
Avoid Null Checks

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals

 Understand the implication behind returning nil
 Analyze at provider side
 Object initialization avoids nil propagation
 Look at client side
 Null Object

M5S7 2 / 27

nil?

 Unique instance of the class UndefinedObject
 In Pharo, a real object, as anybody else
 Default value of uninitialized instance variables
 Still we should be careful when to use it

M5S7 3 / 27

Looking at provider side

 What is the impact of code generating nils?

M5S7 4 / 27

Example

Imagine an inferencer that looks for rules that correspond to a fact

| inf |
inf := Inferencer new.
inf
addRule: #sunny −> #'sunglasses';
addRule: #sunny −> #'solar cream';
addRule: #rainy −> #'umbrella'.

inf rulesForFact: #sunny
> { Rule(sunny − sunglasses) . Rule(sunny − solar cream) }

inf rulesForFact: #cloudy
> nil

M5S7 5 / 27

Example code

Inferencer >> rulesForFact: aFact
(self noRule: aFact) ifTrue: [^ nil]
^ self rulesAppliedTo: aFact

 Here rulesForFact: returns nil to indicate that there is no rules for a fact
 What are the consequences?

M5S7 6 / 27

Consequences!

 Returning nil (e.g., ifTrue: [^ nil]) forces EVERY client to check for nil:

(inferencer rulesForFact: 'a')
ifNotNil: [:rules | rules do: [:each | ...]

 Client code ends up full of nil checks (ifNil:, ifNotNil, isNil)

M5S7 7 / 27

Solution: Return polymorphic objects

When possible, return polymorphic objects:
 when returning a collection, return an empty one
 when returning a number, return 0

M5S7 8 / 27

Solution: Return polymorphic objects

Inferencer >> rulesForFact: aFact
(self noRule: aFact) ifTrue: [^ #()]
^ self rulesAppliedTo: aFact

Your clients can just iterate and manipulate the returned value

(inferencer rulesForFact: 'a') do: [:each | ...]

M5S7 9 / 27

About nil

Limit the propagation of nil
 Methods should not return nil
 Avoid storing nil in variable
 Initialize well your object instance variables!

M5S7 10 / 27

Initialize your object state

Remember by default instance variables are initialized
with nil
 This is developer responsibilities to produce

well-initialized objects
 Avoid nil checks by initializing your variables:

M5S7 11 / 27

Initialization example

The responsibility of an object is to correctly initialize its state

Archive >> initialize
super initialize.
members := OrderedCollection new

 When default values are not enough, provide a constructor method

M5S7 12 / 27

Sometimes you have to check...

 Sometimes you have to check some conditions before
doing an action

 When possible, you can turn the default case into an
object (a Null Object)

M5S7 13 / 27

An example calling for a Null Object

 Imagine a palette manipulates tools
 Palette has a selected tool

ToolPalette >> nextAction
self selectedTool
ifNotNil: [:tool | tool attachHandles]

ToolPalette >> previousAction
self selectedTool
ifNotNil: [:tool | tool detachHandles]

M5S7 14 / 27

Example

attachHandles
detachHandles

Creation

Tool

ToolPalette

…
 self selectedTool
 ifNotNil: [:tool | tool attachHandles
… attachHandles

detachHandles

NewNode

M5S7 15 / 27

Analysis

ToolPalette >> nextAction
self selectedTool
ifNotNil: [:tool | tool attachHandles]

Forced to check that there is a selected tool
 Why not having always one selected?
 Even one doing nothing?

M5S7 16 / 27

Solution: Apply NullObject Design Pattern

 A null object proposes a polymorphic API and
embeds default actions/values

 Woolf, Bobby (1998). "Null Object". In Pattern
Languages of Program Design 3. Addison-Wesley

 Read it!

M5S7 17 / 27

Solution: NoTool

Create a NoTool class whose behavior is to do nothing

AbstractTool << #NoTool

NoTool >> attachHandles
^ self

NoTool >> detachHandles
^ self

M5S7 18 / 27

Solution: Use NullObject

Initialize the ToolPalette with a NoTool instance.

ToolPalette >> initialize
self selectedTool: NoTool new

Not forced to use ifNil: tests anymore

ToolPalette >> nextAction
self selectedTool attachHandles

ToolPalette >> previousAction
self selectedTool detachHandles

M5S7 19 / 27

Solution: With initialization and NoTool

Tool

ToolPalette

…
 self selectedTool attachHandles
…

attachHandles
detachHandles

Creation
attachHandles
detachHandles

NewNode
attachHandles
detachHandles

NoTool

M5S7 20 / 27

NullObject pros

 Simplifies client code: real collaborators and null
objects offer the same API

 Encapsulates do nothing behavior
 Makes do nothing behavior reusable

M5S7 21 / 27

NullObject drawback

 Encapsulate null values: may be difficult to mix with
real objects

 A NullObject is not mutable into a real object
 All clients should agree on the same do-nothing

behavior

M5S7 22 / 27

Difficulty applying NullObject

Sometimes it is difficult to apply the NullObject
 Too large API
 Or would need too many NullObjects
 Unclear default "no behavior"

M5S7 23 / 27

null object vs. NullObject

Sometimes it is possible to get a specific instance initialized with null values
 NullTimeZone is instance of TimeZone but represents a null object
 Null values could be good default values: empty collections, zeros...

M5S7 24 / 27

For exceptional cases, use exceptions

For exceptional cases, replace nil by exceptions:
 avoid error codes because they require if in clients
 exceptions are handled in the correct layer
 i.e., by the client, or the client’s client, or ...

FileStream >> nextPutAll: aByteArray
canWrite ifFalse: [self cantWriteError].
...
FileStream >> cantWriteError
(CantWriteError file: file) signal

M5S7 25 / 27

Conclusion

 A message acts as a better if
 Avoid null checks, return polymorphic objects instead
 Initialize your variables
 If you can, create objects representing default behavior

M5S7 26 / 27

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

