Advanced Object-Oriented Design

About state Design
Pattern

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Phar®

http://www.pharo.org

x ifTrue:[

A self] K

http://www.pharo.org

Goals

Motivating Example

Representing Different States as Objects

Operations and State Transitions are Encapsulated by each state
Handling Instance State

3
ZiMs2 2/ 16

Analysing a case

¢ Imagine an automatic coffee machine.

e |t has different states:
Waiting for Order
Waiting for Payment
Making Coffee
Coffee Ready

e}

o O O

3
ZiMs2 3/16

Our States

Waiting for Order acceptOrder Waiting for Payment
@ o > (dle State) (ToPay State)
takeCoffee Pay
Coffee Ready coffeeDone Making Coffee
(DrinkReady State) (Making State)

$
ZiM52 4/16

Our Operations

CoffeeMachine >> acceptOrder: anOrder
CoffeeMachine >> howMuchilslt
CoffeeMachine >> pay: someMoney
CoffeeMachine >> coffeeDone
CoffeeMachine >> takeCoffee

A\\ 2

M5-2 5/16

Our Operations

e The available operations depend on the current state
e We need to add a lot of conditional code

CoffeeMachine >> acceptOrder: anOrder
"Checking state every time..."
machineState = #idle ifFalse: [self error: 'Machine working..."].
"Changing state in each operation"
machineState := #toPay.
"... Do the magic to order a coffee..."

3
ZiMs2 6/16

Repeated Pattern

CoffeeMachine >> howMuchlslt
"Checking state every time..."
machineState = #toPay ifFalse: [self error: 'Invalid State'].
"Some operations do not change state"

A ourPrice

3
ZiMs2 7/16

Proposed Idea

e Represent each state as an object
e \We delegate the operations to the state

CoffeeMachine

<<abstract>>

MachineState

acceptOrder: onMachine:

A\\ 2

M5-2 8/16

acceptOrder: machineState | howMuchlslt:
——p| .
howMuchislt pay: onMachine:
pay: coffeeDone coffeeDone:
takeCoffee takeCoffee:
IdleState ToPayState WorkingState DrinkReadyState
acceptOrder: onMachine: howMuchisIt: coffeeDone: takeCoffee:

pay: onMachine:

Our new Operations (1/2)

CoffeeMachine >> acceptOrder: anOrder
A machineState acceptOrder: anOrder onMachine: self

MachineState >> acceptOrder: anOrder onMachine: aMachine
A self error: 'Invalid State'

IdleState >> acceptOrder: anOrder onMachine: aMachine
"The operation code"
aMachine doTheMagicToOrder: anOrder
"To the new State"
aMachine machineState: ToPayState new.

A\

M5-2 9/16

Our new Operations (2/2)

CoffeeMachine >> howMuchilsl|t
A machineState howMuchlslt: self

MachineState >> howMuchlslt: aMachine
A self error: 'Invalid State'

IdleState >> howMuchlslt: aMachine
A aMachine ourPrice

$
ZiM52 10/ 16

Advantages

Each state just implements its operations

State transitions are implemented in each state
Less conditional code

Elegant solution when having many states

»” M5-2 11/16

Where to Put the instance state? (1/3)

e |nstance State as:
o Selected coffee
o Price
e We can put the machine instance state in:

o The Machine Object
o In the State object

3
2052 12/ 16

Where to Put the instance state? (2/3)

e In the Machine Obiject:
o Useful if the internal state is the same for all the machine states

o We don’t need to copy on every state change
o Bad if each state has different instance variables

3
ZiMs2 13/16

Where to Put the instance state? (3/3)

¢ |n the State Object:
o Useful if the internal state is different for all the machine states
o Each state object has direct access to the instance state, we don’t need

accessors
o Creating a state requires passing all instance variables that it stores

3
2052 14/ 16

Conclusion

State pattern:

e |s useful when we have an object with many states

e Encapsulates the operations and the state transitions
e Uses delegation instead of conditional code

e |tis easy to add new states and operations

e |tis a more complex solution, we need to trade off the new complexity vs
clarity/flexibility

»” M5-2 15/16

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

4
h s Inria VY
cea— LearningLab ook i g
©l0c0
BY NC ND

IMT-Université de Lille
Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

