 18

Example

db := DBConnect uniqueInstance.
db2 := DBConnect uniqueInstance.

db2 == db
> true

Yes we get only one instance of the database connection

M4S5 5 / 18

Possible implementation

Object << #BDConnect
sharedVariables: { UniqueInstance }

BDConnect class >> uniqueInstance
UniqueInstance isNil
ifTrue: [UniqueInstance := self new].

^ UniqueInstance

M4S5 6 / 18

Should we override new?

DBConnect class >> new
^ self uniqueInstance

The intent (uniqueness) is not clear anymore!
 new is normally used to return newly created instances
 new means to get a new object and initialize that object
 uniqueInstance doesn’t convey the same

M4S5 7 / 18

Method name variation (I)

uniqueInstance
 Pure singleton ensuring a single global instance
 new should better be blocked

Author class >> uniqueInstance
^ uniqueInstance ifNil: [uniqueInstance := self basicNew initialize]

Author class >> new
self error: 'Author is a singleton −− send uniqueInstance instead'

M4S5 8 / 18

Method name variation (II)

default
 Some meaningful default instance, but there is no

reason to stop the user from creating more instances

current
 Keep the same instance system-wide, but we also want

to change it under some circumstances

M4S5 9 / 18

Discussion

 Even if the language supports global variables, avoid to
store a Singleton in a global

 A class is already acting as a global and it can manage
the Singleton (one single entry point)

M4S5 10 / 18

Shared variable vs class instance variable
In Pharo we have:
 Shared variables: shared between all the class of a hierarchy
 Class instance variables: specific to a single class

UniqueInstance

A

m

C

m

D

p

B

t

…
UniqueInstance
…

…
UniqueInstance
…

…
UniqueInstance
…

uniqueInstance

A class

C class D class

B class

M4S5 11 / 18

One per hierarchy or one per class
Holding a singleton with
 a shared variable: One singleton for a complete hierarchy
 a class instance variable:

◦ One singleton per class
◦ Each subclass has its own singleton

UniqueInstance

A

m

C

m

D

p

B

t

…
UniqueInstance
…

…
UniqueInstance
…

…
UniqueInstance
…

uniqueInstance

A class

C class D class

B class

M4S5 12 / 18

Singleton misunderstanding

 Singleton is about time: only one instance at the any time is possible
 Singleton is not about access: don’t use a singleton because it is easier to

access one instance!

M4S5 13 / 18

Singleton acid test

 If you can add one instance variable to your object and
suddenly you do not need a singleton then it was not a
singleton but an ugly disguised global variable!

 Sometimes you cannot add an instance variable so the
Singleton is ok

M4S5 14 / 18

Testing singletons

 Singletons are global variables so this makes them
more difficult to test

 When running tests, you want to avoid to change the
current singleton

 Be careful about not breaking the current singleton
 RPackageOrganizer is a singleton: should not be

destroyed when tests are run

M4S5 15 / 18

Example: RPackageOrganizer

RPackageOrganizer uses withOrganizer: aNewOrganizer do: aBlock for testing
behavior

withOrganizer: aNewOrganizer do: aBlock
"Perform an action locally to aNewOrganizer. Does not impact any other organizers."

| old |
[old := self organizer.
old unregister.
self organizer: aNewOrganizer.
aNewOrganizer register.
aBlock cull: aNewOrganizer] ensure: [
self organizer: old.
old register.
aNewOrganizer unregister]

M4S5 16 / 18

Conclusion

 Having only one instance at a time
 Avoid Singleton as a global
 In general avoid Singleton because it acts as a global
 Difficult to test

M4S5 17 / 18

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

