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Goals

 Present the Decorator Design Pattern
 Think about API
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Decorator

From the book:
 Dynamically attach additional responsibilities to an object
 Decorators provide a flexible alternative to subclassing for extending

functionality
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Decorator core
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Often mixed with inheritance
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Decorator

A decorator wraps a decoree
 It is placed between the client and the decoree
 It propagates or not messages to the decoree

Easier to understand when the Decorator is a subclass of Decoree
but not necessary (think duck typing)
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Decorator nesting

A decorator wraps an instance or decorated instance of the component
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Transparent to the client

 A client manipulates transparently decorated and undecorated
elements

 A client talks to the decorator which delegates to the decoree
(a leaf object or a another decorator)

 Strong Implication: decoree and decorator must expose the
same API
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Example of Stream

ZnStreams are decorators of Streams

ZnNewLineWriterStream
on: (ZnCharacterWriteStream on: Stdio stdout encoding: 'utf8').

 ZnNewLineWriterStream decorates ZnCharacterWriteStream
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Another use

AbstractFileReference >> readStreamEncoded: anEncoding

^ ZnCharacterReadStream
on: self binaryReadStream
encoding: anEncoding

 ZnCharacterReadStream is decorating another stream with an encoding
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Implementation
WriteStream << #ZnNewLineWriterStream
slots: { #stream . #cr . #lf . #previous . #lineEnding};
package: 'Zinc−Character−Encoding−Core'

ZnNewLineWriterStream class >> on: aStream
^ self basicNew
initialize;
stream: aStream;
yourself

ZnNewLineWriterStream >> close
stream close

ZnNewLineWriterStream >> flush
^ stream flush
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Example of Stream (I)

testNextPutEnsureLineEndsAreWrittenCorrectly

| expectedString stream crStream |
expectedString := 'a', OSPlatform current lineEnding, 'b'.
{ String cr . String lf . String crlf } do: [ :lineEnd |
stream := String new writeStream.
crStream := ZnNewLineWriterStream on: stream.
crStream
<< 'a';
<< lineEnd;
<< 'b'.
self assert: stream contents equals: expectedString ]
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Example of Stream (II)

ZnNewLineWriterStream >> nextPut: aCharacter
"Write aCharacter to the receivers stream.
Convert all line end combinations, i.e cr, lf, crlf, to the platform convention"

(previous == cr and: [ aCharacter == lf ]) ifFalse: [
(aCharacter == cr or: [ aCharacter == lf ])
ifTrue: [ self newLine ]
ifFalse: [ stream nextPut: aCharacter ] ].

previous := aCharacter.
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Analysis

 All decorators should have the same API
 close, flush, nextPut:, contents, next, atEnd, on:
 Stream decorator individual behavior can be reused and

composed
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About dynamic behavior

Decorators attach additional responsibilities to an object
 The decorator is based on delegation
 We should control the creation of the decoration chain (the client reference)
 Strong Implication: decorated objects do not know if they are decorated

◦ Changing the decoration chain at runtime is not simple
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When not to use decorator

 When decorations have different APIs
 When the decorations should change dynamically
 Think twice when the APIs are HUGE
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Conclusion

 Decorators can represent composable facets of an object
 Pay attention all the decorators should implement the same API
 Decorator is modular but within a common API
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