
Learning from a Sokoban
implementation

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals

 Think about model
 Think about messages and conditions

M9-5 2 / 27

Studying a Sokoban Implementation
Sokoban is a puzzle video game genre in which the player pushes crates or boxes
around in a warehouse, trying to get them to storage locations.
https://en.wikipedia.org/wiki/Sokoban

M9-5 3 / 27

https://en.wikipedia.org/wiki/Sokoban

Studying a Sokoban Implementation
 Developed by some students of I. Franko University (Lviv)
 Thank you so much!

M9-5 4 / 27

Looking the implemented core model

 Block
◦ EmptyBlock
◦ Wall

 GameModel
 GameState
 Maze
 MazeTemplate
 MoveResult

◦ Move
Push

◦ NoMove

M9-5 5 / 27

Let us "Speculate about Design"

 Apply Speculate about Design
object-oriented reengineering pattern

 Intent: Progressively refine a design against
source code by checking hypotheses about the
design against the source code

 Use your development expertise to conceive a
hypothetical class diagram representing the
design

M9-5 6 / 27

Take some minutes to sketch a list of classes

 ...
 ...
 ...

M9-5 7 / 27

A possible model

 Wall
 Floor
 Box
 Robot
 Target
 Board

And
 Template/Level
 Moves

M9-5 8 / 27

Let us go back to our case

 Block
◦ EmptyBlock
◦ Wall

 GameModel
 GameState
 Maze
 MazeTemplate
 MoveResult

◦ Move
Push

◦ NoMove

M9-5 9 / 27

Gut feeling analysis
 The implemented Block model looks too ’shallow’
 Remember classes

◦ are representing cases
◦ are the basis for dispatch

 Not enough classes leads to tricky conditionals and monolithic systems
 Remember the lectures Implementing not, or...

operation1
operation2

attribute1
attribute2

Fat Class
operation

A

operation
BB

operation
CC

operation
attribute2

B
operation

C

operation
attribute1

Root

operation
AA

M9-5 10 / 27

Let us check the class API

Classes define:
 isEmptyBlock
 isWall
 hasPlayer
 hasTarget
 hasBox

Let us check the way this API is used

M9-5 11 / 27

Too many ifs....
GameView >> drawBlock: aBlock on: aCanvas
aBlock isWall
ifTrue: [self drawWall: aCanvas]
ifFalse: [aBlock isEmptyBlock
ifTrue: [aBlock hasPlayer
ifTrue: [aBlock hasTarget
ifTrue: [self drawTargetAndPlayer: aCanvas]
ifFalse: [self drawPlayer: aCanvas]]

ifFalse: [aBlock hasBox
ifTrue: [aBlock hasTarget
ifTrue: [self drawTargetAndBox: aCanvas]
ifFalse: [self drawBox: aCanvas]]

ifFalse: [
aBlock hasTarget
ifTrue: [self drawTarget: aCanvas]
ifFalse: [self drawEmptyBlock: aCanvas]]]

M9-5 12 / 27

Analysis

The model only defines EmptyBlock and Wall
 No Player, no Target, no Box.
 Too much logic is put in EmptyBlock
 Too many questions, not enough Tell (Do not Ask, Tell)

M9-5 13 / 27

With a better model

 Tile
◦ Box
◦ BoxOnTarget
◦ EmptyBlock
◦ Player
◦ Wall

 We can send messages to the ’correct’ object
 We can tell and not ask!

M9-5 14 / 27

A first nicer solution

GameView >> drawBlock: aBlock on: aCanvas
aBlock isWall ifTrue: [self drawWall: aCanvas].
aBlock isEmptyBlock ifTrue: [
aBlock hasPlayer ifTrue: [...

Becomes

GameView >> drawBlock: aBlock on: aCanvas
aBlock drawOn: aCanvas

Wall >> drawOn: aCanvas
"Cairo code"

EmptyBlock >> drawOn: aCanvas
"Cairo code"

M9-5 15 / 27

A solution supporting multiple canvases

To supporting multiple rendering back-ends (morphic, Cairo...), drawing should not
be in the Block classes

M9-5 16 / 27

A solution supporting multiple canvases

GameView >> drawBlock: aBlock on: aCanvas
aBlock isWall ifTrue: [self drawWall: aCanvas].
aBlock isEmptyBlock ifTrue: [
aBlock hasPlayer ifTrue: [...

Becomes

GameView >> drawBlock: aBlock on: aCanvas
aBlock drawOn: aCanvas for: aView

Wall >> drawOn: aCanvas for: aView
aView drawWall: aCanvas

EmptyBlock >> drawOn: aCanvas for: aView
aView drawEmptyBlock: aCanvas

M9-5 17 / 27

Double dispatch

Each block tells the view how to draw it.

GameView >> drawBlock: aBlock on: aCanvas
aBlock drawOn: aCanvas view: self

Wall >> drawOn: aCanvas view: aView
aView drawWall: aCanvas

EmptyBlock >> drawOn: aCanvas view: aView
aView drawEmptyBlock: aCanvas

 It is double dispatch with more objects
 Sending messages is powerful
 Modular

M9-5 18 / 27

Intermezzo: Testing methods

Wall >> isWall
^ true

EmptyBlock >> isWall
^ false

 What do you think about it?

M9-5 19 / 27

Disguided kind testing method

Wall >> isWall
^ true

EmptyBlock >> isWall
^ false

and

GameView >> drawBlock: aBlock on: aCanvas
aBlock isWall ifTrue: [self drawWall: aCanvas]

is nearly the same as

GameView >> drawBlock: aBlock on: aCanvas
(aBlock isKindOf: Wall) ifTrue: [self drawWall: aCanvas].

M9-5 20 / 27

Back to the model

What are:
 MoveResult

◦ Move
Push

◦ NoMove
 Reification of player actions
 Good to record and replay

M9-5 21 / 27

Let us study the API

MoveResult >> isMove
^ false

MoveResult >> isPush
^ false

MoveResult >> isNoMove
...

 Again testing kind methods
 Testing kind methods are the same as x class = MoveResult

M9-5 22 / 27

Checking testing method use

GameState >> moveBy: aDirection
| move |
move := maze moveBy: aDirection.
move isMove ifTrue: [moves := moves + 1].
move isPush ifTrue: [
pushes := pushes + 1.
moves := moves + 1].
self addMove: move

M9-5 23 / 27

What is the problem?

...
move isMove ifTrue: [moves := moves + 1].
move isPush ifTrue: [
pushes := pushes + 1.
moves := moves + 1].
...

 How can we do it better?

M9-5 24 / 27

Do not ask, tell
GameState >> moveBy: aDirection
| move |
move := maze moveBy: aDirection.
move updateGameState: self.
self addMove: move

Move >> updateGameState: aGameState
aGameState incrementMoves

Push >> updateGameState: aGameState
super updateGameState: aGameState.
aGameState increasePushes

NoMove >> updateGameState: aGameState
self

M9-5 25 / 27

Conclusion

 Challenge classes
 Little class hierarchies are good
 Better many small classes than a big one
 Challenge kind testing methods
 Check their use
 Messages act as dispatcher

M9-5 26 / 27

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

