Advanced Object-Oriented Design

Shared Pools

Static sharing between hierarchies

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Phar®

http://www.pharo.org

x ifTrue:

\

[\
A self] “
—

http://www.pharo.org

Goals

¢ Revisit sharing
e Understand shared pools (SharedPools)

A question:

e Using shared variables, we can share values over multiple subclasses within the
same hierarchy.

e How can we share objects between different hierarchies?

» M8S3 2/15

Remember: Sharing within a hierarchy

A shared variable can be accessed from

e [nstance methods
e Class methods of the class defining it
e From its subclasses

Usually initialized from the class side of a root

5
BZ2igs3 3/ 15

Remember ComponentMask

A\

M8S3 4/ 15

privateBlue
"Private! Return the internal representation
of my blue component."

A rgb bitAnd: ComponentMask

Color Color class
rgb instanceOf
alpha initialize
ColorRegistry
ComponentMask
privateBlue initialize
ComponentMask := 1023.
HalfComponentMask := 512.

ComponentMax := 1023.0.

RedShift := 20.
GreenShift := 10.
BlueShift := 0.

RandomStream := Random new.
self initializelndexedColors.

self initializeColorRegistry.

self initializeGrayTolndexMap.

Need for sharing between different hierarchies

e Need to share values (generally constants) between multiple hierarchies:
o For example LF, CR, ... between the hierarchies of String and Text
e Don’t want to repeat the shared variables and their initialization

5
BZ2es3 5/ 15

SharedPools to the rescue

A SharedPool is a group of shared variables contains
e the shared pools definition
e the initialization of shared variables

Users (classes) just declare that they use a shared pool to access its shared
variables

%
» M8S3 6/ 15

A SharedPool definition

SharedPool << #ChronologyConstants
slots: {};
sharedVariables: { #NanosInSecond . #MonthNames . #SecondsinHour .
#SecondsInDay . #DayNames . #DaysInMonth . #HoursInDay . #NanosInMillisecond
. #SecondsInMinute . #SqueakEpoch . #MinutesinHour . #MicrosecondsinDay };
tag: 'Chronology";
package: 'Kernel'

A\

M8S3 7/15

A SharedPool initialization

ChronologyConstants class >> initialize

SqueakEpoch :=2415386. "Julian day number of 1 Jan 1901"

SecondsInDay := 86400.

MicrosecondsinDay := SecondsInDay * 1e6.

SecondsInHour := 3600.

SecondsInMinute := 60.

MinutesinHour := 60.

HourslnDay := 24.

NanosInSecond := 10 raisedTo: 9.

NanosInMillisecond := 10 raisedTo: 6.

DayNames := #(Sunday Monday Tuesday Wednesday Thursday Friday Saturday).

MonthNames := #(January February March April May June July
August September October November December).

DaysIinMonth :=#(31 283130313031 3130313031).

Shared pools are initialized at class load time.

$
Zligs3 s/ 15

SharedPool users

Magnitude << #DateAndTime
slots: { #seconds . #offset . #julianDayNumber . #nanos };
sharedVariables: { #ClockProvider . #LocalTimeZoneCache };
sharedPools: { ChronologyConstants };
package: 'Kernel'

DateAndTime

e defines some shared variables
e uses the shared pool ChronologyConstants

Zimss3 9/15

SharedPool’s sharedVariable access

A shared variable defined in a shared pool is accessed as if defined in the class
itself

DateAndTime >> secondsSinceMidnightLocalTime
A self localSeconds \\ SecondsIinDay

Duration class >> days: aNumber
A self seconds: aNumber * SecondsInDay nanoSeconds: 0

SecondsInDay is just accessed directly both from instance and class side

» M8S3 10/15

SharedPool users (2)

Timespan << #Week
slots: {};
sharedVariables: { #StartDay };
sharedPools: { ChronologyConstants };
package: 'Kernel-Chronology—Extras'

Week class >> indexOfDay: aSymbol
A DayNames indexOf: aSymbol

ZPigs3 11/15

Mixing shared variables and sharedPools

There is no problem mixing shared variables and shared pools

Timespan << #Week
sharedVariables: { #StartDay };
sharedPools: { ChronologyConstants };
package: 'Kernel-Chronology-Extras'

Week class >> startDay
A StartDay ifNil: [StartDay := DayNames first]

2
» M8S3 12/15

Warning! Only for constants

e Should only store constant objects in shared pools

e Else you are creating global variables and you are breaking testability in
isolation

2
B2 ies3 13/ 15

Conclusion

Shared pools are:

e Handy to share constants between multiple classes (potentially in different
inheritance trees)
e Handy to manage constants for bindings to C-libraries

e Only use them to share constants

2
» M8S3 14/15

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

4
h s Inria VY
cea— LearningLab ook i g
©l0c0
BY NC ND

IMT-Université de Lille
Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

