Advanced Object-Oriented Design

Decorator Design Pattern

A composable alternative to subclassing

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Phar®

http://www.pharo.org

x ifTrue:

\

[\
A self] “

http://www.pharo.org

Goals

e Present the Decorator Design Pattern
e Think about API

» M4S6 2/ 18

Decorator

From the book:

e Dynamically attach additional responsibilities to an object

e Decorators provide a flexible alternative to subclassing for extending
functionality

2
» M4S6 3/18

Decorator core

A\

M4S6 4 /18

Client

»| Component

operation | decoree
|
I
|
|
|
1
Decoree Decorator
operation operation —|

e

decoree operation

Often mixed with inheritance

Client > Component _
operation | decoree
I
]
|
/1 V\ |
!
Decoree Decorator
operation operation —|
f K -
[DecoreeA DecoreeB

Ziase 5/18

decoree operation

|
| 1

Decorator

A decorator wraps a decoree

¢ |tis placed between the client and the decoree
e |t propagates or not messages to the decoree

Easier to understand when the Decorator is a subclass of Decoree
but not necessary (think duck typing)

2
» M4S6 6/ 18

Decorator nesting

A decorator wraps an instance or decorated instance of the component

Client »| Component | ______
operation | decoree
I
]
|
I
v\ |
1
Decoree Decorator decoree operation
operation operation —|

2
»” M4S6 7/18

Transparent to the client

e A client manipulates transparently decorated and undecorated
elements

e A client talks to the decorator which delegates to the decoree
(a leaf object or a another decorator)

e Strong Implication: decoree and decorator must expose the
same API

2
» M4S6 8/ 18

Example of Stream

ZnStreams are decorators of Streams

ZnNewLineWriterStream
on: (ZnCharacterWriteStream on: Stdio stdout encoding: 'utf8').

e /nNewlineWriterStream decorates ZnCharacterWriteStream

2
» M4S6 9/ 18

Another use

AbstractFileReference >> readStreamEncoded: anEncoding
A ZnCharacterReadStream

on: self binaryReadStream
encoding: anEncoding

e /nCharacterReadStream is decorating another stream with an encoding

Zlase 10/ 18

Implementation

WriteStream << #ZnNewLineWriterStream
slots: { #stream . #cr . #If . #previous . #lineEnding};
package: 'Zinc—Character-Encoding—Core'

ZnNewLineWriterStream class >> on: aStream
A self basicNew
initialize;
stream: aStream;
yourself

ZnNewLineWriterStream >> close
stream close

ZnNewLineWriterStream >> flush
A stream flush

$
Zlase 11/ 18

Example of Stream (l)

testNextPutEnsureLineEndsAreWrittenCorrectly

| expectedString stream crStream |
expectedString :='a’, OSPlatform current lineEnding, 'b'.
{ String cr. String If . String crlf } do: [:lineEnd |
stream := String new writeStream.
crStream := ZnNewLineWriterStream on: stream.
crStream
<<'a;
<<lineEnd;
<<'h".
self assert: stream contents equals: expectedString |

$
Zlase 12/ 18

Example of Stream (Il)

ZnNewLineWriterStream >> nextPut: aCharacter
"Write aCharacter to the receivers stream.
Convert all line end combinations, i.e cr, If, crlf, to the platform convention"

(previous == cr and: [aCharacter == If]) ifFalse: [
(aCharacter ==cr or: [aCharacter==1f])
ifTrue: [self newLine]
ifFalse: [stream nextPut: aCharacter]].
previous := aCharacter.

» M4S6 13/18

Analysis

e All decorators should have the same API
e close, flush, nextPut:, contents, next, atEnd, on:

e Stream decorator individual behavior can be reused and
composed

» M4S6 14/18

About dynamic behavior

Decorators attach additional responsibilities to an object

e The decorator is based on delegation
e We should control the creation of the decoration chain (the client reference)

e Strong Implication: decorated objects do not know if they are decorated
o Changing the decoration chain at runtime is not simple

2
» M4S6 15/18

When not to use decorator

e When decorations have different APls
e When the decorations should change dynamically

e Think twice when the APIls are HUGE

2
2 ase 16/ 18

Conclusion

e Decorators can represent composable facets of an object
e Pay attention all the decorators should implement the same API
e Decorator is modular but within a common API

2
» M4S6 17/18

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

4
h s Inria VY
cea— LearningLab ook i g
©l0c0
BY NC ND

IMT-Université de Lille
Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

