
About state Design
Pattern

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals

 Motivating Example
 Representing Different States as Objects
 Operations and State Transitions are Encapsulated by each state
 Handling Instance State

M5-2 2 / 16

Analysing a case

 Imagine an automatic coffee machine.
 It has different states:

◦ Waiting for Order
◦ Waiting for Payment
◦ Making Coffee
◦ Coffee Ready

M5-2 3 / 16

Our States

Waiting for Order
(Idle State)start Waiting for Payment

(ToPay State)

Making Coffee
(Making State)

Coffee Ready
(DrinkReady State)

acceptOrder

PaytakeCoffee

coffeeDone

M5-2 4 / 16

Our Operations

Co�eeMachine >> acceptOrder: anOrder
Co�eeMachine >> howMuchIsIt
Co�eeMachine >> pay: someMoney
Co�eeMachine >> co�eeDone
Co�eeMachine >> takeCo�ee

M5-2 5 / 16

Our Operations

 The available operations depend on the current state
 We need to add a lot of conditional code

Co�eeMachine >> acceptOrder: anOrder
"Checking state every time..."
machineState = #idle ifFalse: [self error: 'Machine working...'].
"Changing state in each operation"
machineState := #toPay.
"... Do the magic to order a co�ee..."

M5-2 6 / 16

Repeated Pattern

Co�eeMachine >> howMuchIsIt
"Checking state every time..."
machineState = #toPay ifFalse: [self error: 'Invalid State'].

"Some operations do not change state"

^ ourPrice

M5-2 7 / 16

Proposed Idea
 Represent each state as an object
 We delegate the operations to the state

acceptOrder: onMachine:
IdleState

acceptOrder:
howMuchIsIt
pay: coffeeDone
takeCoffee

CoffeeMachine

howMuchIsIt:
pay: onMachine:

ToPayState

acceptOrder: onMachine:
howMuchIsIt:
pay: onMachine:
coffeeDone:
takeCoffee:

MachineState
<<abstract>>

machineState

coffeeDone:
WorkingState

takeCoffee:
DrinkReadyState

M5-2 8 / 16

Our new Operations (1/2)

Co�eeMachine >> acceptOrder: anOrder
^ machineState acceptOrder: anOrder onMachine: self

MachineState >> acceptOrder: anOrder onMachine: aMachine
^ self error: 'Invalid State'

IdleState >> acceptOrder: anOrder onMachine: aMachine
"The operation code"
aMachine doTheMagicToOrder: anOrder
"To the new State"
aMachine machineState: ToPayState new.

M5-2 9 / 16

Our new Operations (2/2)

Co�eeMachine >> howMuchIsIt
^ machineState howMuchIsIt: self

MachineState >> howMuchIsIt: aMachine
^ self error: 'Invalid State'

IdleState >> howMuchIsIt: aMachine
^ aMachine ourPrice

M5-2 10 / 16

Advantages

 Each state just implements its operations
 State transitions are implemented in each state
 Less conditional code
 Elegant solution when having many states

M5-2 11 / 16

Where to Put the instance state? (1/3)

 Instance State as:
◦ Selected coffee
◦ Price

 We can put the machine instance state in:
◦ The Machine Object
◦ In the State object

M5-2 12 / 16

Where to Put the instance state? (2/3)

 In the Machine Object:
◦ Useful if the internal state is the same for all the machine states
◦ We don’t need to copy on every state change
◦ Bad if each state has different instance variables

M5-2 13 / 16

Where to Put the instance state? (3/3)

 In the State Object:
◦ Useful if the internal state is different for all the machine states
◦ Each state object has direct access to the instance state, we don’t need

accessors
◦ Creating a state requires passing all instance variables that it stores

M5-2 14 / 16

Conclusion

State pattern:
 Is useful when we have an object with many states
 Encapsulates the operations and the state transitions
 Uses delegation instead of conditional code
 It is easy to add new states and operations
 It is a more complex solution, we need to trade off the new complexity vs

clarity/flexibility

M5-2 15 / 16

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

