
Decorator Design Pattern
A composable alternative to subclassing

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org


Goals

 Present the Decorator Design Pattern
 Think about API

M4S6 2 / 18



Decorator

From the book:
 Dynamically attach additional responsibilities to an object
 Decorators provide a flexible alternative to subclassing for extending

functionality

M4S6 3 / 18



Decorator core

operation
Component

operation
Decorator

decoree

decoree operation
      

Client

operation
Decoree

M4S6 4 / 18



Often mixed with inheritance

operation
Component

operation
Decorator

decoree

decoree operation
      

Client

operation
Decoree

DecoreeBDecoreeA DecoratorA

M4S6 5 / 18



Decorator

A decorator wraps a decoree
 It is placed between the client and the decoree
 It propagates or not messages to the decoree

Easier to understand when the Decorator is a subclass of Decoree
but not necessary (think duck typing)

M4S6 6 / 18



Decorator nesting

A decorator wraps an instance or decorated instance of the component

operation
Component

operation
Decorator

decoree

decoree operation
      

Client

operation
Decoree

M4S6 7 / 18



Transparent to the client

 A client manipulates transparently decorated and undecorated
elements

 A client talks to the decorator which delegates to the decoree
(a leaf object or a another decorator)

 Strong Implication: decoree and decorator must expose the
same API

M4S6 8 / 18



Example of Stream

ZnStreams are decorators of Streams

ZnNewLineWriterStream
on: (ZnCharacterWriteStream on: Stdio stdout encoding: 'utf8').

 ZnNewLineWriterStream decorates ZnCharacterWriteStream

M4S6 9 / 18



Another use

AbstractFileReference >> readStreamEncoded: anEncoding

^ ZnCharacterReadStream
on: self binaryReadStream
encoding: anEncoding

 ZnCharacterReadStream is decorating another stream with an encoding

M4S6 10 / 18



Implementation
WriteStream << #ZnNewLineWriterStream
slots: { #stream . #cr . #lf . #previous . #lineEnding};
package: 'Zinc−Character−Encoding−Core'

ZnNewLineWriterStream class >> on: aStream
^ self basicNew
initialize;
stream: aStream;
yourself

ZnNewLineWriterStream >> close
stream close

ZnNewLineWriterStream >> flush
^ stream flush

M4S6 11 / 18



Example of Stream (I)

testNextPutEnsureLineEndsAreWrittenCorrectly

| expectedString stream crStream |
expectedString := 'a', OSPlatform current lineEnding, 'b'.
{ String cr . String lf . String crlf } do: [ :lineEnd |
stream := String new writeStream.
crStream := ZnNewLineWriterStream on: stream.
crStream
<< 'a';
<< lineEnd;
<< 'b'.
self assert: stream contents equals: expectedString ]

M4S6 12 / 18



Example of Stream (II)

ZnNewLineWriterStream >> nextPut: aCharacter
"Write aCharacter to the receivers stream.
Convert all line end combinations, i.e cr, lf, crlf, to the platform convention"

(previous == cr and: [ aCharacter == lf ]) ifFalse: [
(aCharacter == cr or: [ aCharacter == lf ])
ifTrue: [ self newLine ]
ifFalse: [ stream nextPut: aCharacter ] ].

previous := aCharacter.

M4S6 13 / 18



Analysis

 All decorators should have the same API
 close, flush, nextPut:, contents, next, atEnd, on:
 Stream decorator individual behavior can be reused and

composed

M4S6 14 / 18



About dynamic behavior

Decorators attach additional responsibilities to an object
 The decorator is based on delegation
 We should control the creation of the decoration chain (the client reference)
 Strong Implication: decorated objects do not know if they are decorated

◦ Changing the decoration chain at runtime is not simple

M4S6 15 / 18



When not to use decorator

 When decorations have different APIs
 When the decorations should change dynamically
 Think twice when the APIs are HUGE

M4S6 16 / 18



Conclusion

 Decorators can represent composable facets of an object
 Pay attention all the decorators should implement the same API
 Decorator is modular but within a common API

M4S6 17 / 18



Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

