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Goals

 Understand the implication behind returning nil
 Analyze at provider side
 Object initialization avoids nil propagation
 Look at client side
 Null Object
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nil?

 Unique instance of the class UndefinedObject
 In Pharo, a real object, as anybody else
 Default value of uninitialized instance variables
 Still we should be careful when to use it
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Looking at provider side

 What is the impact of code generating nils?
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Example

Imagine an inferencer that looks for rules that correspond to a fact

| inf |
inf := Inferencer new.
inf
addRule: #sunny −> #'sunglasses';
addRule: #sunny −> #'solar cream';
addRule: #rainy −> #'umbrella'.

inf rulesForFact: #sunny
> { Rule(sunny − sunglasses) . Rule(sunny − solar cream) }

inf rulesForFact: #cloudy
> nil
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Example code

Inferencer >> rulesForFact: aFact
(self noRule: aFact) ifTrue: [ ^ nil ]
^ self rulesAppliedTo: aFact

 Here rulesForFact: returns nil to indicate that there is no rules for a fact
 What are the consequences?
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Consequences!

 Returning nil (e.g., ifTrue: [ ^ nil ]) forces EVERY client to check for nil:

(inferencer rulesForFact: 'a')
ifNotNil: [ :rules | rules do: [ :each | ... ]

 Client code ends up full of nil checks (ifNil:, ifNotNil, isNil)

M5S7 7 / 27



Solution: Return polymorphic objects

When possible, return polymorphic objects:
 when returning a collection, return an empty one
 when returning a number, return 0
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Solution: Return polymorphic objects

Inferencer >> rulesForFact: aFact
(self noRule: aFact) ifTrue: [ ^ #() ]
^ self rulesAppliedTo: aFact

Your clients can just iterate and manipulate the returned value

(inferencer rulesForFact: 'a') do: [ :each | ... ]
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About nil

Limit the propagation of nil
 Methods should not return nil
 Avoid storing nil in variable
 Initialize well your object instance variables!
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Initialize your object state

Remember by default instance variables are initialized
with nil
 This is developer responsibilities to produce

well-initialized objects
 Avoid nil checks by initializing your variables:
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Initialization example

The responsibility of an object is to correctly initialize its state

Archive >> initialize
super initialize.
members := OrderedCollection new

 When default values are not enough, provide a constructor method
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Sometimes you have to check...

 Sometimes you have to check some conditions before
doing an action

 When possible, you can turn the default case into an
object (a Null Object)
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An example calling for a Null Object

 Imagine a palette manipulates tools
 Palette has a selected tool

ToolPalette >> nextAction
self selectedTool
ifNotNil: [ :tool | tool attachHandles ]

ToolPalette >> previousAction
self selectedTool
ifNotNil: [ :tool | tool detachHandles ]
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Example

attachHandles
detachHandles

Creation

 
Tool

 
ToolPalette

…
   self selectedTool
      ifNotNil: [ :tool | tool attachHandles 
… attachHandles

detachHandles

NewNode
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Analysis

ToolPalette >> nextAction
self selectedTool
ifNotNil: [ :tool | tool attachHandles ]

Forced to check that there is a selected tool
 Why not having always one selected?
 Even one doing nothing?
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Solution: Apply NullObject Design Pattern

 A null object proposes a polymorphic API and
embeds default actions/values

 Woolf, Bobby (1998). "Null Object". In Pattern
Languages of Program Design 3. Addison-Wesley

 Read it!
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Solution: NoTool

Create a NoTool class whose behavior is to do nothing

AbstractTool << #NoTool

NoTool >> attachHandles
^ self

NoTool >> detachHandles
^ self
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Solution: Use NullObject

Initialize the ToolPalette with a NoTool instance.

ToolPalette >> initialize
self selectedTool: NoTool new

Not forced to use ifNil: tests anymore

ToolPalette >> nextAction
self selectedTool attachHandles

ToolPalette >> previousAction
self selectedTool detachHandles
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Solution: With initialization and NoTool

 
Tool

 
ToolPalette

…
  self selectedTool attachHandles 
…

attachHandles
detachHandles
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detachHandles

NewNode
attachHandles
detachHandles

NoTool
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NullObject pros

 Simplifies client code: real collaborators and null
objects offer the same API

 Encapsulates do nothing behavior
 Makes do nothing behavior reusable
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NullObject drawback

 Encapsulate null values: may be difficult to mix with
real objects

 A NullObject is not mutable into a real object
 All clients should agree on the same do-nothing

behavior
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Difficulty applying NullObject

Sometimes it is difficult to apply the NullObject
 Too large API
 Or would need too many NullObjects
 Unclear default "no behavior"
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null object vs. NullObject

Sometimes it is possible to get a specific instance initialized with null values
 NullTimeZone is instance of TimeZone but represents a null object
 Null values could be good default values: empty collections, zeros...
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For exceptional cases, use exceptions

For exceptional cases, replace nil by exceptions:
 avoid error codes because they require if in clients
 exceptions are handled in the correct layer
 i.e., by the client, or the client’s client, or ...

FileStream >> nextPutAll: aByteArray
canWrite ifFalse: [ self cantWriteError ].
...
FileStream >> cantWriteError
(CantWriteError file: file) signal
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Conclusion

 A message acts as a better if
 Avoid null checks, return polymorphic objects instead
 Initialize your variables
 If you can, create objects representing default behavior
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