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Goals

e Present the Decorator Design Pattern
e Think about API
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Decorator

From the book:

e Dynamically attach additional responsibilities to an object

e Decorators provide a flexible alternative to subclassing for extending
functionality
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Decorator core
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Often mixed with inheritance
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Decorator

A decorator wraps a decoree

¢ |tis placed between the client and the decoree
e |t propagates or not messages to the decoree

Easier to understand when the Decorator is a subclass of Decoree
but not necessary (think duck typing)
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Decorator nesting

A decorator wraps an instance or decorated instance of the component
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Transparent to the client

e A client manipulates transparently decorated and undecorated
elements

e A client talks to the decorator which delegates to the decoree
(a leaf object or a another decorator)

e Strong Implication: decoree and decorator must expose the
same API
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Example of Stream

ZnStreams are decorators of Streams

ZnNewLineWriterStream
on: (ZnCharacterWriteStream on: Stdio stdout encoding: 'utf8').

e /nNewlineWriterStream decorates ZnCharacterWriteStream
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Another use

AbstractFileReference >> readStreamEncoded: anEncoding
A ZnCharacterReadStream

on: self binaryReadStream
encoding: anEncoding

e /nCharacterReadStream is decorating another stream with an encoding
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Implementation

WriteStream << #ZnNewLineWriterStream
slots: { #stream . #cr . #If . #previous . #lineEnding};
package: 'Zinc—Character-Encoding—Core'

ZnNewLineWriterStream class >> on: aStream
A self basicNew
initialize;
stream: aStream;
yourself

ZnNewLineWriterStream >> close
stream close

ZnNewLineWriterStream >> flush
A stream flush
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Example of Stream (l)

testNextPutEnsureLineEndsAreWrittenCorrectly

| expectedString stream crStream |
expectedString :='a’, OSPlatform current lineEnding, 'b'.
{ String cr. String If . String crlf } do: [ :lineEnd |
stream := String new writeStream.
crStream := ZnNewLineWriterStream on: stream.
crStream
<<'a;
<<lineEnd;
<<'h".
self assert: stream contents equals: expectedString |
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Example of Stream (Il)

ZnNewLineWriterStream >> nextPut: aCharacter
"Write aCharacter to the receivers stream.
Convert all line end combinations, i.e cr, If, crlf, to the platform convention"

(previous == cr and: [ aCharacter == If ]) ifFalse: [
(aCharacter ==cr or: [ aCharacter==1f])
ifTrue: [ self newLine ]
ifFalse: [ stream nextPut: aCharacter]].
previous := aCharacter.

» M4S6 13/18



Analysis

e All decorators should have the same API
e close, flush, nextPut:, contents, next, atEnd, on:

e Stream decorator individual behavior can be reused and
composed
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About dynamic behavior

Decorators attach additional responsibilities to an object

e The decorator is based on delegation
e We should control the creation of the decoration chain (the client reference)

e Strong Implication: decorated objects do not know if they are decorated
o Changing the decoration chain at runtime is not simple
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When not to use decorator

e When decorations have different APls
e When the decorations should change dynamically

e Think twice when the APIls are HUGE
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Conclusion

e Decorators can represent composable facets of an object
e Pay attention all the decorators should implement the same API
e Decorator is modular but within a common API
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