
Object-Oriented Implementation

of Numerical Methods

An Introduction with Smalltalk

Didier H. Besset
Maintained by Stéphane Ducasse and Serge Stinckwich

January 28, 2015

ii

This book is available as a free download from:
https://github.com/SquareBracketAssociates/NumericalMethods.

Copyright c© 2001, 2015 by Didier H. Besset.

The contents of this book are protected under Creative Commons Attribution-ShareAlike 3.0
Unported license.

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the re-
sulting work only under the same, similar or a compatible license.

• For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page: creativecommons.org/
licenses/by-sa/3.0/

• Any of the above conditions can be waived if you get permission from the copyright
holder.

• Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above.
This is a human-readable summary of the Legal Code (the full license):
creativecommons.org/licenses/by-sa/3.0/legalcode

Published by Square Bracket Associates, Switzerland.

First Edition, 2001

About this version

We would like to thank Didier Besset for his great book and for his gift of the
source and implementation to the community.

This is an abridged version of Didier’s book, without the Java implemen-
tation and reference; our goal is to make the book slimmer and easier to read.
The implementation presented in this book is part of the SciSmalltalk library.
Both versions of the book are now maintained under open-source terms and are
available at the following URLs:

• Abridged version (this book)
https://github.com/SquareBracketAssociates/NumericalMethods

• Archive of the original book, with code in both Java and Smalltalk
https://github.com/SquareBracketAssociates/ArchiveOONumericalMethods

• SciSmalltalk library https://github.com/SergeStinckwich/SciSmalltalk

Both this and the full version are maintained by Stéphane Ducasse and Serge
Stinckwich. Remember that we are all Charlie.

28 January 2015

iii

iv

Preface

Si je savais une chose utile à ma nation qui fût ruineuse à une autre,
je ne la proposerais pas à mon prince,

parce que je suis homme avant d’être Français,
parce que je suis nécessairement homme,

et que je ne suis Français que par hasard.1

Charles de Montesquieu

When I first encountered object-oriented programming I immediately be-
came highly enthusiastic about it, mainly because of my mathematical incli-
nation. After all I learned to use computers as a high-energy physicist. In
mathematics, a new, high order concept is always based on previously defined,
simpler, concepts. Once a property is demonstrated for a given concept it can
be applied to any new concept sharing the same premises as the original one.
In object-oriented language, this is called reuse and inheritance. Thus, numer-
ical algorithms using mathematical concepts that can be mapped directly into
objects.

This book is intended to be read by object-oriented programmers who need
to implement numerical methods in their applications. The algorithms exposed
here are mostly fundamental numerical algorithms with a few advanced ones.
The purpose of the book is to show that implementing these algorithms in an
object-oriented language is feasible and quite easily feasible. We expect readers
to be able to implement their own favorite numerical algorithm after seeing the
examples discussed in this book.

The scope of the book is limited. It is not a Bible about numerical al-
gorithms. Such Bible-like books already exist and are quoted throughout the
chapters. Instead I wanted to illustrate how mapping between mathematical
concepts and computer objects. I have limited the book to algorithms, which I
have implemented and used in real applications over 12 years of object-oriented
programming. Thus, the reader can be certain that the algorithms have been
tested in the field.

Because the intent of the book is showing numerical methods to object-
oriented programmers the code presented in commented in depth. Each algo-

1If I knew some trade useful to my country, but which would ruin another, I would not
disclose it to my ruler, because I am a man before being French, because I belong to mankind
while I am French only by a twist of fate.

v

vi

rithm is presented with the same organization. First the necessary equation are
introduced with short explanation. This book is not one about mathematics so
explanations are kept to a minimum. Then the general object-oriented architec-
ture of the algorithm is presented. Finally, this book intending to be a practical
one, the code implementation is exposed. First how to use it, for readers who
are just interested in using the algorithm. Then, the code implementation is
discussed and presented.

As far as possible each algorithm is presented with such example of use. I did
not want to build contrived examples. Instead I have used examples personally
encountered in my professional life. Some people may think that some examples
are coming from esoteric domains. This is not so. Each example has been
selected for its generality. The reader should study each example regardless of
the field of application and concentrate on the universal aspects of it.

Acknowledgements
The author wishes to express his thanks to the many people with whom he
had interactions about the object-oriented approach — Smalltalk and Java in
particular — on the various electronic forums. One special person is Kent Beck
whose controversial statements raised hell and started spirited discussions. I also
thank Kent for showing me tricks about the Refactoring Browser and eXtreme
Programming. I also would like to thank Eric Clayberg for pulling me out of a
ditch more than once and for making such fantastic Smalltalk tools.

A special mention goes to Prof. Donald Knuth for being an inspiration for
me and many other programmers with his series of books The Art of Computer
Programming, and for making this wonderful typesetting program TEX. This
present book was typeset with TEX and LATEX.

Furthermore, I would like to give credit to a few people without whom
this present book would never have been published. First, Joseph Pelrine who
persuaded me that what I was doing was worth sharing with the rest of the
object-oriented community.

The author expresses his most sincere thanks to the reviewers who toiled on
the early manuscripts of this book. Without their open-mindedness this book
would never made it to a publisher.

Special thanks go to David N. Smith for triggering interesting thoughts about
random number generators and to Dr. William Leo for checking the equations.

Finally my immense gratitude is due to Dr. Stéphane Ducasse of the Uni-
versity of Bern who checked the orthodoxy of the Smalltalk code and who did a
terrific job of rendering the early manuscript not only readable but entertaining.

Genolier, 11 April 2000

Contents

1 Introduction 1
1.1 Object-oriented paradigm and mathematical objects 2
1.2 Object-oriented concepts in a nutshell 3
1.3 Dealing with numerical data . 4

1.3.1 Floating point representation 4
1.3.2 Rounding errors . 6
1.3.3 Real example of rounding error 7
1.3.4 Outsmarting rounding errors 8
1.3.5 Wisdom from the past . 9

1.4 Finding the numerical precision of a computer 10
1.4.1 Computer numerical precision — General implementation 12
1.4.2 Computer numerical precision — Smalltalk implementation 12

1.5 Comparing floating point numbers 15
1.5.1 Comparing floating point numbers — Smalltalk code . . . 16
1.5.2 Comparing floating point numbers — Java code 17

1.6 Speed consideration (to be revisited) 17
1.6.1 Smalltalk particular . 18

1.7 Conventions . 18
1.7.1 Class diagrams . 19
1.7.2 Smalltalk code . 20

1.8 Road map . 21

2 Function evaluation 25
2.1 Function – Smalltalk implementation 26
2.2 Polynomials . 27

2.2.1 Mathematical definitions 27
2.2.2 Polynomial — Smalltalk implementation 29

2.3 Error function . 35
2.3.1 Mathematical definitions 36
2.3.2 Error function — Smalltalk implementation 37

2.4 Gamma function . 39
2.4.1 Mathematical definitions 40
2.4.2 Gamma function — Smalltalk implementation 41

2.5 Beta function . 44

vii

viii CONTENTS

2.5.1 Mathematical definitions 44
2.5.2 Beta function — Smalltalk implementation 44

3 Interpolation 45
3.1 General remarks . 46
3.2 Lagrange interpolation . 51

3.2.1 Lagrange interpolation — Smalltalk implementation . . . 52
3.3 Newton interpolation . 55

3.3.1 Newton interpolation — General implementation 55
3.3.2 Newton interpolation — Smalltalk implementation 56

3.4 Neville interpolation . 57
3.4.1 Neville interpolation — General implementation 58
3.4.2 Neville interpolation — Smalltalk implementation 59

3.5 Bulirsch-Stoer interpolation . 61
3.5.1 Bulirsch-Stoer interpolation — General implementation . 62
3.5.2 Bulirsch-Stoer interpolation — Smalltalk implementation 62

3.6 Cubic spline interpolation . 63
3.6.1 Cubic spline interpolation — General implementation . . 65
3.6.2 Cubic spline interpolation — Smalltalk implementation . 65

3.7 Which method to choose? . 68

4 Iterative algorithms 71
4.1 Successive approximations . 71

4.1.1 Iterative process — Smalltalk implementation 75
4.2 Evaluation with relative precision 79

4.2.1 Relative precision — Smalltalk implementation 80
4.3 Examples . 82

5 Finding the zero of a function 83
5.1 Introduction . 83
5.2 Finding the zeroes of a function — Bisection method 84

5.2.1 Bisection algorithm — General implementation 86
5.2.2 Bisection algorithm — Smalltalk implementation 86

5.3 Finding the zero of a function — Newton’s method 88
5.3.1 Newton’s method — Smalltalk implementation 89

5.4 Example of zero-finding — Roots of polynomials 92
5.4.1 Roots of polynomials — Smalltalk implementation 92

5.5 Which method to choose . 94

6 Integration of functions 95
6.1 Introduction . 95
6.2 General framework — Trapeze integration method 96

6.2.1 Trapeze integration — General implementation 99
6.2.2 Trapeze integration — Smalltalk implementation 99

6.3 Simpson integration algorithm 101
6.3.1 Simpson integration — General implementation 102

CONTENTS ix

6.3.2 Simpson integration — Smalltalk implementation 102
6.4 Romberg integration algorithm 103

6.4.1 Romberg integration — General implementation 104
6.4.2 Romberg integration — Smalltalk implementation 105

6.5 Evaluation of open integrals . 106
6.6 Which method to chose? . 107

6.6.1 Smalltalk comparison . 108

7 Series 109
7.1 Introduction . 109
7.2 Infinite series . 110

7.2.1 Infinite series — Smalltalk implementation 112
7.3 Continued fractions . 113

7.3.1 Continued fractions — Smalltalk implementation 114
7.4 Incomplete Gamma function . 115

7.4.1 Mathematical definitions 115
7.4.2 Incomplete Gamma function — Smalltalk implementation 117

7.5 Incomplete Beta function . 120
7.5.1 Mathematical definitions 120
7.5.2 Incomplete Beta function — Smalltalk implementation . . 121

8 Linear algebra 125
8.1 Vectors and matrices . 125

8.1.1 Vector and matrix — Smalltalk implementation 129
8.2 Linear equations . 139

8.2.1 Linear equations — General implementation 142
8.2.2 Linear equations — Smalltalk implementation 143

8.3 LUP decomposition . 146
8.3.1 LUP decomposition — General implementation 148
8.3.2 LUP decomposition — Smalltalk implementation 149

8.4 Computing the determinant of a matrix 153
8.4.1 Computing the determinant of matrix — General imple-

mentation . 154
8.4.2 Computing the determinant of matrix — Smalltalk im-

plementation . 154
8.4.3 Computing the determinant of matrix — Java implemen-

tation . 155
8.5 Matrix inversion . 155

8.5.1 Matrix inversion — Smalltalk implementation 158
8.5.2 Matrix inversion — Rounding problems 160

8.6 Matrix eigenvalues and eigenvectors of a non-symmetric matrix . 161
8.6.1 Finding the largest eigenvalue — General implementation 162
8.6.2 Finding the largest eigenvalue — Smalltalk implementation163

8.7 Matrix eigenvalues and eigenvectors of a symmetric matrix . . . 165
8.7.1 Jacobi’s algorithm — General implementation 169
8.7.2 Jacobi’s algorithm — Smalltalk implementation 170

x CONTENTS

9 Elements of statistics 175
9.1 Statistical moments . 175

9.1.1 Statistical moments — General implementation 178
9.1.2 Statistical moments — Smalltalk implementation 178

9.2 Robust implementation of statistical moments 180
9.2.1 Robust central moments — General implementation . . . 182
9.2.2 Robust central moments — Smalltalk implementation . . 182

9.3 Histograms . 186
9.3.1 Histograms — General implementation 187
9.3.2 Histograms — Smalltalk implementation 188

9.4 Random number generator . 197
9.4.1 Random number generator — Smalltalk implementation . 199

9.5 Probability distributions . 205
9.5.1 Probability distributions — General implementation . . . 207
9.5.2 Probability distributions — Smalltalk implementation . . 207

9.6 Normal distribution . 212
9.6.1 Normal distribution — Smalltalk implementation 212
9.6.2 Gamma distribution — Smalltalk implementation 215

9.7 Experimental distribution . 218
9.7.1 Experimental distribution — General implementation . . 219
9.7.2 Experimental distribution — Smalltalk implementation . 219

10 Statistical analysis 223
10.1 F -test and the Fisher-Snedecor distribution 224

10.1.1 Fisher-Snedecor distribution — Smalltalk implementation 226
10.2 t-test and the Student distribution 231

10.2.1 Student distribution — Smalltalk implementation 233
10.3 χ2-test and χ2 distribution . 238

10.3.1 χ2 distribution — Smalltalk implementation 240
10.3.2 Weighted point implementation 241

10.4 χ2-test on histograms . 244
10.4.1 χ2-test on histograms — Smalltalk implementation 245

10.5 Definition of estimation . 248
10.5.1 Maximum likelihood estimation 249
10.5.2 Least square estimation 249

10.6 Least square fit with linear dependence 251
10.7 Linear regression . 252

10.7.1 Linear regression — General implementation 253
10.7.2 Linear regression — Smalltalk implementation 254

10.8 Least square fit with polynomials 257
10.8.1 Polynomial least square fits — Smalltalk implementation 260

10.9 Least square fit with non-linear dependence 263
10.9.1 Non-linear fit — General implementation 264
10.9.2 Non-linear fit — Smalltalk implementation 266

10.10Maximum likelihood fit of a probability density function 270
10.10.1 Maximum likelihood fit — General implementation 273

CONTENTS xi

10.10.2 Maximum likelihood fit — Smalltalk implementation . . . 273

11 Optimization 277
11.1 Introduction . 278
11.2 Extended Newton algorithms . 280
11.3 Hill climbing algorithms . 281

11.3.1 Optimizing — General implementation 282
11.3.2 Common optimizing classes — Smalltalk implementation 282

11.4 Optimizing in one dimension . 288
11.4.1 Optimizing in one dimension — Smalltalk implementation 289

11.5 Bracketing the optimum in one dimension 291
11.5.1 Bracketing the optimum — Smalltalk implementation . . 292

11.6 Powell’s algorithm . 293
11.6.1 Powell’s algorithm — General implementation 294
11.6.2 Powell’s algorithm — Smalltalk implementation 295

11.7 Simplex algorithm . 297
11.7.1 Simplex algorithm — General implementation 299
11.7.2 Simplex algorithm — Smalltalk implementation 299

11.8 Genetic algorithm . 302
11.8.1 Genetic algorithm — General implementation 304
11.8.2 Genetic algorithm — Smalltalk implementation 307

11.9 Multiple strategy approach . 312
11.9.1 Multiple strategy approach — General implementation . . 312

12 Data mining 317
12.1 Data server . 318

12.1.1 Data server — Smalltalk implementation 319
12.2 Covariance and covariance matrix 321

12.2.1 Covariance matrix — General implementation 323
12.2.2 Covariance matrix — Smalltalk implementation 323

12.3 Multidimensional probability distribution 326
12.4 Covariance data reduction . 326
12.5 Mahalanobis distance . 327

12.5.1 Mahalanobis distance — General implementation 329
12.5.2 Mahalanobis distance — Smalltalk implementation 330

12.6 Cluster analysis . 332
12.6.1 Cluster analysis — General implementation 334
12.6.2 Cluster analysis — Smalltalk implementation 336

12.7 Covariance clusters . 340
12.7.1 Covariance clusters — General implementation 341

A Decimal floating-point simulation 343

B Smalltalk primer for Java programmers 347
B.1 Syntax in a nutshell . 347

B.1.1 Smalltalk expressions . 347

xii CONTENTS

B.1.2 Precedence . 348
B.1.3 Assignment, equality and identity 349

B.2 Class and methods . 349
B.2.1 Instance methods . 349
B.2.2 Class methods . 351
B.2.3 Block . 352

B.3 Iterator methods . 352
B.3.1 do: . 353
B.3.2 collect: . 353
B.3.3 inject:into: . 353

B.4 Double dispatching . 353
B.5 Multiple dispatching . 355

C Additional probability distributions 357
C.1 Beta distribution . 357

C.1.1 Beta distribution — Smalltalk implementation 357
C.2 Cauchy distribution . 361

C.2.1 Cauchy distribution — Smalltalk implementation 362
C.3 Exponential distribution . 364

C.3.1 Exponential distribution — Smalltalk implementation . . 364
C.4 Fisher-Tippett distribution . 367

C.4.1 Fisher-Tippett distribution — Smalltalk implementation . 368
C.5 Laplace distribution . 371

C.5.1 Laplace distribution — Smalltalk implementation 371
C.6 Log normal distribution . 374

C.6.1 Log normal distribution — Smalltalk implementation . . 374
C.7 Triangular distribution . 378

C.7.1 Triangular distribution — Smalltalk implementation . . . 378
C.8 Uniform distribution . 381

C.8.1 Uniform distribution — Smalltalk implementation 381
C.9 Weibull distribution . 384

C.9.1 Weibull distribution — Smalltalk implementation 385

D Accurate accumulation of expectation values 389
D.1 Accurate accumulation of central moments 389
D.2 Accurate accumulation of the covariance 391

List of Figures

1.1 Comparison of achieved precision 8

1.2 A typical class diagram . 19

1.3 Book road map . 22

2.1 Smalltalk classes related to functions 26

2.2 The error function and the normal distribution 36

3.1 Class diagram for the interpolation classes 46

3.2 Example of interpolation with the Lagrange interpolation poly-
nomial . 47

3.3 Comparison between Lagrange interpolation and interpolation
with a rational function . 48

3.4 Comparison of Lagrange interpolation and cubic spline 49

3.5 Example of misbehaving interpolation 50

4.1 Class diagram for iterative process classes 72

4.2 Successive approximation algorithm 72

4.3 Detailed algorithm for successive approximations 74

4.4 Methods for successive approximations 76

5.1 Class diagram for zero finding classes 84

5.2 The bisection algorithm . 85

5.3 Geometrical representation of Newton’s zero finding algorithm . 89

6.1 Class diagram of integration classes 96

6.2 Geometrical interpretation of the trapeze integration method . . 97

7.1 Smalltalk class diagram for infinite series and continued fractions 110

7.2 Java class diagram for infinite series and continued fractions . . . 111

7.3 The incomplete gamma function and the gamma distribution . . 116

7.4 The incomplete beta function and the beta distribution 120

8.1 Linear algebra classes . 126

8.2 Comparison of inversion time for non-symmetrical matrices . . . 157

xiii

xiv LIST OF FIGURES

9.1 Classes related to statistics . 176
9.2 A typical histogram . 186
9.3 Normal distribution for various values of the parameters 213

10.1 Classes related to estimation . 224
10.2 Fisher-Snedecor distribution for a few parameters 226
10.3 Student distribution for a few degrees of freedom 233
10.4 χ2 distribution for a few degrees of freedom 240
10.5 Example of polynomial fit . 258
10.6 Fit results for the fit of figure 10.5 259
10.7 Limitation of polynomial fits . 260
10.8 Example of a least square fit . 265
10.9 Example of a maximum likelihood fit 272

11.1 Smalltak classes used in optimization 278
11.2 Java classes used in optimization 279
11.3 Local and absolute optima . 279
11.4 Operations of the simplex algorithm 298
11.5 Mutation and crossover reproduction of chromosomes 303
11.6 General purpose genetic algorithm 304
11.7 Compared behavior of hill climbing and random based algorithms.313

12.1 Classes used in data mining . 318
12.2 Using the Mahalanobis distance to differentiate between good

and fake coins. 329
12.3 Example of cluster algorithm . 333

B.1 Triple dispatching . 354
B.2 Triple dispatching . 355

C.1 Many shapes of the beta distribution 359
C.2 Cauchy distribution for a few parameters 362
C.3 Exponential distribution for a few parameters 366
C.4 Fisher-Tippett distribution for a few parameters 369
C.5 Laplace distribution for a few parameters 373
C.6 Log normal distribution for a few parameters 376
C.7 Weibull distribution for a few parameters 385

List of Tables

1.1 Compared execution speed between C, Smalltalk and Java 17

3.1 Recommended polynomial interpolation algorithms 69

4.1 Algorithms using iterative processes 82

6.1 Comparison between integration algorithms 108

9.1 Public methods for probability density functions 207
9.2 Properties of the Normal distribution 212

10.1 Properties of the Fisher-Snedecor distribution 225
10.2 Covariance test of random number generator 227
10.3 Properties of the Student distribution 232
10.4 Properties of the χ2 distribution 239

11.1 Optimizing algorithms presented in this book 280

B.1 Sample Smalltalk messages with their Java equivalent 348
B.2 Smalltalk assignment and equalities 349

C.1 Properties of the beta distribution 358
C.2 Properties of the Cauchy distribution 361
C.3 Properties of the exponential distribution 365
C.4 Properties of the Fisher-Tippett distribution 368
C.5 Properties of the Laplace distribution 372
C.6 Properties of the log normal distribution 375
C.7 Properties of the triangular distribution 378
C.8 Properties of the uniform distribution 382
C.9 Properties of the Weibull distribution 384

xv

xvi LIST OF TABLES

Chapter 1

Introduction

Science sans conscience n’est que ruine de l’âme.1

François Rabelais

Teaching numerical methods was a major discipline of computer science at a
time computers were only used by a very small amount of professionals such as
physicists or operation research technicians. At that time most of the problems
solved with the help of a computer were of numerical nature, such as matrix
inversion or optimization of a function with many parameters.

With the advent of minicomputers, workstations and foremost, personal
computers, the scope of problems solved with a computer shifted from the realm
of numerical analysis to that of symbol manipulation. Recently, the main use
of a computer has been centered on office automation. Major applications are
word processors and database applications.

Today, computers are no longer working stand-alone. Instead they are shar-
ing information with other computers. Large databases are getting common-
place. The wealth of information stored in large databases tends to be ignored,
mainly because only few persons knows how to get access to it and an even fewer
number know how to extract useful information. Recently people have started
to tackle this problem under the buzzword data mining. In truth, data mining
is nothing else than good old numerical data analysis performed by high-energy
physicists with the help of computers. Of course a few new techniques are been
invented recently, but most of the field now consists of rediscovering algorithms
used in the past. This past goes back to the day Enrico Fermi used the ENIAC
to perform phase shift analysis to determine the nature of nuclear forces.

The interesting point, however, is that, with the advent of data mining,
numerical methods are back on the scene of information technologies.

1Science without consciousness just ruins the soul.

1

2 CHAPTER 1. INTRODUCTION

1.1 Object-oriented paradigm and mathemati-
cal objects

In the recent years object-oriented programming — OOP for short — has been
welcomed for its ability to represent objects from the real world - employees,
bank accounts, etc. - inside a computer. Herein resides the formidable lever-
age of object-oriented programming. It turns out that this way of looking at
OOP is somewhat overstated (as these lines are written). Objects manipulated
inside an object-oriented program certainly do not behave like their real world
counterparts. Computer objects are only models of those of the real world.
The UML user guides goes further in stating that a model is a simplification
of reality and we should emphasize that it is only that. OOP modeling is so
powerful, however, that people tend to forgot about it and only think in terms
of real world objects.

An area where the behavior of computer objects nearly reproduces that of
their real-world counterparts is mathematics. Mathematical objects are orga-
nized within hierarchies. For example, natural integers are included in integers
(signed integers), which are included in rational numbers, themselves included
in real numbers. Mathematical objects use polymorphism in that one operation
can be defined on several entities. For example, addition and multiplication are
defined for numbers, vectors, matrices, polynomials — as we shall see in this
book — and many other mathematical entities. Common properties can be
established as an abstract concept — a group e.g.— without the need to specify
a concrete implementation. Such concepts can then be used to prove a given
property for a concrete case. All this looks very similar to class hierarchies,
methods and inheritance.

Because of these similarities OOP offers the possibility to manipulate mathe-
matical objects in such a way that the boundary between real objects and their
computer models becomes almost non-existent. This is no surprise since the
structure of OOP objects is equivalent to that of mathematical objects2. When
dealing with numerical evaluations the equivalence between mathematical ob-
jects and computer objects is almost perfect. One notable difference remains,
however, namely the finite size of the representation for non-integer number in
a computer limiting the attainable precision. We shall address this important
topic in section 1.3.2.

Most numerical algorithms have been invented long before the wide spread
use of computers. Algorithms were designed to speed up human computation
and therefore were constructed as to minimize the number of operations to be
carried out by the human operator. Minimizing the number of operations is the
best thing to do to speed up code execution.

One of the most heralded benefits of object-oriented programming is code
reuse, a consequence, in principle, of the hierarchical structure and of inheri-
tance. The last statement is pondered by ”in principle” since, to date, code

2From the point of view of computer science OOP objects are considered as mathematical
objects.

1.2. OBJECT-ORIENTED CONCEPTS IN A NUTSHELL 3

reuse of real world objects is still far from being common place.
For all these reasons, this book tries to convince you that using object-

oriented programming for numerical evaluations can exploit the mathematical
definitions to maximize code reuse between many different algorithms. Such
a high degree of reuse yields very concise code. Not surprisingly, this code
is quite efficient and, most importantly, highly maintainable. Better than an
argumentation, we show how to implement some numerical algorithms selected
among those which we think are most useful for the areas where object-oriented
software is used primarily: finance, medicine and decision support.

1.2 Object-oriented concepts in a nutshell

First let us define what is covered by the adjective object-oriented. Many soft-
ware vendors are qualifying a piece of software object-oriented as soon as it
contains things called objects, even though the behavior of those objects has
little to do with object-orientation. For many programmers and most software
journalists any software system offering a user interface design tool on which
elements can be pasted on a window and linked to some events — even though
most of these events are being restricted to user interactions — can be called
object-oriented. There are several typical examples of such software, all of them
having the prefix Visual in their names3. Visual programming is something
entirely different from object-oriented programming.

Object-oriented is something different, not intrinsically linked with the user
interface. Recently, object-oriented techniques applied to user interfaces have
been widely exposed to the public, hence the confusion. There are 3 properties,
which are considered essential for object-oriented software:

1. data encapsulation,

2. class hierarchy and inheritance,

3. polymorphism.

Data encapsulation is the fact that each object hides its internal structure from
the rest of the system. Data encapsulation is in fact a misnomer since an object
usually chooses to expose some of its data. I prefer to use the expression hiding
the implementation, a more precise description of what is usually understood
by data encapsulation. Hiding the implementation is a crucial point because
an object, once fully tested, is guaranteed to work ever after. It ensures an
easy maintainability of applications because the internal implementation of an
object can be modified without impacting the application, as long as the public
methods are kept identical.

Class hierarchy and inheritance is the keystone implementation of any object-
oriented system. A class is a description of all properties of all objects of the

3This is not to say that all products bearing a name with the prefix Visual are not object-
oriented.

4 CHAPTER 1. INTRODUCTION

same type. These properties can be structural (static) or behavioral (dynamic).
Static properties are mostly described with instance variables. Dynamic proper-
ties are described by methods. Inheritance is the ability to derive the properties
of an object from those of another. The class of the object from which another
object is deriving its properties is called the superclass. A powerful technique
offered by class hierarchy and inheritance is the overloading of some of the
behavior of the superclass.

Polymorphism is the ability to manipulate objects from different classes,
not necessarily related by inheritance, through a common set of methods. To
take an example from this book, polynomials can have the same behavior than
signed integers with respect to arithmetic operations: addition, subtraction,
multiplication and division.

Most so-called object-oriented development tools (as opposed to languages)
usually fail the inheritance and polymorphism requirements.

The code implementation of the algorithms presented in this book is given in
two languages: Smalltalk and Java. Both languages are excellent object-oriented
languages. I would strongly recommend people reading this book to consult the
implementation sections of both languages regardless of their personal taste of
language. First, I have made some effort to use of the best feature of each
language. Second, each implementation has been made independently. The fact
that the code of each implementation is different shows that there is indeed
many ways to skin a cat, even when written by the same person. Thus, looking
seriously at both implementations can be quite instructive for someone who
wants to progress with the object-oriented paradigm.

1.3 Dealing with numerical data

The numerical methods exposed in this book are all applicable to real numbers.
As noted earlier the finite representation of numbers within a computer limits
the precision of numerical results, thereby causing a departure from the ideal
world of mathematics. This section discusses issues related to this limitation.

1.3.1 Floating point representation

Currently mankind is using the decimal system4. In this system, however, most
rational numbers and all irrational and transcendental numbers escape our way
of representation. Numbers such as 1/3 or π cannot be written in the decimal
system other than approximately. One can chose to add more digits to the right
of the decimal point to increase the precision of the representation. The true
value of the number, however, cannot be represented. Thus, in general, a real
number cannot be represented by a finite decimal representation. This kind

4This is of course quite fortuitous. Some civilizations have opted for a different base. The
Sumerians have used the base 60 and this habit has survived until now in our time units.
The Maya civilization was using the base 20. The reader interested in the history of numbers
ought to read the book of Georges Ifrah [Ifrah].

1.3. DEALING WITH NUMERICAL DATA 5

of limitation has nothing to do with the use of computers. To go around that
limitation, mathematicians have invented abstract representations of numbers,
which can be manipulated in regular computations. This includes irreducible
fractions (1/3 e.g.), irrational numbers (

√
2 e.g.), transcendental numbers (π

and e the base of natural logarithms e.g.) and normal5 infinities (−∞ and
+∞).

Like humans, computers are using a representation with a finite number of
digits, but the digits are restricted to 0 and 1. Otherwise number representation
in a computer can be compared to the way we represent numbers in writing.
Compared to humans computers have the notable difference that the number
of digits used to represent a number cannot be adjusted during a computation.
There is no such thing as adding a few more decimal digits to increase precision.
One should note that this is only an implementation choice. One could think
of designing a computer manipulating numbers with adjustable precision. Of
course, some protection should be built in to prevent a number, such as 1/3, to
expand ad infinitum. Probably, such a computer would be much slower. Using
digital representation — the word digital being taken in its first sense, that is,
a representation with digits — no matter how clever the implementation6, most
numbers will always escape the possibility of exact representation.

In present day computers, a floating-point number is represented as m× re
where the radix r is a fixed number, generally 2. On some machines, however,
the radix can be 10 or 16. Thus, each floating-point number is represented in
two parts7: an integral part called the mantissa m and an exponent e. This
way of doing is quite familiar to people using large quantities (astronomers e.g.)
or studying the microscopic world (microbiologists e.g.). Of course, the natural
radix for people is 10. For example, the average distance from earth to sun
expressed in kilometer is written as 1.4959787× 108.

In the case of radix 2, the number 18446744073709551616 is represented as
1× 264. Quite a short hand compared to the decimal notation! IEEE standard
floating-point numbers use 24 bits for the mantissa (about 8 decimal digits) in
single precision; they use 53 bits (about 15 decimal digits) in double precision.

One important property of floating-point number representation is that the
relative precision of the representation — that is the ratio between the precision
and the number itself — is the same for all numbers except, of course, for the
number 0.

5Since Cantor, mathematicians have learned that there are many kinds of infinities. See
for example reference [Gullberg].

6Symbolic manipulation programs do represent numbers as we do in mathematics. Such
programs are not yet suited for quick numerical computation, but research in this area is still
open.

7This is admittedly a simplification. In practice exponents of floating point numbers are
offset to allow negative exponents. This does not change the point being made in this section,
however.

6 CHAPTER 1. INTRODUCTION

1.3.2 Rounding errors

To investigate the problem of rounding let us use our own decimal system lim-
iting ourselves to 15 digits and an exponent. In this system, the number 264 is
now written as 184467440737095 × 105. Let us now perform some elementary
arithmetic operations.

First of all, many people are aware of problems occurring with addition or
subtraction. Indeed we have:

184467440737095× 105 + 300 = 184467440737095× 105.

More generally, adding or subtracting to 264 any number smaller than 100000 is
simply ignored by our representation. This is called a rounding error. This kind
of rounding errors have the non-trivial consequence of breaking the associative
law of addition. For example,(

1× 264 + 1× 216
)

+ 1× 232 = 184467440780044× 105,

whereas

1× 264 +
(
1× 216 + 1× 232

)
= 184467440780045× 105.

In the two last expressions, the operation within the parentheses is performed
first and rounded to the precision of our representation, as this is done within
the floating point arithmetic unit of a microprocessor8.

Other type of rounding errors may also occur with factors. Translating the
calculation 1× 264 ÷ 1× 216 = 1× 248 into our representation yields:

184467440737095× 105 ÷ 65536 = 2814744976710655.

The result is just off by one since 248 = 2814744976710656. This seems not to
be a big deal since the relative error — that is the ratio between the error and
the result — is about 3.6× 10−16%.

Computing 1× 248− 1× 264÷ 1× 216, however, yields −1 instead of 0. This
time the relative error is 100% or infinite depending of what reference is taken to
compute the relative error. Now, imagine that this last expression was used in
finding the real (as opposed to complex) solutions of the second order equation:

2−16x2 + 225x+ 264 = 0.

The solutions to that equation are:

x =
−224 ±

√
248 − 264 × 2−16

2−16
.

8In modern days microprocessor, a floating point arithmetic unit actually uses more digits
than the representation. These extra digits are called guard digits. Such difference is not
relevant for our example.

1.3. DEALING WITH NUMERICAL DATA 7

Here, the rounding error prevents the square root from being evaluated since√
−1 cannot be represented as a floating point number. Thus, it has the devas-

tating effect of transforming a result into something, which cannot be computed
at all.

This simplistic example shows that rounding errors, however harmless they
might seem, can have quite severe consequences. An interested reader can re-
produce these results using the Smalltalk class described in appendix A.

In addition to rounding errors of the kind illustrated so far, rounding errors
propagate in the computation. Study of error propagation is a wide area going
out of the scope of this book. This section was only meant as a reminder that
numerical results coming out from a computer must always be taken with a gain
of salt. This only good advice to give at this point is to try the algorithm out
and compare the changes caused by small variations of the inputs over their
expected range. There is no shame in trying things out and you will avoid the
ridicule of someone proving that your results are non-sense.

The interested reader will find a wealth of information about floating number
representations and their limitations in the book of Knuth [Knudth 2]. The
excellent article by David Goldberg — What every computer scientist should
know about floating point arithmetic, published in the March 1991 issues of
Computing Surveys — is recommend for a quick, but in-depth, survey. This
article can be obtained from various WEB sites. Let us conclude this section
with a quotation from Donald E. Knuth [Knudth 2].

Floating point arithmetic is by nature inexact, and it is not difficult
to misuse it so that the computed answers consist almost entirely
of ”noise”. One of the principal problems of numerical analysis is
to determine how accurate the results of certain numerical methods
will be.

1.3.3 Real example of rounding error

To illustrate how rounding errors propagate, let us work our way through an
example. Let us consider a numerical problem whose solution is known, that is,
the solution can be computed exactly.

This numerical problem has one parameter, which measures the complexity
of the data. Moreover data can be of two types: general data or special data.
Special data have some symmetry properties, which can be exploited by the
algorithm. Let us now consider two algorithms A and B able to solve the
problem. In general algorithm B is faster than algorithm A.

The precision of each algorithm is determined by computing the deviation
of the solution given by the algorithm with the value known theoretically. The
precision has been determined for each set of data and for several values of the
parameter measuring the complexity of the data.

Figure 1.1 shows the results. The parameter measuring the complexity is
laid on the x-axis using a logarithmic scale. The precision is expressed as the
negative of the decimal logarithm of the deviation from the known solution. The

8 CHAPTER 1. INTRODUCTION

Figure 1.1: Comparison of achieved precision

higher the value the better is the precision. The precision of the floating-point
numbers on the machine used in this study corresponds roughly to 16 on the
scale of Figure 1.1.

The first observation does not come as a surprise: the precision of each al-
gorithm degrades as the complexity of the problem increases. One can see that
when the algorithms can exploit the symmetry properties of the data the preci-
sion is better (curves for special data) than for general data. In this case the two
algorithms are performing with essentially the same precision. Thus, one can
chose the faster algorithm, namely algorithm B. For the general data, however,
algorithm B has poorer and poorer precision as the complexity increases. For
complexity larger than 50 algorithm B becomes totally unreliable, to the point
of becoming a perfect illustration of Knuth’s quotation above. Thus, for general
data, one has no choice but to use algorithm A.

Readers who do not like mysteries can go read section 8.5.2 where these
algorithms are discussed.

1.3.4 Outsmarting rounding errors

In some instances rounding errors can be significantly reduced if one spends
some time reconsidering how to compute the final solution. In this section we
like to show an example of such thinking.

Consider the following second order equation, which must be solved when
looking for the eigenvalues of a symmetric matrix (c.f. section 8.7):

t2 + 2αt− 1 = 0. (1.1)

Without restricting the generality of the argumentation, we shall assume that

1.3. DEALING WITH NUMERICAL DATA 9

α is positive. the problem is to find the the root of equation 1.1 having the
smallest absolute value. You, reader, should have the answer somewhere in one
corner of your brain, left over from high school mathematics:

tmin =
√
α2 + 1− α. (1.2)

Let us now assume that α is very large, so large that adding 1 to α2 cannot
be noticed within the machine precision. Then, the smallest of the solutions of
equation 1.1 becomes tmin ≈ 0, which is of course not true: the left hand side
of equation 1.1 evaluates to −1.
Let us now rewrite equation 1.1 for the variable x = 1/t. This gives the following
equation:

x2 − 2αx− 1 = 0. (1.3)

The smallest of the two solutions of equation 1.1 is the largest of the two solu-
tions of equation 1.3. That is:

tmin =
1

xmax
=

1√
α2 + 1 + α

. (1.4)

Now we have for large α:

tmin ≈
1

2α
. (1.5)

This solution has certainly some rounding errors, but much less than the solution
of equation 1.2: the left hand side of equation 1.1 evaluates to 1

4α2 , which goes
toward zero for large α, as it should be.

1.3.5 Wisdom from the past

To close the subject of rounding errors, I would like to give the reader a different
perspective. There is a big difference between a full control of rounding errors
and giving a result with high precision. Granted, high precision computation
is required to minimize rounding errors. On the other hand, one only needs to
keep the rounding errors under control to a level up to the precision required
for the final results. There is no need to determine a result with non-sensical
precision.

To illustrate the point, I am going to use a very old mathematical problem:
the determination of the number π. The story is taken from the excellent book
of Jan Gullberg, Mathematics From the Birth of the Numbers [Gullberg].

Around 300BC, Archimedes devised a simple algorithm to approximate π.
For a circle of diameter d, one computes the perimeter pin of a n-sided regular
polygon inscribed within the circle and the perimeter pout of a n-sided regular
polygon whose sides the tangent to the same circle. We have:

pin

d
< π <

pout

d
. (1.6)

By increasing n, one can improve the precision of the determination of π. During
the Antiquity and the Middle Age, the computation of the perimeters was a

10 CHAPTER 1. INTRODUCTION

formidable task and an informal competition took place to find who could find
the most precise approximation of the number π. In 1424, Jamshid Masud
al-Kashi, a persian scientist, published an approximation of π with 16 decimal
digits. The number of sides of the polygons was 3 × 28. This was quite an
achievement, the last of its kind. After that, mathematicians discovered other
means of expressing the number π.

In my eyes, however, Jamshid Masud al-Kashi deserves fame and admiration
for the note added to his publication that places his result in perspective. He
noted that the precision of his determination of the number π was such that,

the error in computing the perimeter of a circle with a radius 600000
times that of earth would be less than the thickness of a horses hair.

The reader should know that the thickness of a horses hair was a legal unit
of measure in ancient Persia corresponding to roughly 0.7 mm. Using present-
day knowledge of astronomy, the radius of the circle corresponding to the error
quoted by Jamshid Masud al-Kashi is 147 times the distance between the sun
and the earth, or about 3 times the radius of the orbit of Pluto, the most distant
planet of the solar system.

As Jan Gullberg notes in his book, al-Kashi evidently had a good under-
standing of the meaninglessness of long chains of decimals. When dealing with
numerical precision, you should ask yourself the following question:

Do I really need to know the length of Pluto’s orbit to a third of the
thickness of a horses hair?

1.4 Finding the numerical precision of a com-
puter

Object-oriented languages such as Smalltalk and Java give the opportunity to
develop an application on one hardware platform and to deploy the application
on other platforms running on different operating systems and hardware. It is a
well-known fact that the marketing about Java was centered about the concept
of Write Once Run Anywhere. What fewer people know is that this concept
already existed for Smalltalk 10 years before the advent of Java.

Some numerical algorithms are carried until the estimated precision of the
result becomes smaller than a given value, called the desired precision. Since
an application can be executing on different hardware, the desired precision is
best determined at run time.

The book of Press et al. [Press et al.] shows a clever code determining all
the parameters of the floating-point representation of a particular computer. In
this book we shall concentrate only on the parameters which are relevant for
numerical computations. These parameters correspond to the instance variables
of the object responsible to compute them. They are the following:

radix the radix of the floating-point representation, that is r.

1.4. FINDING THE NUMERICAL PRECISION OF A COMPUTER 11

machinePrecision the largest positive number which, when added to 1 yields
1.

negativeMachinePrecision the largest positive number which, when subtracted
from 1 yields 1.

smallestNumber the smallest positive number different from 0.

largestNumber the largest positive number which can be represented in the
machine.

defaultNumericalPrecision the relative precision, which can be expected for
a general numerical computation.

smallNumber a number, which can be added to some value without noticeably
changing the result of the computation.

Computing the radix r is done in two steps. First one computes a number
equivalent of the machine precision (c.f. next paragraph) assuming the radix
is 2. Then, one keeps adding 1 to this number until the result changes. The
number of added ones is the radix.

The machine precision is computed by finding the largest integer n such
that: (

1 + r−n
)
− 1 6= 0 (1.7)

This is done with a loop over n. The quantity ε+ = r−(n+1) is the machine
precision.

The negative machine precision is computed by finding the largest integer n
such that: (

1− r−n
)
− 1 6= 0 (1.8)

Computation is made as for the machine precision. The quantity ε− = r−(n+1)

is the negative machine precision. If the floating-point representation uses two-
complement to represent negative numbers the machine precision is larger than
the negative machine precision.

To compute the smallest and largest number one first compute a number
whose mantissa is full. Such a number is obtained by building the expression
f = 1− r × ε−. The smallest number is then computed by repeatedly dividing
this value by the radix until the result produces an underflow. The last value
obtained before an underflow occurs is the smallest number. Similarly, the
largest number is computed by repeatedly multiplying the value f until an
overflow occurs. The last value obtained before an overflow occurs is the largest
number.

The variable defaultNumericalPrecision contains an estimate of the pre-
cision expected for a general numerical computation. For example, one should
consider that two numbers a and b are equal if the relative difference between
them is less than the default numerical machine precision. This value of the
default numerical machine precision has been defined as the square root of the
machine precision.

12 CHAPTER 1. INTRODUCTION

The variable smallNumber contains a value, which can be added to some
number without noticeably changing the result of the computation. In general
an expression of the type 0

0 is undefined. In some particular case, however, one

can define a value based on a limit. For example, the expression sin x
x is equal

to 1 for x = 0. For algorithms, where such an undefined expression can occur9,
adding a small number to the numerator and the denominator can avoid the
division by zero exception and can obtain the correct value. This value of the
small number has been defined as the square root of the smallest number that
can be represented on the machine.

1.4.1 Computer numerical precision — General implemen-
tation

The computation of the parameters only needs to be executed once. We have
introduced a specific class to hold the variables described earlier and made them
available to any object.

Each parameter is computed using lazy initialization within the method
bearing the same name as the parameter. Lazy initialization is used while all
parameters may not be needed at a given time. Methods in charge of computing
the parameters are all prefixed with the word compute.

1.4.2 Computer numerical precision — Smalltalk imple-
mentation

Listing 1.1 shows the class DhbFloatingPointMachine responsible of computing
the parameters of the floating-point representation. This class is implemented
as a singleton class because the parameters need to be computed once only. For
that reason no code optimization was made and priority is given to readability.
The computation of the smallest and largest numbers uses exceptions10 to detect
the underflow and the overflow.
The method showParameters can be used to print the values of the parameters
onto the Transcript window.

Listing 1.1 Smalltalk code to find the machine precision

Class DhbFloatingPointMachine
Subclass of Object

Instance variable names: defaultNumericalPrecision radix machinePrecision

negativeMachinePrecision smallestNumber largestNumber

smallNumber largestExponentArgument

Class variable names: UniqueInstance

9Of course, after making sure that the ratio is well defined numerically.
10The code is using the implementation of Visual Age For Smalltalk .

1.4. FINDING THE NUMERICAL PRECISION OF A COMPUTER 13

Class methods

new

UniqueInstance = nil

ifTrue: [UniqueInstance := super new].

^ UniqueInstance

reset

UniqueInstance := nil.

Instance methods

computeLargestNumber

| zero one floatingRadix fullMantissaNumber |

zero := 0 asFloat.

one := 1 asFloat.

floatingRadix := self radix asFloat.

fullMantissaNumber := one - (floatingRadix * self negativeMachinePrecision).

largestNumber := fullMantissaNumber.

[[fullMantissaNumber := fullMantissaNumber * floatingRadix.

largestNumber := fullMantissaNumber.

true] whileTrue: [].

] when: ExAll do: [:signal | signal exitWith: nil].

computeMachinePrecision

| one zero a b inverseRadix tmp x |

one := 1 asFloat.

zero := 0 asFloat.

inverseRadix := one / self radix asFloat.

machinePrecision := one.

[tmp := one + machinePrecision.

tmp - one = zero]

whileFalse:[machinePrecision := machinePrecision * inverseRadix].

computeNegativeMachinePrecision

| one zero floatingRadix inverseRadix tmp |

one := 1 asFloat.

zero := 0 asFloat.

floatingRadix := self radix asFloat.

inverseRadix := one / floatingRadix.

negativeMachinePrecision := one.

[tmp := one - negativeMachinePrecision.

tmp - one = zero]

whileFalse: [negativeMachinePrecision :=

negativeMachinePrecision * inverseRadix].

14 CHAPTER 1. INTRODUCTION

computeRadix

| one zero a b tmp1 tmp2 |

one := 1 asFloat.

zero := 0 asFloat.

a := one.

[a := a + a.

tmp1 := a + one.

tmp2 := tmp1 - a.

tmp2 - one = zero] whileTrue: [].

b := one.

[b := b + b.

tmp1 := a + b.

radix := (tmp1 - a) truncated.

radix = 0] whileTrue: [].

computeSmallestNumber

| zero one floatingRadix inverseRadix fullMantissaNumber |

zero := 0 asFloat.

one := 1 asFloat.

floatingRadix := self radix asFloat.

inverseRadix := one / floatingRadix.

fullMantissaNumber := one - (floatingRadix * self negativeMachinePrecision).

smallestNumber := fullMantissaNumber.

[[fullMantissaNumber := fullMantissaNumber * inverseRadix.

smallestNumber := fullMantissaNumber.

true] whileTrue: [].

] when: ExAll do: [:signal | signal exitWith: nil].

defaultNumericalPrecision

defaultNumericalPrecision isNil

ifTrue: [defaultNumericalPrecision := self machinePrecision sqrt].

^defaultNumericalPrecision

largestExponentArgument

largestExponentArgument isNil

ifTrue: [largestExponentArgument := self largestNumber ln].

^largestExponentArgument

largestNumber

largestNumber isNil

ifTrue: [self computeLargestNumber].

^largestNumber

machinePrecision

1.5. COMPARING FLOATING POINT NUMBERS 15

machinePrecision isNil

ifTrue: [self computeMachinePrecision].

^machinePrecision

negativeMachinePrecision

negativeMachinePrecision isNil

ifTrue: [self computeNegativeMachinePrecision].

^negativeMachinePrecision

radix

radix isNil

ifTrue: [self computeRadix].

^radix

showParameters

Transcript cr; cr;

nextPutAll: ’Floating-point machine parameters’; cr;

nextPutAll: ’---------------------------------’;cr;

nextPutAll: ’Radix: ’.

self radix printOn: Transcript.

Transcript cr; nextPutAll: ’Machine precision: ’.

self machinePrecision printOn: Transcript.

Transcript cr; nextPutAll: ’Negative machine precision: ’.

self negativeMachinePrecision printOn: Transcript.

Transcript cr; nextPutAll: ’Smallest number: ’.

self smallestNumber printOn: Transcript.

Transcript cr; nextPutAll: ’Largest number: ’.

self largestNumber printOn: Transcript.

smallestNumber

smallestNumber isNil

ifTrue: [self computeSmallestNumber].

^smallestNumber

smallNumber

smallNumber isNil

ifTrue: [smallNumber := self smallestNumber sqrt].

^smallNumber

1.5 Comparing floating point numbers

It is very surprising to see how frequently questions about the lack of equality
between two floating-point numbers are posted on the Smalltalk and Java elec-
tronic discussion groups. As we have seen in section 1.3.2 one should always

16 CHAPTER 1. INTRODUCTION

expect the result of two different computations that should have yielded the
same number from a mathematical standpoint to be different using a finite nu-
merical representation. Somehow the computer courses are not giving enough
emphasis about floating-point numbers.

So, how should you check the equality of two floating-point numbers?
The practical answer is: thou shalt not!

As you will see, the algorithms in this book only compare numbers, but never
check for equality. If you cannot escape the need for a test of equality, however,
the best solution is to create methods to do this. Since the floating-point rep-
resentation is keeping a constant relative precision, comparison must be made
using relative error. Let a and b be the two numbers to be compared. One
should build the following expression:

ε =
|a− b|

max (|a| , |b|)
(1.9)

The two numbers can be considered equal if ε is smaller than a given number
εmax. If the denominator of the fraction on equation 1.9 is less than εmax, than
the two numbers can be considered as being equal. For lack of information on
how the numbers a and b have been obtained, one uses for εmax the default
numerical precision defined in section 1.4. If one can determine the precision of
each number, then the method relativelyEqual can be used.

1.5.1 Comparing floating point numbers — Smalltalk code

In Smalltalk this means adding a new method to the class Number as shown in
Listing 1.2.

Listing 1.2 Comparison of floating point numbers in Smalltalk

Class Number
Subclass of Magnitude

Instance methods

equalsTo: aNumber

^self relativelyEqualsTo: aNumber

upTo: DhbFloatingPointMachine new defaultNumericalPrecision

relativelyEqualsTo: aNumber upTo: aSmallNumber

| norm |

norm := self abs max: aNumber abs.

^ norm <= DhbFloatingPointMachine new defaultNumericalPrecision

or: [(self - aNumber) abs < (aSmallNumber * norm)]

1.6. SPEED CONSIDERATION (TO BE REVISITED) 17

1.5.2 Comparing floating point numbers — Java code

In Java the methods have been added to the class DhbMath. The code of that
class is shown in listing ??.

1.6 Speed consideration (to be revisited)

Some people may think that implementing numerical methods for object-oriented
languages such as Smalltalk or Java is just a waste of time. Those languages
are notoriously slow or so they think.

First of all, things should be put in perspective with other actions performed
by the computer. If a computation does not take longer than the time needed
to refresh a screen, it does not really matter if the application is interactive. For
example, performing a least square fit to a histogram in Smalltalk and Java and
drawing the resulting fitted function is usually hardly perceptible to the eye on
a personal computer using a 200MHz Pentium. Thus, even though a C version
runs 10 times faster, it does not make any difference for the end user. The main
difference comes, however, when you need to modify the code. Object-oriented
software is well known for its maintainability. As 80% of the code development
is spent in maintenance this aspect should first be considered.

Table 1.1 shows measured speed of execution for some of the algorithms
exposed in this book. Timing was done on a personal computer equipped with
a Pentium II clocked at 200MHz and running Windows NT workstation 4.0. The
C code used is the code of [Press et al.] compiled with the C compiler Visual
C++ 4.0 from Microsoft Corporation. The time needed to allocate memory for
intermediate results was included in the measurement of the C code, otherwise
the comparison with object-oriented code would not be fair. The Smalltalk code
was run under version 4.0 of Visual Age for Smalltalk from IBM Corporation
using the ENVY benchmark tool provided. The Java code was run under version
2.0 of Visual Age for Java from IBM Corporation. Elapsed time were measured
by repeating the measured evaluation a sufficient number of time so that the
error caused by the CPU clock is less that the last digit shown in the final result.

Table 1.1: Compared execution speed between C, Smalltalk and Java

Operation Units C Smalltalk Java
Polynomial 10th degree msec. 1.1 27.7 9.0
Neville interpolation (20 points) msec. 0.9 11.0 0.8
LUP matrix inversion (100× 100) sec. 3.9 22.9 1.0

One can see that object-oriented code is quite efficient, especially when it
comes to complex algorithms: good object-oriented code can actually beat up
C code.

My early tests with Java, a couple of years ago, were showing that Java was
5-10 times slower than C. One can see that vendors did a great job in optimizing

18 CHAPTER 1. INTRODUCTION

the generated code and in accelerating the virtual machine. I would like to see
the same efforts going in optimizing Smalltalk. The spectacular improvement
of Java shows that it is possible. Actually, my early tests made with Visual
Smalltalk from Digitalk Inc.11 were 5 times better.

Today admittedly, I would not use Smalltalk to build a structural analysis
program, but Java would certainly be a contender. Nevertheless, I have success-
fully build data mining Smalltalk applications using all the code12 presented
in this book. These applications were not perceived as slow by the end user
since most of the computer time was spent drawing the data.

1.6.1 Smalltalk particular

Smalltalk has an interesting property: a division between two integers is by
default kept as a fraction. This prevents rounding errors. For example, the
multiplication of a matrix of integer numbers with its inverse always yields an
exact identity matrix. (c.f. section 8.3 for definitions of these terms).

There is, however, a price to pay for the perfection offered by fractions.
When using fractions, the computing time often becomes prohibitive. Resulting
fractions are often composed of large integers. This slows down the computing.
In the case of matrix inversion, this results in an increase in computing time by
several orders of magnitude.

For example, one of my customers was inverting a 301×301 matrix with the
code of section 8.3. The numbers used to build the matrix where obtained from
a measuring device (using an ADC) and where thus integers. The inversion
time was over 2 hours13. After converting the matrix components to floating
numbers the inversion time became less than 30 seconds!

If you are especially unlucky you may run out of memory when attempting to
store a particularly long integer. Thus, it is always a good idea to use floating14

numbers instead of fractions unless absolute accuracy is your primary goal. My
experience has been that using floating numbers speeds up the computation by
at least an order of magnitude. In the case of complex computations such as
matrix inversion or least square fit this can become prohibitive.

1.7 Conventions

Equations presented in this book are using standard international mathematical
notation as described in [Knudth 1]. Each section is trying to made a quick
derivation of the concepts needed to fully understand the mathematics behind

11Unfortunately, the future of Visual Smalltalk now owned by Cincom Inc. is quite uncertain
at this time of writing.

12I want to emphasize here that all the code of this book is real code, which I have used
personally in real applications.

13This particular customer was a very patient person!
14In most available Smalltalk versions the class Float corresponds to floating numbers with

double precision. VisualWorks makes the difference between Float and Double

1.7. CONVENTIONS 19

MyAbstractClass

method1

method2

abstractMethod3

...

instanceVariable1

instanceVariable2

...

RelatedClass

relatedClassMethods

relatedClassVariables

MySubclass1

subclassMethods

MySubclass2

subclassMethods

sublassVariables

ClassInOtherChapter

(chapter xxx)

Figure 1.2: A typical class diagram

the scene. For readers in a hurry, the equations used by the implementation are
flagged as the following sample equation:

⇐Main equationln ab = ln a+ ln b. (1.10)

When such an equation is encountered, the reader is sure that the expression
is implemented in the code.

In general the code presented in this book adheres to conventions widely
used in each language. Having said that, there are a few instances where we
have departed from the widely used conventions.

1.7.1 Class diagrams

When appropriate a class diagram is shown at the beginning of each chapter.
This diagram shows the hierarchy of the classes described in the chapter and
eventually the relations with classes of other chapters. The diagrams are drawn
using the conventions of the book on design patterns [Gamma et al.].

Figure 1.2 shows a typical class diagram. A rectangular box with 2 or 3 parts
represents a class. The top part contains the name of the class in bold face. If
the class is an abstract class the name in shown in italic bold face. In figure 1.2
the classes RelatedClass, MySubClass1 and MySubclass2 are concrete classes;
MyAbstractClass is an abstract class. The second part of the class box contains
a list of the public instance methods. The name of an abstract method is written
in italic, for example abstractMethod3 in the class MyAbstractClass of figure
1.2. The third part of the class box, if any, contains the list of all instance
variables. If the class does not have any instance variable the class box only
consists of 2 parts, for example the class MySubClass1 of figure 1.2.

A vertical line with a triangle indicates class inheritance. If there are sev-
eral subclasses the line branches at the triangle, as this is the case in figure

20 CHAPTER 1. INTRODUCTION

1.2. A horizontal line beginning with a diamond (UML aggregation symbol)
indicates the class of an instance variable. For example, Figure 1.2 indicates
that the instance variable instanceVariable1 of the class MyAbstractClass

must be an instance of the class RelatedClass. The diamond is black is the
instance variable is a collection of instances of the class. A class within a rect-
angle with rounded corner represents a class already discussed in an earlier
chapter; the reference to the chapter is written below the class name. Class
ClassInOtherChapter in figure 1.2 is such a class. To save space, we have
used the Java class names and the Smalltalk method names. It is quite easy to
identify methods needing parameters when one uses Smalltalk method names:
a colon in the middle or at the end of the method name indicates a parameter.
Please refer to appendix B for more details on Smalltalk methods.

1.7.2 Smalltalk code

Most of the Smalltalk systems do not support name spaces. As a consequence, it
has becomed a convention to prefix all class names with 3-letter code identifying
the origin of the code. In this book the names of the Smalltalk classes are all
prefixed with the author’s initials.

There are several ways to store constants needed by all instances of a class.
One way is to store the constants in class variables. This requires each class to
implement an initialization method, which sets the desired values into the class
variables. Another way is to store the constants in a pool dictionary. Here also
an initialization method is required. In my opinion pool dictionaries are best
used for texts, as they provide a convenient way to change all text from one
language to another. Sometimes the creation of a singleton object is used. This
is especially useful when the constants are installation specific and, therefore,
must be determined at the beginning of the application’s execution, such as the
precision of the machine (c.f. section 1.4). Finally constants which are not likely
to change can be stored in the code. This is acceptable as long as this is done
at a unique place. In this book most constants are defined in class methods.

By default a Smalltalk method returns self. For initialization methods,
however, we write this return explicitly (^self) to ease reading. This adheres
to the intention revealing patterns of Kent Beck [Beck].

In [Alpert et al.] it is recommended to use the method name default to
implement a singleton class. In this book this convention is not followed. In
Smalltalk, however, the normal instance creation method is new. Introducing a
method default for singleton classes has the effect of departing from this more
ancient convention. In fact, requiring the use of default amounts to reveal
to the client the details of implementation used by the class. This is in clear
contradiction with the principle of hiding the implementation to the external
world. Thus, singleton classes in all code presented in this book are obtained by
sending the method new to the class. A method named default is reserved for
the very semantic of the word default: the instance returned by these methods
is an instance initialized with some default contents, well specified. Whether or
not the instance is a singleton is not the problem of the client application.

1.8. ROAD MAP 21

1.8 Road map

This last section of the introduction describes the road map of the algorithms
discussed in the book chapter by chapter. Figure 1.3 shows a schematic view
of the major classes discussed in this book together with their dependency re-
lations. In this figure, abstract classes are represented with an ellipse, concrete
classes with a rectangle. Dependencies between the classes are represented by
lines going from one class to another; the dependent class is always located be-
low. Chapters where the classes are discussed are drawn as grayed rectangles
with rounded corners. Hopefully the reader will not be scared by the complexity
of the figure. Actually, the figure should be more complex as the classes Vector
and Matrix are used by most objects located in chapters 8 and following. To
preserve the readability of figure 1.3 the dependency connections for these two
classes have been left out.

Chapter 2 presents a general representation of mathematical functions. Ex-
amples are shown. A concrete implementation of polynomial is discussed. Fi-
nally three library functions are given: the error function, the gamma function
and the beta function.

Chapter 3 discusses interpolation algorithms. A discussion explains when
interpolation should be used and which algorithm is more appropriate to which
data.

Chapter 4 presents a general framework for iterative process. It also discusses
a specialization of the framework to iterative process with a single numerical
result. This framework is widely used in the rest of the book.

Chapter 5 discusses two algorithms to find the zeroes of a function: bisec-
tion and Newton’s zero finding algorithms. Both algorithms use the general
framework of chapter 4.

Chapter 6 discusses several algorithms to compute the integral of a function.
All algorithms are based on the general framework of chapter 4. This chapter
also uses an interpolation technique from chapter 3.

Chapter 7 discusses the specialization of the general framework of chapter
4 to the computation of infinite series and continued fractions. The incomplete
gamma function and incomplete beta function are used as concrete examples to
illustrate the technique.

Chapter 8 presents a concrete implementation of vector and matrix algebra.
It also discusses algorithms to solve systems of linear equations. Algorithms to
compute matrix inversion and the finding of eigenvalues and eigenvectors are
exposed. Elements of this chapter are used in other part of this book.

Chapter 9 presents tools to perform statistical analysis. Random number
generators are discussed. We give an abstract implementation of a probability
distribution with concrete example of the most important distributions. The
implementation of other distributions is given in appendix. This chapter uses
techniques from chapters 2, 5 and 6.

Chapter 10 discussed the test of hypothesis and estimation. It gives an im-
plementation of the t- and F-tests. It presents a general framework to implement
least square fit and maximum likelihood estimation. Concrete implementations

22 CHAPTER 1. INTRODUCTION

C
h

a
p

te
r

1
1

C
h

a
p

te
r

1
0

C
h

a
p

te
r

1
2

C
h

a
p

te
r

9

C
h

a
p

te
r

7

C
h

a
p

te
r

6

C
h

a
p

te
r

5

C
h

a
p

te
r

4

C
h

a
p

te
r

3

C
h

a
p

te
r

8

C
h

a
p

te
r

2

F
u

n
c
ti
o

n

P
a

ra
m

e
tr

iz
e

d

fu
n

c
ti
o

n

P
o

ly
n

o
m

ia
l

E
rr

o
r

fu
n

c
ti
o

n

G
a

m
m

a

fu
n

c
ti
o

n

B
e

ta
 f

u
n

c
ti
o

n

L
a

g
ra

n
g

e

in
te

rp
o
la

ti
o

n

N
e

w
to

n

in
te

rp
o

la
ti
o

n

N
e

v
ill

e

in
te

rp
o

la
ti
o

n

B
u

lir
s
c
h
-S

to
e

r
in

te
rp

o
la

ti
o

n

C
u

b
ic

 s
p

lin
e

in

te
rp

o
la

ti
o

n

It
e

ra
ti
v
e

p

ro
c
e

s
s

F
u

n
c
ti
o

n

it
e

ra
to

r

B
is

e
c
ti
o

n

z
e

ro
 f

in
d

e
r

N
e

w
to

n

z
e

ro
 f

in
d

e
r

T
ra

p
e

z
e

in

te
g

ra
to

r

S
im

p
s
o

n

in
te

g
ra

to
r

R
o

m
b

e
rg

in

te
g

ra
to

r

V
e

c
to

r
C

o
n

ti
n

u
e

d

fr
a

c
ti
o

n

In
fi
n

it
e

s
e

ri
e

s

In
c
o

m
p

le
te

g

a
m

m
a

 f
u

n
c
ti
o

n

In
c
o

m
p

le
te

b

e
ta

 f
u

n
c
ti
o

n

M
a

tr
ix

L

U
P

d

e
c
o

m
p

o
s
it
io

n

S
y
m

m
e

tr
ic

m

a
tr

ix

J
a

c
o

b
i

e
ig

e
n

v
a

lu
e

s

S
ta

ti
s
ti
c
a

l
m

o
m

e
n

ts

H
is

to
g

ra
m

R
a

n
d

o
m

n

u
m

b
e

r
g

e
n

e
ra

to
r

S
c
a

le
d

d

is
tr

ib
u

ti
o

n

F
-t

e
s
t

t-
te

s
t

C
h

i
s
q

u
a

re

te
s
t

P
ro

b
a

b
ili

ty

d
s
it
ri
b

u
ti
o

n

L
in

e
a

r
re

g
re

s
s
io

n

P
o

ly
n

o
m

ia
l

le
a

s
t

s
q

u
a

re

fi
t

N
o

n
-l
in

e
a

r
le

a
s
t

s
q

u
a

re
 f

it

M
a

x
im

u
m

lik

e
lih

o
o

d
 f

it

C
o

v
a

ri
a
n

c
e

a

n
a

ly
s
is

C
lu

s
te

r
a

n
a

ly
s
is

S
im

p
le

x

m
in

im
iz

a
ti
o

n

G
e

n
e
ti
c

a
lg

o
ri
th

m
s

M
a

h
a

la
n

o
b
is

c
e

n
te

r

*
 D

ep
en

d
en

cy
 f

ro
m

 t
h

es
e

cl
a

ss
es

 h
a

ve
 b

ee
n

 l
ef

t
o

u
t

to
 e

a
se

 r
ea

d
a

b
il

it
y.

*

*

*

Figure 1.3: Book road map

1.8. ROAD MAP 23

of least square fit for linear and polynomial dependence are given. A concrete
implementation of the maximum likelihood estimation is given to fit a proba-
bility distribution to a histogram. This chapter uses techniques from chapter 2,
4, 8 and 9.

Chapter 11 discusses some techniques used to maximize or minimize a func-
tion: classical algorithms (simplex, hill climbing) as well as new ones (genetic
algorithms). All these algorithms are using the general framework for iterative
process discussed in chapter 4.

Chapter 12 discusses the modern data mining techniques: correlation anal-
ysis, cluster analysis and neural networks. A couple of methods invented by the
author are also discussed. This chapter uses directly or indirectly techniques
from all chapters of this book.

24 CHAPTER 1. INTRODUCTION

Chapter 2

Function evaluation

Qu’il n’y ait pas de réponse n’excuse pas l’absence de questions.1

Claude Roy

Many mathematical functions used in numerical computation are defined by an
integral, by a recurrence formula or by a series expansion. While such defini-
tions can be useful to a mathematician, they are usually quite complicated to
implement on a computer. For one, not every programmer knows how to eval-
uate an integral numerically2. Then, there is the problem of accuracy. Finally,
the evaluation of the function as defined mathematically is often too slow to be
practical.

Before computers were heavily used, however, people had already found
efficient ways of evaluating complicated functions. These methods are usually
precise enough and extremely fast. This chapter exposes several functions that
are important for statistical analysis. The Handbook of Mathematical Functions
by Abramovitz and Stegun [Abramovitz & Stegun] contains a wealth of such
function definitions and describes many ways of evaluating them numerically.
Most approximations used in this chapter have been taken from this book.

This chapter opens on general considerations on how to implement the con-
cept of function. Then, polynomials are discussed as an example of concrete
function implementation. The rest of this chapter introduces three classical
functions: the error function, the gamma function and the beta function. We
shall use this functions in chapters 9 and 10. Because these functions are fun-
damental functions used in many areas of mathematics they are implemented
as library functions — such as a sine, log or exponential — instead of using the
general function formalism described in the first section.

Figure 2.1 shows the diagram of the Smalltalk classes described in this chap-
ter. Here we have used special notations to indicate that the functions are
implemented as library functions. The functions are represented by oval and

1The absence of answer does not justify the absence of question.
2The good news is that they will if they read the present book (c.f. chapter 6).

25

26 CHAPTER 2. FUNCTION EVALUATION

AbstractFunction

value:

Polynomial

+
-
*
/
at:
degree
derivative
integral
integral:
value:

coefficients

Number

beta:
erf
gamma
logBeta:
logGamma

error

function

ErfApproximation

normal:
value:

constant
series
norm

LanczosFormula

logGamma:
gamma:

coefficients
sqrt2Pi

gamma

function

beta

function

Figure 2.1: Smalltalk classes related to functions

arrows shows which class is used to implement a function for the class Number.

2.1 Function – Smalltalk implementation

A mathematical function is an object associating a value to a variable. If the
variable is a single value one talks about a one variable function. If the variable
is an array of values one talks about a multi-variable function. Other types of
variables are possible but will not be covered in this book.

We shall assume that the reader is familiar with elementary concepts about
functions, namely derivatives and integrals. We shall concentrate mostly on
implementation issues.Figure 2.1 with the box Ab-

stractFunction grayed. A function in Smalltalk can be readily implemented with a block closure.
Block closures in Smalltalk are treated like objects; thus, they can be manipu-
lated as any other objects. For example the one variable function defined as:

f (x) =
1

x
, (2.1)

can be implemented in Smalltalk as:

f := [:x | 1 / x]. (2.2)

Evaluation of a block closure is supplied by the method value:. For example, to
compute the inverse of 3, one writes:

f value: 3. (2.3)

2.2. POLYNOMIALS 27

If the function is more complex a block closure may not be the best solution
to implement a function. Instead a class can be created with some instance
variables to hold any constants and/or partial results. In order to be able to
use functions indifferently implemented as block closures or as classes, one uses
polymorphism. Each class implementing a function must implement a method
value:. Thus, any object evaluating a function can send the same message
selector, namely value:, to the variable holding the function.

To evaluate a multi-variable function, the argument of the method value:
is an Array or a vector (c.f. section 8.1). Thus, in Smalltalk multi-variable
functions can follow the same polymorphism as for one-variable functions.

2.2 Polynomials

Polynomials are quite important in numerical methods because they are often
used in approximating functions. For example, section 2.3 shows how the error
function can be approximated with the product of normal distribution times a
polynomial.

Polynomials are also useful in approximating functions, which are deter-
mined by experimental measurements in the absence of any theory on the nature
of the function. For example, the output of a sensor detecting a coin is depen-
dent on the temperature of the coin mechanism. This temperature dependence
cannot be predicted theoretically because it is a difficult problem. Instead, one
can measure the sensor output at various controlled temperatures. These mea-
surements are used to determine the coefficients of a polynomial reproducing
the measured temperature variations. The determination of the coefficients is
performed using a polynomial least-square fit (c.f. section 10.8). Using this
polynomial the correction for a given temperature can be evaluated for any
temperature within the measured range.

The implementations in both languages are discussed in great details. The
reader is advised to read carefully both implementation sections as many tech-
niques are introduced at this occasion. Later on those techniques will be men-
tioned with no further explanations.

2.2.1 Mathematical definitions

A polynomial is a special mathematical function whose value is computed as
follows:

P (x) =

n∑
k=0

akx
k. (2.4)

n is called the degree of the polynomial. For example, the second order polyno-
mial

x2 − 3x+ 2 (2.5)

represents a parabola crossing the x-axis at points 1 and 2 and having a mini-
mum at x = 2/3. The value of the polynomial at the minimum is −1/4.

28 CHAPTER 2. FUNCTION EVALUATION

In equation 2.4 the numbers a0, . . . an are called the coefficients of the poly-
nomial. Thus, a polynomial can be represented by the array {a0, . . . an}. For
example, the polynomial of equation 2.5 is represented by the array {2,−3, 1}.

Evaluating equation 2.4 as such is highly inefficient since one must raise
the variable to an integral power at each term. The required number of mul-
tiplication is of the order of n2. There is of course a better way to evaluate a
polynomial. It consists of factoring out x before the evaluation of each term3.
The following formula shows the resulting expression:

Main equation⇒ (x) = a0 + x {a1 + x [a2 + x (a3 + · · ·)]} (2.6)

Evaluating the above expression now requires only multiplications. The result-
ing algorithm is quite straightforward to implement. Expression 2.6 is called
Horner’s rule because it was first published by W.G. Horner in 1819. 150 years
earlier, however, Isaac Newton was already using this method to evaluate poly-
nomials.

In section 5.3 we shall requires the derivative of a function. For polynomials
this is rather straightforward. The derivative is given by:

dP (x)

dx
=

n∑
k=1

kakx
k−1. (2.7)

Thus, the derivative of a polynomial with n coefficients is another polynomial,
with n− 1 coefficients4 derived from the coefficients of the original polynomial
as follows:

a′k = (k + 1) ak+1 for k = 0, . . . , n− 1. (2.8)

For example, the derivative of 2.5 is 2x− 3.
The integral of a polynomial is given by:∫ x

0

P (t) dt =

n∑
k=0

ak
k + 1

xk+1. (2.9)

Thus, the integral of a polynomial with n coefficients is another polynomial,
with n + 1 coefficients derived from the coefficients of the original polynomial
as follows:

āk =
ak−1

k
for k = 1, . . . , n+ 1. (2.10)

For the integral, the coefficient ā0 is arbitrary and represents the value of the
integral at x = 0. For example the integral of 2.5 which has the value -2 at
x = 0 is the polynomial

x3

3
− 32

2
+ 2x− 2. (2.11)

3This is actually the first program I ever wrote in my first computer programming class.
Back in 1969, the language in fashion was ALGOL.

4Notice the change in the range of the summation index in equation 2.7.

2.2. POLYNOMIALS 29

Conventional arithmetic operations are also defined on polynomials and have
the same properties5 as for signed integers.

Adding or subtracting two polynomials yields a polynomial whose degree is
the maximum of the degrees of the two polynomials. The coefficients of the new
polynomial are simply the addition or subtraction of the coefficients of same
order.

Multiplying two polynomials yields a polynomial whose degree is the product
of the degrees of the two polynomials. If {a0, . . . , an} and {b0, . . . , bn} are the
coefficients of two polynomials, the coefficients of the product polynomial are
given by:

ck =
∑
i+j=k

aibj for k = 0, . . . , n+m. (2.12)

In equation 2.12 the coefficients ak are treated as 0 if k > n. Similarly the
coefficients nk are treated as 0 if k > m.

Dividing a polynomial by another is akin to integer division with remainder.
In other word the following equation:

P (x) = Q (x) · T (x) +R (x) . (2.13)

uniquely defines the two polynomials Q (x), the quotient, and R (x), the remain-
der, for any two given polynomials P (x) and T (x). The algorithm is similar to
the algorithm taught in elementary school for dividing integers [Knudth 2].

2.2.2 Polynomial — Smalltalk implementation

As we have seen a polynomial is uniquely defined by its coefficients. Thus, the
creation of a new polynomial instance must have the coefficients given. Our
implementation assumes that the first element of the array containing the coef-
ficients is the coefficient of the constant term, the second element the coefficient
of the linear term (x), and so on.

The method value evaluates the polynomial at the supplied argument. This
methods implements equation 2.6.

The methods derivative and integral return each a new instance of a
polynomial. The method integral: must have an argument specifying the
value of the integral of the polynomial at 0. A convenience integral method
without argument is equivalent to call the method integral with argument 0.

The implementation of polynomial arithmetic is rarely used in numerical
computation though. It is, however, a nice example to illustrate a technique
called double dispatching. Double dispatching is described in appendix (c.f.
section B.4). The need for double dispatching comes for allowing an operation
between object of different nature. In the case of polynomials operations can
be defined between two polynomials or between a number and a polynomial. In
short, double dispatching allows one to identify the correct method based on
the type of the two arguments. Figure 2.1 with the box

Polynomial grayed.
5The set of polynomials is a vector space in addition to being a ring.

30 CHAPTER 2. FUNCTION EVALUATION

Being a special case of a function a polynomial must of course implement
the behavior of functions as discussed in section ??. Here is a code example on
how to use the class DhbPolynomial.

Code example 2.1
| polynomial |

polynomial := DhbPolynomial coefficients: #(2 -3 1).

polynomial value: 1.

The code above creates an instance of the class DhbPolynomial by giving the
coefficient of the polynomial. In this example the polynomial x2 − 3x+ 2. The
final line of the code computes the value of the polynomial at x = 1.

The next example shows how to manipulate polynomials in symbolic form.

Code example 2.2
| pol1 pol2 polynomial polD polI |

pol1:= DhbPolynomial coefficients: #(2 -3 1).

pol2:= DhbPolynomial coefficients: #(-3 7 2 1).

polynomial = pol1 * pol2.

polD := polynomial derivative.

polI := polynomial integral.

The first line creates the polynomial of example 2.5. The second line creates
the polynomial x3 + 2x2 + 7x − 3. The third line of the code creates a new
polynomial, product of the first two. The last two lines create two polynomials,
respectively the derivative and the integral of the polynomial created in the
third line.

Listing 2.1 shows the Smalltalk implementation of the class DhbPolynomial.
A beginner may have been tempted to make DhbPolynomial a subclass of

Array to spare the need for an instance variable. This is of course quite wrong.
An array is a subclass of Collection. Most methods implemented or inherited
by Array have nothing to do with the behavior of a polynomial as a mathemat-
ical entity.

Thus, a good choice is to make the class DhbPolynomial a subclass of Object.
It has a single instance variable, an Array containing the coefficients of the
polynomial.

It is always a good idea to implement a method printOn: for each class.
This method is used by many system utilities to display an object in readable
form, in particular the debugger and the inspectors. The standard method
defined for all objects simply displays the name of the class. Thus, it is hard to
decide if two different variables are pointing to the same object. Implementing
a method printOn: allows displaying parameters particular to each instance so
that the instances can easily be identified. It may also be used in quick print
on the Transcript and may save you the use on an inspector while debugging.
Implementing a method printOn: for each class that you create is a good
general practice, which can make your life as a Smalltalker much easier.

Working with indices in Smalltalk is somewhat awkward for mathematical
formulas because the code is quite verbose. In addition a mathematician using

2.2. POLYNOMIALS 31

Smalltalk for the first time may be disconcerted with all indices starting at 1
instead of 0. Smalltalk, however, has very powerful iteration methods, which
largely compensate for the odd index choice, odd for a mathematician that is.
In fact, an experienced Smalltalker seldom uses indices explicitly as Smalltalk
provides powerful iterator methods.

The method value: uses the Smalltalk iteration method inject:into: (c.f.
section B.3.3). Using this method requires storing the coefficients in reverse
order because the first element fed into the method inject:into: corresponds
to the coefficient of the largest power of x. It would certainly be quite inefficient
to reverse the order of the coefficients at each evaluation. Since this requirement
also simplifies the computation of the coefficients of the derivative and of the
integral, reversing of the coefficients is done in the creation method to make
things transparent.

The methods derivative and integral return a new instance of the class
DhbPolynomial. They do not modify the object receiving the message. This
is also true for all operations between polynomials. The methods derivative

and integral use the method collect: returning a collection of the values
returned by the supplied block closure at each argument (c.f. section B.3.2).

The method at: allows one to retrieve a given coefficient. To ease readability
of the multiplication and division methods, the method at: has been defined
to allow for indices starting at 0. In addition this method returns zero for any
index larger than the polynomial’s degree. This allows being lax with the index
range. In particular, equation 2.12 can be coded exactly as it is.

The arithmetic operations between polynomials are implemented using dou-
ble dispatching. This is a general technique widely used in Smalltalk (and
all other languages with dynamical typing) consisting of selecting the proper
method based on the type of the supplied arguments. Double dispatching is
explained in section B.4.

Note: Because Smalltalk is a dynamically typed language, our im-
plementation of polynomial is also valid for polynomials with com-
plex coefficients.

Listing 2.1 Smalltalk implementation of the polynomial class

Class DhbPolynomial
Subclass of Object

Instance variable names: coefficients

Class methods

coefficients: anArray

^self new initialize: anArray reverse

32 CHAPTER 2. FUNCTION EVALUATION

Instance methods

* aNumberOrPolynomial

^aNumberOrPolynomial timesPolynomial: self

+ aNumberOrPolynomial

^aNumberOrPolynomial addPolynomial: self

- aNumberOrPolynomial

^aNumberOrPolynomial subtractToPolynomial: self

/ aNumberOrPolynomial

^aNumberOrPolynomial dividingPolynomial: self

addNumber: aNumber

| newCoefficients |

newCoefficients := coefficients reverse.

newCoefficients at: 1 put: newCoefficients first + aNumber.

^self class new: newCoefficients

addPolynomial: aPolynomial

^self class new: ((0 to: (self degree max: aPolynomial degree))

collect: [:n | (aPolynomial at: n) + (self at: n)])

at: anInteger

^anInteger < coefficients size

ifTrue: [coefficients at: (coefficients size - anInteger)]

ifFalse: [0]

coefficients

^coefficients deepCopy

degree

^coefficients size - 1

derivative

| n |

n := coefficients size.

^self class new: ((coefficients

collect: [:each | n := n - 1. each * n]) reverse copyFrom: 2 to: coefficients size)

dividingPolynomial: aPolynomial

^ (self dividingPolynomialWithRemainder: aPolynomial) first

2.2. POLYNOMIALS 33

dividingPolynomialWithRemainder: aPolynomial

| remainderCoefficients quotientCoefficients n m norm

quotientDegree |

n := self degree.

m := aPolynomial degree.

quotientDegree := m - n.

quotientDegree < 0

ifTrue: [^Array with: (self class new: #(0)) with:

aPolynomial].

quotientCoefficients := Array new: quotientDegree + 1.

remainderCoefficients := (0 to: m) collect: [:k | aPolynomial

at: k].

norm := 1 / coefficients first.

quotientDegree to: 0 by: -1

do: [:k | | x |

x := (remainderCoefficients at: n + k + 1) * norm.

quotientCoefficients at: (quotientDegree + 1 - k) put:

x.

(n + k - 1) to: k by: -1

do: [:j |

remainderCoefficients at: j + 1 put:

((remainderCoefficients at: j + 1) - (

x * (self at: j - k)))

].

].

^ Array with: (self class new: quotientCoefficients reverse)

with: (self class new: (remainderCoefficients copyFrom: 1 to: n))

initialize: anArray

coefficients := anArray.

^ self

integral

^ self integral: 0

integral: aValue

| n |

n := coefficients size + 1.

^ self class new: ((coefficients collect: [:each | n := n - 1.

each / n]) copyWith: aValue) reverse

printOn: aStream

| n firstNonZeroCoefficientPrinted |

n := 0.

34 CHAPTER 2. FUNCTION EVALUATION

firstNonZeroCoefficientPrinted := false.

coefficients reverse do:

[:each |

each = 0

ifFalse:[firstNonZeroCoefficientPrinted

ifTrue: [aStream space.

each < 0

ifFalse:[aStream

nextPut: $+].

aStream space.

]

ifFalse:[firstNonZeroCoefficientPrinted

:= true].

(each = 1 and: [n > 0])

ifFalse:[each printOn: aStream].

n > 0

ifTrue: [aStream nextPutAll: ’ X’.

n > 1

ifTrue: [aStream

nextPut: $^.

n printOn:

aStream.

].

].

].

n := n + 1.

].

subtractToPolynomial: aPolynomial

^self class new: ((0 to: (self degree max: aPolynomial degree))

collect: [:n | (aPolynomial at: n) - (self at: n)])

timesNumber: aNumber

^self class new: (coefficients reverse collect: [:each | each * aNumber])

timesPolynomial: aPolynomial

| productCoefficients degree|

degree := aPolynomial degree + self degree.

productCoefficients := (degree to: 0 by: -1)

collect:[:n | | sum |

sum := 0.

0 to: (degree - n)

do: [:k | sum := (self at: k) * (aPolynomial

at: (degree - n - k)) + sum].

sum

2.3. ERROR FUNCTION 35

].

^self class new: productCoefficients

value: aNumber

^coefficients inject: 0 into: [:sum :each | sum * aNumber + each]

Listing 2.2 shows the listing of the methods used by the class Number as
part of the double dispatching of the arithmetic operations on polynomials.

Listing 2.2 Method of class Number related to polynomials

Class Number
Subclass of Magnitude

Instance methods

addPolynomial: aPolynomial

^aPolynomial addNumber: self

dividingPolynomial: aPolynomial

^aPolynomial timesNumber: (1 / self)

subtractToPolynomial: aPolynomial

^aPolynomial addNumber: self negated

timesPolynomial: aPolynomial

^aPolynomial timesNumber: self

2.3 Error function

The error function is the integral of the normal distribution. The error function
is used in statistics to evaluate the probability of finding a measurement larger
than a given value when the measurements are distributed according to a normal
distribution. Figure 2.3 shows the familiar bell-shaped curve of the probability
density function of the normal distribution (dotted line) together with the error
function (solid line).

In medical sciences one calls centile the value of the error function expressed
in percent. For example, obstetricians look whether the weight at birth of the

first born child is located below the 10th centile or above the 90th centile to
assess a risk factor for a second pregnancy6.

6c.f. footnote 8 on page 37

36 CHAPTER 2. FUNCTION EVALUATION

Figure 2.2: The error function and the normal distribution

2.3.1 Mathematical definitions

Because it is the integral of the normal distribution, the error function, erf (x),
gives the probability of finding a value lower than x when the values are dis-
tributed according to a normal distribution with mean 0 and standard deviation
1. The mean and the standard deviation are explained in section 9.1. This prob-
ability is expressed by the following integral7:

erf (x) =
1√
2π

∫ x

−∞
e−

t2

2 dt (2.14)

The result of the error function lies between 0 and 1.
One could carry out the integral numerically, but there exists several good

approximations. The following formula is taken from [Abramovitz & Stegun].

Main equation⇒
erf (x) =

1√
2π
e−

x2

2

5∑
i=1

air (x)
i

for x ≥ 0. (2.15)

where

r (x) =
1

1− 0.2316419x
. (2.16)

and
a1 = 0.31938153
a2 = −0.356563782
a3 = 1.7814779372
a4 = −1.821255978
a5 = 1.330274429

(2.17)

7In [Abramovitz & Stegun] and [Press et al.], the error function is defined as:

erf (x) =
2
√
π

∫ x

0

e−
t2

2 dt

.

2.3. ERROR FUNCTION 37

The error on this formula is better than 7.5× 10−8 for negitive x. To compute
the value for positive values, one uses the fact that:

⇐Main equationerf (x) = 1− erf (−x) . (2.18)

When dealing with a general Gaussian distribution with average µ and standard
deviation σ it is convenient to define a generalized error function as:

erf (x;µ, σ) =
1√

2πσ2

∫ x

−∞
e−

(x−µ)2

2σ2 dt. (2.19)

A simple change of variable in the integral shows that the generalized error
function can be obtained from the error function as:

⇐Main equation
erf (x;µ, σ) = erf

(
x− µ
σ

)
. (2.20)

Thus, one can compute the probability of finding a measurement x within the
interval [µ− t · σ, µ+ t · σ] when the measurements are distributed according to
a Gaussian distribution with average µ and standard deviation σ:

Prob

(
|x− µ|
σ

≤ t
)

= 2 · erf (t)− 1. for t ≥ 0. (2.21)

Example
Now we can give the answer to the problem of deciding whether a pregnant

woman needs special attention during her second pregnancy. Let the weight at
birth of her first child be 2.85 Kg. and let the duration of her first pregnancy be
39 weeks. In this case measurements over a representative sample of all births
yielding healthy babies have an average of 3.39 Kg and a standard deviation of
0.44 Kg8. The probability of having a weight of birth smaller than that of the
woman’s first child is:

Prob (Weight ≤ 2.85 Kg) = erf

(
2.85− 3.39

0.44

)
,

= 11.2%.

According to current practice, this second pregnancy does not require special
attention.

2.3.2 Error function — Smalltalk implementation
Figure 2.1 with the box Er-
fApproximation grayed.The error function is implemented as a single method for the class Number.

Thus, computing the centile of our preceding example is simply coded as:

8This is the practice at the department of obstetrics and gynecology of the Chelsea &
Westminster Hospital of London. The numbers are reproduced with permission of Prof. P.J.
Steer.

38 CHAPTER 2. FUNCTION EVALUATION

Code example 2.3
| weight average stDev centile |

weight := 2.85.

average := 3.39.

stDev := 0.44.

centile := ((weight - average) / stDev) erf * 100.

If you want to compute the probability for a measurement to lay within 3
standard deviations from its mean, you need to evaluate the following expression
using equation 2.21:

Code example 2.4
3 errorFunction * 2 - 1

If one needs to use the error function as a function, one must use it inside a
block closure. In this case one defines a function object as follows:

Code example 2.5
| errorFunction |

errorFunction := [:x | x errorFunction].

Listing 2.3 shows the Smalltalk implementation of the error function.
In Smalltalk we are allowed to extend existing classes. Thus, the public

method to evaluate the error function is implemented as a method of the base
class Number. This method uses the class, DhbErfApproximation, used to store
the constants of equation 2.17 and evaluate the formula of equations 2.15 and
2.16. In our case, there is no need to create a separate instance of the class
DhbErfApproximation at each time since all instances would actually be ex-
actly identical. Thus, the class DhbErfApproximation is a singleton class. A
singleton class is a class, which can only create a single instance [Gamma et al.].
Once the first instance is created, it is kept in a class instance variable. Any
subsequent attempt to create an additional instance will return a pointer to the
class instance variable holding the first created instance.

One could have implemented all of these methods as class methods to avoid
the singleton class. In Smalltalk, however, one tends to reserve class method
for behavior needed by the structural definition of the class. So, the use of a
singleton class is preferable. A more detailed discussion of this topic can be
found in [Alpert et al.].

Listing 2.3 Smalltalk implementation of the Error function

Class Number
Subclass of Magnitude

Instance methods

errorFunction

2.4. GAMMA FUNCTION 39

^DhbErfApproximation new value: self

Class DhbErfApproximation
Subclass of Object

Instance variable names: constant series norm

Class variable names: UniqueInstance

Class methods

new

UniqueInstance isNil

ifTrue: [UniqueInstance := super new initialize].

^UniqueInstance

Instance methods

initialize

constant := 0.2316419.

norm := 1 / (Float pi * 2) sqrt.

series := DhbPolynomial coefficients: #(0.31938153 -0.356563782

1.781477937 -1.821255978 1.330274429).

normal: aNumber

^[(aNumber squared * -0.5) exp * norm]

when: ExAll do: [:signal | signal exitWith: 0]

value: aNumber

| t |

aNumber = 0

ifTrue: [^0.5].

aNumber > 0

ifTrue: [^1- (self value: aNumber negated)].

aNumber < -20

ifTrue: [^0].

t := 1 / (1 - (constant * aNumber)).

^(series value: t) * t * (self normal: aNumber)

2.4 Gamma function

The gamma function is used in many mathematical functions. In this book,
the gamma function is needed to compute the normalization factor of several
probability density functions (c.f. sections ?? and 10.3). It is also needed to
compute the beta function (c.f. section 2.5).

40 CHAPTER 2. FUNCTION EVALUATION

2.4.1 Mathematical definitions

The Gamma function is defined by the following integral, called Euler’s integral9:

Γ (x) =

∫ ∞
0

txe−tdt (2.22)

From equation 2.22 a recurrence formula can be derived:

Γ (x+ 1) = x · Γ (x) (2.23)

The value of the Gamma function can be computed for special values of x:{
Γ (1) = 1
Γ (2) = 1

(2.24)

From 2.23 and 2.24, the well-known relation between the value of the Gamma
function for positive integers and the factorial can be derived:

Γ (n) = (n− 1)! for n > 0. (2.25)

The most precise approximation for the Gamma function is given by a formula
discovered by Lanczos [Press et al.]:

Main equation⇒
Γ (x) ≈ e(x+ 5

2)
(
x+

5

2

) √
2π

x

(
c0 +

6∑
n=1

cn
x+ n

+ ε

)
(2.26)

where

c0 = 1.000000000190015
c1 = 76.18009172947146
c2 = −86.50532032941677
c3 = 24.01409824083091
c4 = −1.231739572450155
c5 = 1.208650973866179 ·10−3

c6 = −5.395239384953 ·10−6

(2.27)

This formula approximates Γ (x) for x > 1 with ε < 2 · 10−10 . Actually, this
remarkable formula can be used to compute the gamma function of any complex
number z with < (z) > 1 to the quoted precision. Combining Lanczos’ formula
with the recurrence formula 2.23 is sufficient to compute values of the Gamma
function for all positive numbers.

For example, Γ
(

3
2

)
=
√
π

2 = 0.886226925452758 whereas Lanczos formula
yields the value 0.886226925452754, that is, an absolute error of 4 · 10−15. The
corresponding relative precision is almost equal to the floating-point precision
of the machine on which this computation was made.

Although this is seldom used, the value of the Gamma function for negative
non-integer numbers can be computed using the reflection formula hereafter:

Γ (x) =
π

Γ (1− x) sinπx
(2.28)

9Leonard Euler to be precise as the Euler family produced many mathematicians.

2.4. GAMMA FUNCTION 41

In summary, the algorithm to compute the Gamma function for any argu-
ment goes as follows:

1. If x is a non-positive integer (x ≤ 0), raise an exception.

2. If x is smaller than or equal to 1 (x < 1), use the recurrence formula 2.23.

3. If x is negative (x < 0, but non integer), use the reflection formula 2.28.

4. Otherwise use Lanczos’ formula 2.26.

One can see from the leading term of Lanczos’ formula that the gamma
function raises faster than an exponential. Thus, evaluating the gamma function
for numbers larger than a few hundreds will exceed the capacity of the floating
number representation on most machines. For example, the maximum exponent
of a double precision IEEE floating-point number is 1024. Evaluating directly
the following expression:

Γ (460.5)

Γ (456.3)
(2.29)

will fail since Γ (460.5) is larger than 101024. Thus, its evaluation yields a
floating-point overflow exception. It is therefore recommended to use the log-
arithm of the gamma function whenever it is used in quotients involving large
numbers. The expression of equation 2.29 is then evaluated as:

exp [ln Γ (460.5)− ln Γ (456.3)] (2.30)

which yield the result 1.497 · 1011. That result fits comfortably within the
floating-point representation.

For similar reasons the leading factors of Lanczos formula are evaluated using
logarithms in both implementations.

2.4.2 Gamma function — Smalltalk implementation
Figure 2.1 with the box
LanczosFormula grayed.Like the error function, the gamma function is implemented as a single method

of the class Number. Thus, computing the gamma function of 2.5 is simply coded
as:

Code example 2.6
2.5 gamma

To obtain the logarithm of the gamma function, you need to evaluate the fol-
lowing expression:

Code example 2.7
2.5 logGamma

Listing 11 shows the Smalltalk implementation of the gamma function.
Here, the gamma function is implemented with two methods: one for the

class Integer and one for the class Float. Otherwise, the scheme to define the

42 CHAPTER 2. FUNCTION EVALUATION

gamma function is similar to that of the error function. Please refer to section
2.3.2 for detailed explanations.

Since the method factorial is already defined for integers in the base classes,
the gamma function has been defined using equation 2.25 for integers. An error
is generated if one attempts to compute the gamma function for non-positive
integers. The class Number delegates the computation of Lanczos’ formula to
a singleton class. This is used by the non-integer subclasses of Number: Float

and Fraction.
The execution time to compute the gamma function for floating argument

given in Table 1.1 in section 1.6.

Listing 2.4 Smalltalk implementation of the gamma function

Class Integer
Subclass of Number

Instance methods

gamma

self > 0

ifFalse: [^self error: ’Attempt to compute the Gamma

function of a non-positive integer’].

^(self - 1) factorial

Class Number
Subclass of Magnitude

Instance methods

gamma

^self > 1

ifTrue: [^DhbLanczosFormula new gamma: self]

ifFalse:[self < 0

ifTrue: [Float pi / ((Float pi * self) sin * (1 - self) gamma)]

ifFalse:[(DhbLanczosFormula new gamma: (self + 1)) / self]

]

logGamma

^self > 1

ifTrue: [DhbLanczosFormula new logGamma: self]

ifFalse: [self > 0

ifTrue: [(DhbLanczosFormula new logGamma: (self + 1)) - self ln]

ifFalse: [^self error: ’Argument for the log gamma function

must be positive’]

]

2.4. GAMMA FUNCTION 43

Class DhbLanczosFormula
Subclass of Object

Instance variable names: coefficients sqrt2Pi

Class variable names: UniqueInstance

Class methods

new

UniqueInstance isNil

ifTrue: [UniqueInstance := super new initialize].

^ UniqueInstance

Instance methods

gamma: aNumber

^ (self leadingFactor: aNumber) exp * (self series: aNumber)

* sqrt2Pi / aNumber

initialize

sqrt2Pi := (Float pi * 2) sqrt.

coefficients := #(76.18009172947146 -86.50532032941677

24.01409824083091 -1.231739572450155 0.1208650973866179e-2

-0.5395239384953e-5).

^ self

leadingFactor: aNumber

| temp |

temp := aNumber + 5.5.

^ (temp ln * (aNumber + 0.5) - temp)

logGamma: aNumber

^ (self leadingFactor: aNumber) + ((self series: aNumber)

* sqrt2Pi / aNumber) ln

series: aNumber

| term |

term := aNumber.

^coefficients inject: 1.000000000190015

into: [:sum :each | term := term + 1. each / term + sum]

44 CHAPTER 2. FUNCTION EVALUATION

2.5 Beta function

The beta function is directly related to the gamma function. In this book, the
beta function is needed to compute the normalization factor of several proba-
bility density functions (c.f. sections 10.1, 10.2 and C.1).

2.5.1 Mathematical definitions

The beta function is defined by the following integral:

B (x, y) =

∫ 1

0

tx−1 (1− t)y−1
dt (2.31)

The beta function is related to the gamma function with the following relation:

B (x, y) =
Γ (x) Γ (y)

Γ (x+ y)
(2.32)

Thus, computation of the beta function is directly obtained from the gamma
function. As evaluating the gamma function might overflow the floating-point
exponent (c.f. discussion at the end of section 2.4.1), it is best to evaluate the
above formula using the logarithm of the gamma function.

2.5.2 Beta function — Smalltalk implementation
Figure 2.1 with the box
LanczosFormula grayed. Like the error and gamma functions, the gamma function is implemented as a

single method of the class Number. Thus, computing the beta function of 2.5
and 5.5 is simply coded as:

Code example 2.8
2.5 beta: 5.5

Computing the logarithm of the beta function of 2.5 and 5.5 is simply coded as:

Code example 2.9
2.5 logBeta: 5.5

Listing 2.5 shows the implementation of the beta function in Smalltalk.

Listing 2.5 Smalltalk implementation of the beta function

Class Number
Subclass of Magnitude

Instance methods

beta: aNumber

^ (self logBeta: aNumber) exp

logBeta: aNumber

^ self logGamma + aNumber logGamma - (self + aNumber) logGamma

Chapter 3

Interpolation

On ne peut prévoir les choses qu’après qu’elles sont arrivées.1

Eugène Ionesco

Interpolation is a technique allowing the estimation of a function over the range
covered by a set of points at which the function’s values are known. These points
are called the sample points. Interpolation is useful to compute a function
whose evaluation is highly time consuming: with interpolation it suffices to
compute the function’s values for a small number of well-chosen sample points.
Then, evaluation of the function between the sample points can be made with
interpolation.

Interpolation can also be used to compute the value of the inverse function,
that is finding a value x such that f (x) = c where c is a given number, when the
function is known for a few sample points bracketing the sought value. People
often overlook this easy and direct computation of the inverse function.

Interpolation is often used interchangeably with extrapolation. This is not
correct, however. Extrapolation is the task of estimating a function outside
of the range covered by the sample points. If no model exists for the data
extrapolation is just gambling. Methods exposed in this chapter should not be
used for extrapolation.

Interpolation should not be mistaken with function (or curve) fitting. In the
case of interpolation the sample points purely determine the interpolated func-
tion. Function fitting allows constraining the fitted function independently from
the sample points. As a result fitted functions are more stable than interpolated
functions especially when the supplied values are subject to fluctuations coming
from rounding or measurement errors. Fitting is discussed in chapter 10.

1One can predict things only after they have occurred.

45

46 CHAPTER 3. INTERPOLATION

LangrangeInterpolator

add:
value:

pointCollection

AbstractPointCollection

add:
at:
size

NevilleInterpolator

value:
valueAndError:

leftErrors
rightErrors

BulirschStoerInterpolator

NewtonInterpolator

add:
value:

coefficients

SplineInterpolator

endPointDerivative:
resetEndPointDerivatives
setEndPointDerivatives:
startPointDerivative:
value:

startPointDerivative
endPointDerivative

Figure 3.1: Class diagram for the interpolation classes

3.1 General remarks

There are several methods of interpolation. One difference is the type of function
used. The other is the particular algorithm used to determine the function. For
example, if the function is periodic, interpolation can be obtained by computing
a sufficient number of coefficients of the Fourier series for that function.

In the absence of any information about the function, polynomial interpola-
tion gives fair results. The function should not have any singularities over the
range of interpolation. In addition there should not be any pole in the vicinity of
the complex plane near the portion of the real axis corresponding to the range of
interpolation. If the function has singularities it is recommended to use rational
functions — that is the quotient of two polynomials — instead [Press et al.].

In this chapter we discuss 3 interpolation functions: Lagrange interpolation
polynomial, a diagonal rational function (Bulirsch-Stoer interpolation) and cu-
bic spline. Furhermore, we show 3 different implementation of the Lagrange
interpolation polynomial: direct implementation of Lagrange’s formula, New-
ton’s algorithm and Neville’s algorithm. Figure 3.1 shows how the classes cor-
responding to the different interpolation methods described in this chapter are
related to each other.

Definition

3.1. GENERAL REMARKS 47

Figure 3.2: Example of interpolation with the Lagrange interpolation polyno-
mial

The Lagrange interpolation polynomial is the unique polynomial of minimum
degree going through the sample points. The degree of the polynomial is equal
to the number of supplied points minus one. A diagonal rational function is
the quotient of two polynomials where the degree of the polynomial in the
numerator is at most equal to that of the denominator. Cubic spline uses piece-
wise interpolation with polynomials but limits the degree of each polynomial to
3 (hence the adjective cubic).

Examples
Before selecting an interpolation method the user must investigate the validity

of the interpolated function over the range of its intended use. Let us illustrate
this remark with an example from high-energy physics, that, in addition, will
expose the limitation of the methods exposed in this chapter.

Figure 3.1 shows sample points — indicated by crosses — representing cor-
rection to the energy measured within a gamma ray detector made of several
densely packed crystals. The energy is plotted on a logarithmic scale. The
correction is caused by the absorption of energy in the wrapping of each crys-
tal. The sample points were computed using a simulation program2, each point

2This program - EGS written by Ralph Nelson of the Stanford Linear Accelerator Center

48 CHAPTER 3. INTERPOLATION

Figure 3.3: Comparison between Lagrange interpolation and interpolation with
a rational function

requiring several hours of computing time. Interpolation over these points was
therefore used to allow a quick computation of the correction at any energy.
This is the main point of this example: the determination of each point was ex-
pensive in terms of computing time, but the function represented by these points
is continuous enough to be interpolated. The simulation program yields results
with good precision so that the resulting data are not subjected to fluctuation.

The gray thick line in figure 3.1 shows the Lagrange interpolation polynomial
obtained from the sample points. It readily shows limitations inherent to the
use of interpolation polynomials. The reader can see that for values above 6.5
— corresponding to an energy of 500 MeV — the interpolated function does
not reproduce the curve corresponding to the sample points. In fact, above 4.0
— that is, 50 MeV on the scale of figure 3.1 — the correction is expected to be
a linear function of the logarithm of the energy.

Figure 3.1 shows a comparison between the Lagrange interpolation polyno-
mial (gray thick line) and interpolation with a rational function (black dotted
line) using the same sample points as in figure 3.1. The reader can see that, in
the high-energy region (above 4 on the scale of figure 3.1) the rational function

(SLAC) - simulates the absorption of electromagnetic showers inside matter. Besides being
used in high-energy physics this program is also used in radiology to dimension detectors of
PET scanners and other similar radiology equipment.

3.1. GENERAL REMARKS 49

Figure 3.4: Comparison of Lagrange interpolation and cubic spline

does a better job than the Lagrange polynomial. Between the first two points,
however, the rational function fails to reproduce the expected behavior.

Figure 3.1 shows a comparison between the Lagrange interpolation polyno-
mial (gray thick line) and cubic spline interpolation (black dotted line) using the
same sample points as in figure 3.1. The reader can see that, in the high-energy
region (above 4 on the scale of figure 3.1) the cubic spline does a better job
than the Lagrange polynomial. In fact, since the dependence is linear over that
range, the cubic spline reproduces the theoretical dependence exactly. In the
low energy region, however, cubic spline interpolation fails to reproduce the cur-
vature of the theoretical function because of the limitation of the polynomial’s
degree.

A final example shows a case where interpolation should not be used. Here
the sample points represent the dependence of the probability that a coin mech-
anism accepts a wrong coin as a function of an adjustable threshold. The
determination of each point requires 5-10 minutes of computing time. In this
case, however, the simulation was based on using experimental data. Contrary
to the points of figure 3.1 the points of figure 3.1 are subjected to large fluctua-
tions, because the sample points have been derived from measured data. Thus,
interpolation does not work.

As in figure 3.1, the gray thick line is the Lagrange interpolation polynomial

50 CHAPTER 3. INTERPOLATION

Figure 3.5: Example of misbehaving interpolation

3.2. LAGRANGE INTERPOLATION 51

and the black dotted line is the cubic spline. Clearly the Lagrange interpolation
polynomial is not giving any reasonable interpolation. Cubic spline is not really
better as is tries very hard to reproduce the fluctuations of the computed points.
In this case, a polynomial fit (c.f. section 10.8) is the best choice: the thin black
line shows the result of a fit with a 3rd degree polynomial. Another example of
unstable interpolation is given in section 10.8 (figure 10.5).

Three implementations of Lagrange interpolation
Once you have verified that a Lagrange interpolation polynomial can be used to
perform reliable interpolation over the sample points, you must chose among 3
algorithms to compute the Lagrange interpolation polynomial: direct Lagrange
formula, Newton’s algorithm and Neville’s algorithm.

Newton’s algorithm stores intermediate values which only depends on the
sample points. It is thus recommended, as it is the fastest method to interpolate
several values over the same sample points. Newton’s algorithm is the method
of choice to compute a function from tabulated values.

Neville’s algorithm gives an estimate of the numerical error obtained by
the interpolation. It can be used when such information is needed. Romberg
integration, discussed in section 6.4, uses Neville’s method for that reason.

3.2 Lagrange interpolation

Let us assume a set of numbers x0, . . . , xn and the corresponding function’s
values y0, . . . , yn. There exist a unique polynomial Pn (x) of degree n such that
Pn (xi) = yi for all i = 0, . . . , n. This polynomial is the Lagrange interpolation
polynomial whose expression is given by [Knudth 2]:

Pn (x) =

n∑
i=0

∏
j 6=i (x− xj)∏
j 6=i (xi − xj)

yi. (3.1)

For example, the Lagrange interpolation polynomial of degree 2 on 3 points is
given by:

P2 (x) =
(x− x1) (x− x2)

(x0 − x1) (x0 − x2)
y0 +

(x− x0) (x− x2)

(x1 − x0) (x1 − x2)
y1 +

(x− x0) (x− x1)

(x2 − x0) (x2 − x1)
y2

(3.2)
The computation of the polynomial occurs in the order of O

(
n2
)

since it involves
a double iteration. One can save the evaluation of a few products by rewriting
equation 3.1 as:

⇐Main equation
Pn (x) =

n∏
i=0

(x− xi)
n∑
i=0

yi
(x− xi)

∏
j 6=i (xi − xj)

. (3.3)

Of course, equation 3.3 cannot be evaluated at the points defining the interpo-
lation. This is easily solved by returning the defining values as soon as one of
the first products becomes zero during the evaluation.

52 CHAPTER 3. INTERPOLATION

3.2.1 Lagrange interpolation — Smalltalk implementation
Figure 3.1 with the box
LagrangeInterpolator
grayed.

The object responsible to implement Lagrange interpolation is defined uniquely
by the sample points over which the interpolation is performed. In addition it
should behave as a function. In other words it should implement the behav-
ior of a one-variable function as discussed in section ??. For example linear
interpolation behaves as follows:

Code example 3.1
| interpolator |

interpolator := DhbLagrangeInterpolator points: (Array with: 1 @ 2

with: 3 @ 1).

interpolator value: 2.2

In this example, one creates a new instance of the class DhbLagrangeInterpolator
by sending the message points: to the class DhbLagrangeInterpolator with
the collection of sample points as argument. The newly created instance is
stored in the variable interpolator. The next line shows how to compute an
interpolated value.

The creation method points: takes as argument the collection of sample
points. However, it could also accept any object implementing a subset of the
methods of the class Collection — namely the methods size, at: and, if we
want to be able to add new sample points, add:.

One can also spare the creation of an explicit collection object by imple-
menting these collection methods directly in the Lagrange interpolation class.
Now, one can also perform interpolation in the following way:

Code example 3.2
| interpolator deviation |

interpolator := DhbLagrangeInterpolator new.

1 to: 45 by: 2 do:

[:x | interpolator add: x @ (x degreesToRadians sin)].

deviation := (interpolator value: 8) -(8 degreesToRadians sin).

The code above creates an instance of the class DhbLagrangeInterpolator

with an empty collection of sample points. It then adds sample points one by
one directly into the interpolator object. Here the sample points are tabulated
values of the sine function for odd degree values between 1 and 45 degree. The
final line of the code compares the interpolated value with the correct one.

Listing 3.1 shows the full code of the class implementing the interface shown
above.

The class DhbLagrangeInterpolator is implemented with a single instance
variable containing the collection of sample points. Each point contains a pair
of values (xi, yi) and is implemented with object of the base class Point since
an instance of Point can contain any type of object in its coordinates. There
are two creation methods, points: and new, depending on whether the sample
points are supplied as an explicit object or not. Each creation method calls in
turn an initialization method, respectively initialize: and initialize.

3.2. LAGRANGE INTERPOLATION 53

The method points: takes as argument the collection of the sample points.
This object must implement the following methods of the class Collection:
size, at: and add:. If the class is created with the method new an implicit col-
lection object is created with the method defaultSamplePoints. This arrange-
ment allows subclasses to select another type of collection if needed. The de-
fault collection behavior implemented by the class DhbLagrangeInterpolator

is minimal, however. If there is a need for more flexible access to the collection
of sample points, a proper collection object or a special purpose object should
be used.

The interpolation itself is implemented within the single method value:.
This method is unusually long for object-oriented programming standards. In
this case, however, there is no compelling reason to split any portion of the al-
gorithm into a separate method. Moreover, splitting the method would increase
the computing time.

A final discussion should be made about the two methods xPointAt: and
yPointAt:. In principle, there is no need for these methods as the value could
be grabbed directly from the collection of points. If one needs to change the
implementation of the point collection in a subclass, however, only these two
methods need to be modified. Introducing this kind of construct can go a long
way in program maintenance.

Listing 3.1 Smalltalk implementation of the Lagrange interpolation

Class DhbLagrangeInterpolator
Subclass of Object

Instance variable names: pointCollection

Class methods

new

^super new initialize

points: aCollectionOfPoints

^self new initialize: aCollectionOfPoints

Instance methods

add: aPoint

^pointCollection add: aPoint

defaultSamplePoints

^OrderedCollection new

54 CHAPTER 3. INTERPOLATION

initialize

^self initialize: self defaultSamplePoints

initialize: aCollectionOfPoints

pointCollection := aCollectionOfPoints.

^self

value: aNumber

| norm dx products answer size |

norm := 1.

size := pointCollection size.

products := Array new: size.

products atAllPut: 1.

1 to: size

do: [:n |

dx := aNumber - (self xPointAt: n).

dx = 0

ifTrue: [^(self yPointAt: n)].

norm := norm * dx.

1 to: size

do: [:m |

m = n

ifFalse:[products at: m put: (((self

xPointAt: m) - (self xPointAt: n)) * (products at: m))].

].

].

answer := 0.

1 to: size do:

[:n | answer := (self yPointAt: n) / ((products at: n) *

(aNumber - (self xPointAt: n))) + answer].

^norm * answer

xPointAt: anInteger

^(pointCollection at: anInteger) x

yPointAt: anInteger

^(pointCollection at: anInteger) y

3.3. NEWTON INTERPOLATION 55

3.3 Newton interpolation

If one must evaluate the Lagrange interpolation polynomial for several values,
it is clear that the Lagrange’s formula is not efficient. Indeed a portion of the
terms in the summation of equation 3.3 depends only on the sample points
and does not depend on the value at which the polynomial is evaluated. Thus,
one can speed up the evaluation of the polynomial if the invariant parts are
computed once and stored.

If one writes the Lagrange interpolation polynomial using a generalized
Horner expansion, one obtains the Newton’s interpolation formula given by
[Knudth 2]:

⇐Main equationPn (x) = α0 + (x− x0) · [α1 + (x− x1) · [· · · [αn−1 + αn · (x− x1)]]] (3.4)

The coefficients αi are obtained by evaluating divided differences as follows:
∆0
i = yi

∆k
i =

∆k−1
i
−∆k−1

i−1

xi−xi−k for k = 1, . . . , n

αi = ∆i
i

(3.5)

Once the coefficients αi have been obtained, they can be stored in the object
and the generalized Horner expansion of equation 3.4 can be used.

The time to evaluate the full Newton’s algorithm — that is computing the
coefficients and evaluating the generalized Horner expansion — is about twice
the time needed to perform a direct Lagrange interpolation. The evaluation
of the generalized Horner expansion alone, however, has an execution time of
O(n) and is therefore much faster than the evaluation of a direct Lagrange
interpolation which goes as O

(
n2
)
. Thus, as soon as one needs to interpolate

more than 2 points over the same point sample, Newton’s algorithm is more
efficient than direct Lagrange interpolation.

Note: The implementations of Newton’s interpolation algorithm
are identical in both languages. Thus, the reader can skip one of the
two next subsections without losing anything.

3.3.1 Newton interpolation — General implementation
Figure 3.1 with the box
NewtonInterpolator
grayed.

The object implementing Newton’s interpolation algorithm is best implemented
as a subclass of the class DhbLagrangeInterpolator because all methods used
to handle the sample points can be reused. This also allows us to keep the
interface identical. It has an additional instance variable needed to store the
coefficients αi. Only 4 new methods are needed.

Since the client object can add new sample points at will, one cannot be sure
of when it is safe to compute the coefficients. Thus, computing the coefficients
is done with lazy initialization. The method value: first checks whether the
coefficients αi have been computed. If not, the method computeCoefficients

56 CHAPTER 3. INTERPOLATION

is called. Lazy initialization is a technique widely used in object oriented pro-
gramming whenever some value needs only be computed once.
The generalized Horner expansion is implemented in the method value:.

If a new sample point is added, the coefficient eventually stored in the
object are no longer valid. Thus, the method add: first calls the method
resetCoefficients and then calls the method add: of the superclass. The
method resetCoefficients makes sure that the coefficients will be computed
anew at the next evaluation of the interpolation polynomial. The method
resetCoefficients has been implemented as a separate method so that the
reset mechanism can be reused by any subclass.

Another reason to keep the method resetCoefficients separate is that it
must also be called before doing an interpolation if the sample points have been
modified directly by the client application after the last interpolation has been
made. An alternative is to implement the Observable/Observer pattern
so that resetting of the coefficients happens implicitly using events. However,
since modifying the sample points between interpolation should only be a rare
occasion when using Newton’s algorithm3 our proposed implementation is much
simpler.

3.3.2 Newton interpolation — Smalltalk implementation

Listing 3.2 shows the complete implementation in Smalltalk. The class NewtonInterpolator
is a subclass of class LagrangeInterpolator. The code examples 3.1 and 3.2
can directly be applied to Newton interpolation after replacing the class name
DhbLagrangeInterpolator with DhbNewtonInterpolator.

The generalized Horner expansion is implemented in the method value:

using explicit indices. One could have used the method inject:into: as it was
done for Horner’s formula when evaluating polynomials. In this case, however,
one must still keep track of the index to retrieve the sample point corresponding
to each coefficient. Thus, one gains very little in compactness.

Listing 3.2 Smalltalk implementation of the Newton interpolation

Class DhbNewtonInterpolator
Subclass of DhbLagrangeInterpolator

Instance variable names: coefficients

Instance methods

add: aPoint

self resetCoefficients.

^super add: aPoint

3If modification of the sample points is not a rare occasion, then Newton’s algorithm has no
advantage over direct Lagrange interpolation or Neville’s algorithm. Those algorithms should
be used instead of Newton’s algorithm.

3.4. NEVILLE INTERPOLATION 57

computeCoefficients

| size k1 kn|

size := pointCollection size.

coefficients := (1 to: size) collect: [:n | self yPointAt: n].

1 to: (size - 1)

do: [:n |

size to: (n + 1) by: -1

do: [:k |

k1 := k - 1.

kn := k - n.

coefficients at: k put: (((coefficients at:

k) - (coefficients at: k1))

/ ((self xPointAt: k) -

(self xPointAt: kn))).

].

].

resetCoefficients

coefficients := nil.

value: aNumber

| answer size |

coefficients isNil

ifTrue: [self computeCoefficients].

size := coefficients size.

answer := coefficients at: size.

(size - 1) to: 1 by: -1

do: [:n | answer := answer * (aNumber - (self xPointAt:

n)) + (coefficients at: n)].

^answer

3.4 Neville interpolation

Neville’s algorithm uses a successive approximation approach implemented in
practice by calculating divided differences recursively. The idea behind the al-
gorithm is to compute the value of the interpolation’s polynomials of all degrees
between 0 and n. This algorithm assumes that the sample points have been
sorted in increasing order of abscissa.

Let P ij (x) be the (partial) Lagrange interpolation polynomials of degree i
defined by the sets of values xj , . . . , xj+i and the corresponding function’s values

58 CHAPTER 3. INTERPOLATION

yj , . . . , yj+i. From equation 3.1 one can derive the following recurrence formula
[Press et al.]:

⇐Main equation
P ij (x) =

(x− xi+j)P i−1
j (x) + (xj − x)P i−1

j+1 (x)

xj − xi+j
for j < i. (3.6)

The initial values P 0
j (x) are simply yj . The value of the final Lagrange’s

polynomial is Pn0 (x).
Neville’s algorithm introduces the differences between the polynomials of

various degrees. One defines:
∆left
j,i (x) = P ij (x)− P i−1

j (x)

∆right
j,i (x) = P ij (x)− P i−1

j+1 (x)

(3.7)

From the definition above and equation 3.6 one derives a pair of recurrence
formulae for the differences:

∆left
j,i+1 (x) = xi−x

xj−xi+j+1

(
∆left
j+1,i (x)−∆right

j,i (x)
)

∆right
j,i+1 =

xi+j+1−x
xj−xi+j+1

(
∆left
j+1,i (x)−∆right

j,i (x)
) (3.8)

In practice two arrays of differences — one for left and one for right — are
allocated. Computation of each order is made within the same arrays. The
differences of the last order can be interpreted as an estimation of the error
made in replacing the function by the interpolation’s polynomial.

Neville’s algorithm is faster than the evaluation of direct Lagrange’s interpo-
lation for a small number of points (smaller than about 74. Therefore a simple
linear interpolation is best performed using Neville’s algorithm. For a large
number of points, it becomes significantly slower.

3.4.1 Neville interpolation — General implementation
Figure 3.1 with the box
NevilleInterpolator
grayed.

The object implementing Neville’s interpolation’s algorithm is best implemented
as a subclass of the class LagrangeInterpolator since the methods used to
handle the sample points can be reused. This also allows us to keep the interface
identical.

The new class has two additional instance variables used to store the finite
differences ∆left

j,i (x) and ∆right
j,i (x) for all j. These instance variables are recycled

for all i. Only a few additional methods are needed.
The method valueAndError: implementing Neville’s algorithm returns an

array with two elements: the first element is the interpolated value and the
second is the estimated error. The method value: calls the former method and
returns only the interpolated value.

4c.f. footnote 8 on page 69

3.4. NEVILLE INTERPOLATION 59

Unlike other interpolation algorithms, the method valueAndError: is bro-
ken into smaller methods because the mechanics of computing the finite differ-
ences will be reused in the Bulirsch-Stoer algorithm. The method valueAndError:

begins by calling the method initializeDifferences: to populate the arrays
containing the finite differences with their initial values. These arrays are cre-
ated if this is the first time they are used with the current sample points. This
prevents unnecessary memory allocation. Then, at each iteration the method
computeDifference:at:order: computes the differences for the current order.

3.4.2 Neville interpolation — Smalltalk implementation

Listing 3.3 shows the implementation of Neville’s algorithm in Smalltalk. The
class DhbNevilleInterpolator is a subclass of class DhbLagrangeInterpolator.
The code examples 3.1 and 3.2 can directly be applied to Neville interpolation af-
ter replacing the class name DhbLagrangeInterpolator with DhbNevilleInterpolator.
An example of interpolation using the returned estimated error is given in sec-
tion 6.4.2.

The method defaultSamplePoints overrides that of the superclass to re-
turn a sorted collection. Thus, each point added to the implicit collection is
automatically sorted by increasing abscissa as required by Neville’s algorithm.

Listing 3.3 Smalltalk implementation of Neville’s algorithm

Class DhbNevilleInterpolator
Subclass of DhbLagrangeInterpolator

Instance variable names: leftErrors rightErrors

Instance methods

computeDifference: aNumber at: anInteger1 order: anInteger2

| leftDist rightDist ratio |

leftDist := (self xPointAt: anInteger1) - aNumber.

rightDist := (self xPointAt: (anInteger1 + anInteger2)) -

aNumber.

ratio := ((leftErrors at: (anInteger1 + 1)) - (rightErrors

at: anInteger1)) / (leftDist - rightDist).

leftErrors at: anInteger1 put: ratio * leftDist.

rightErrors at: anInteger1 put: ratio * rightDist.

defaultSamplePoints

^SortedCollection sortBlock: [:a :b | a x < b x]

initializeDifferences: aNumber

60 CHAPTER 3. INTERPOLATION

| size nearestIndex dist minDist |

size := pointCollection size.

leftErrors size = size

ifFalse:[leftErrors := Array new: size.

rightErrors := Array new: size.

].

minDist := ((self xPointAt: 1) - aNumber) abs.

nearestIndex := 1.

leftErrors at: 1 put: (self yPointAt: 1).

rightErrors at: 1 put: leftErrors first.

2 to: size do:

[:n |

dist := ((self xPointAt: n) - aNumber) abs.

dist < minDist

ifTrue: [dist = 0

ifTrue: [^n negated].

nearestIndex := n.

minDist := dist.

].

leftErrors at: n put: (self yPointAt: n).

rightErrors at: n put: (leftErrors at: n).

].

^nearestIndex

value: aNumber

^(self valueAndError: aNumber) first

valueAndError: aNumber

| size nearestIndex answer error |

nearestIndex := self initializeDifferences: aNumber.

nearestIndex < 0

ifTrue: [^Array with: (self yPointAt: nearestIndex negated)

with: 0].

answer := leftErrors at: nearestIndex.

nearestIndex := nearestIndex - 1.

size := pointCollection size.

1 to: (size - 1) do:

[:m |

1 to: (size - m) do:

[:n | self computeDifference: aNumber at: n order: m].

size - m > (2 * nearestIndex)

ifTrue: [error := leftErrors at: (nearestIndex + 1)

]

3.5. BULIRSCH-STOER INTERPOLATION 61

ifFalse:[error := rightErrors at: (nearestIndex).

nearestIndex := nearestIndex - 1.

].

answer := answer + error.

].

^Array with: answer with: error abs

3.5 Bulirsch-Stoer interpolation

If the function to interpolate is known to have poles5 in the vicinity of the
real axis over the range of the sample points a polynomial cannot do a good
interpolation job [Press et al.].

In this case it is better to use rational function, that is a quotient of two
polynomials as defined hereafter:

R (x) =
P (x)

Q (x)
(3.9)

The coefficients of both polynomials are only defined up to a common factor.
Thus, if p is the degree of polynomial P (x) and q is the degree of polynomial
Q (x), we must have the relation p+ q+ 1 = n where n is the number of sample
points. This of course is not enough to restrict the variety of possible rational
functions.

Bulirsch and Stoer have proposed an algorithm for a rational function where
p = bn−1

2 c. This means that q is either equal to p if the number of sample points
is odd or equal to p+ 1 if the number of sample points is even. Such a rational
function is called a diagonal rational function. This restriction, of course, limits
the type of function shapes that can be interpolated.

The Bulirsch-Stoer algorithm is constructed like Neville’s algorithm: finite
differences are constructed until all points have been taken into account.

Let Rij (x) be the (partial) diagonal rational functions of order i defined by
the sets of values xj , . . . , xj+i and the corresponding function’s values yj , . . . , yj+i.
As in the case of Neville’s algorithm, one can establish a recurrence formula be-
tween functions of successive orders. We have [Press et al.]:

Rij (x) = Ri−1
j+1 (x) +

Ri−1
j+1 (x)−Ri−1

j (x)

x−xj
x−xi+j

(
1− Ri−1

j+1
(x)−Ri−1

j
(x)

Ri−1
j+1

(x)−Ri−2
j+1

(x)

) for j < i. (3.10)

The initial values R0
j (x) are simply yj . The final rational function is Rn0 (x).

Like in Neville’s algorithm one introduces the differences between the func-
tions of various orders. One defines: ∆left

j,i (x) = Rij (x)−Ri−1
j (x)

∆right
j,i (x) = Rjj (x)−Ri−1

j+1 (x)
(3.11)

5That is, a singularity in the complex plane.

62 CHAPTER 3. INTERPOLATION

From the definition above and equation 3.10 one derives a pair of recurrence
formulae for the differences:

∆left
j,i+1 (x) =

x−xj
x−xi+j+1

∆right
j,i

(x)[∆left
j+1,i(x)−∆right

j,i
(x)]

x−xj
x−xi+j+1

∆right
j,i

(x)−∆left
j+1,i

(x)

∆right
j,i (x) =

∆left
j+1,i(x)[∆left

j+1,i(x)−∆right
j,i

(x)]
x−xj

x−xi+j+1
∆right
j,i

(x)−∆left
j+1,i

(x)

(3.12)

Like for Neville’s algorithm, two arrays of differences — one for left and one
for right — are allocated. Computation of each order is made within the same
arrays. The differences of the last order can be interpreted as an estimation of
the error made in replacing the function by the interpolating rational function.
Given the many similarities with Neville’s algorithm many methods of that
algorithm can be reused.

3.5.1 Bulirsch-Stoer interpolation — General implemen-
tation

Figure 3.1 with the box Bu-
lirschStoerInterpolator
grayed.

The object implementing Bulirsch-Stoer interpolation’s algorithm is best imple-
mented as a subclass of the class DhbNevilleInterpolator since the methods
used to manage the computation of the finite differences can be reused. The
public interface is identical.

Only a single method — the one responsible for the evaluation of the finite
differences at each order — must be implemented. All other methods of Neville’s
interpolation can be reused.

This shows the great power of object-oriented approach. Code written in pro-
cedural language cannot be reused that easily. In [Press et al.] the two codes im-
plementing Neville’s and Bulirsch-Stoer interpolation are of comparable length;
not surprisingly they also have much in common.

3.5.2 Bulirsch-Stoer interpolation — Smalltalk implemen-
tation

Listing 3.4 shows the implementation of Bulirsch-Stoer interpolation in Smalltalk.
The class DhbBulirschStoerInterpolator is a subclass of class DhbNevilleInterpolator.
The code examples 3.1 and 3.2 can directly be applied to Bulirsch-Stoer interpo-
lation after replacing the class name DhbLagrangeInterpolator with DhbBulirschStoerInterpolator.

Listing 3.4 Smalltalk implementation of Bulirsch-Stoer interpolation

Class DhbBulirschStoerInterpolator
Subclass of DhbNevilleInterpolator

Instance methods

computeDifference: aNumber at: anInteger1 order: anInteger2

3.6. CUBIC SPLINE INTERPOLATION 63

| diff ratio |

ratio := ((self xPointAt: anInteger1) - aNumber) * (

rightErrors at: anInteger1)

/ ((self xPointAt: (anInteger1 +

anInteger2)) - aNumber).

diff := ((leftErrors at: (anInteger1 + 1)) - (rightErrors at:

anInteger1))

/ (ratio - (leftErrors at: (anInteger1

+ 1))).

rightErrors at: anInteger1 put: (leftErrors at: (anInteger1 +

1)) * diff.

leftErrors at: anInteger1 put: ratio * diff.

3.6 Cubic spline interpolation

The Lagrange interpolation polynomial is defined globally over the set of given
points and respective function’s values. As we have seen in figure 3.1 and to a
lesser degree in figure 3.1 Lagrange’s interpolation polynomial can have large
fluctuations between two adjacent points because the degree of the interpolating
polynomial is not constrained.

One practical method for interpolating a set of function’s value with a poly-
nomial of constrained degree is to use cubic splines. A cubic spline is a 3rd

order polynomial constrained in its derivatives at the end points. A unique
cubic spline is defined for each interval between two adjacent points. The in-
terpolated function is required to be continuous up to the second derivative at
each of the points.

Before the advent of computers, people were drawing smooth curves by stick-
ing nails at the location of computed points and placing flat bands of metal
between the nails. The bands were then used as rulers to draw the desired
curve. These bands of metal were called splines and this is where the name of
the interpolation algorithm comes from. The elasticity property of the splines
correspond to the continuity property of the cubic spline function.

The algorithm exposed hereafter assumes that the sample points have been
sorted in increasing order of abscissa.

To derive the expression for the cubic spline, one first assumes that the
second derivatives of the splines, y′′i , are known at each point. Then one writes
the cubic spline between xi−1 and xi in the following symmetric form:

⇐Main equationPi (x) = yi−1Ai (x) + yiBi (x) + y′′i−1Ci (x) + y′′i Di (x) , (3.13)

where
Ai (x) = xi − x

xi − xi−1,

Bi (x) =
x− xi−1
xi − xi−1.

(3.14)

64 CHAPTER 3. INTERPOLATION

Using the definition above, the first two terms in equation 3.13 represents the
linear interpolation between the two points xi−1 and xi. Thus, the last two
terms of must vanish at xi−1 and xi. In addition we must have by definition:

d2Pi (x)
dx2

∣∣∣∣
x=xi−1

= y′′i−1,

d2Pi (x)
dx2

∣∣∣∣
x=xi

= y′′i .

(3.15)

One can rewrite the first equation in 3.15 as a differential equation for the
function Ci as a function of Ai. Similarly, the second equation is rewritten as a
differential equation for the function Di as a function of Bi. This yields:

Ci (x) =
Ai (x)

[
Ai (x)

2 − 1
]

6 (xi − xi−1)
2
,

Di (x) =
Bi (x)

[
Bi (x)

2 − 1
]

6 (xi − xi−1)
2
,

(3.16)

Finally, one must use the fact that the first derivatives of each spline must be
equal at each end points of the interval, that is:

dPi (x)

dx
=
dPi+1 (x)

dx
. (3.17)

This yields the following equations for the second derivatives y′′i :

xi+1 − xi
6

y′′i+1 +
xi+1 − xi−1

6
y′′i +

xi − xi−1

6
y′′i−1 =

yi+1 − yi
xi+1 − xi

− yi − yi−1

xi − xi−1
.

(3.18)
There are n − 1 equations for the n unknowns y′′i . We are thus missing two
equations. There are two ways of defining two additional equations to obtain a
unique solution.

• The first method is the so-called natural cubic spline for which one sets
y′′0 = y′′n = 0. This means that the spline is flat at the end points.

• The second method is called constrained cubic spline. In this case the
first derivatives of the function at x0 and xn, y′0 and y′n, are set to given
values.

In the case of constrained cubic spline, one obtain two additional equations
by evaluating the derivatives of equation 3.13 at x0 and xn:

3A1(x)2−1
6 (x1 − x0) y′′0 −

3B1(x)2−1
6 (x1 − x0) y′′1 = y′0 −

y1−y0
x1−x0

,

3An(x)2−1
6 (xn − xn−1) y′′n −

3Bn(x)2−1
6 (xn − xn−1) y′′n−1 = y′n −

yn−yn−1

xn−xn−1
.

(3.19)

3.6. CUBIC SPLINE INTERPOLATION 65

The choice between natural or constrained spline can be made independently
at each end point.

One solves the system of equations 3.18, and possibly 3.19, using direct
Gaussian elimination and back substitution (c.f. section 8.2). Because the cor-
responding matrix is tridiagonal, each pivoting step only involves one operation.
Thus, resorting to a general algorithm for solving a system of linear equations
is not necessary.

3.6.1 Cubic spline interpolation — General implementa-
tion

Figure 3.1 with the box
SplineInterpolator
grayed.

In both languages the object implementing cubic spline interpolation is a sub-
class of the Newton interpolator. The reader might be surprised by this choice
since, mathematically speaking, these two objects do not have anything in com-
mon.

However, from the behavioral point of view, they are quite similar. Like
for Newton interpolation, cubic spline interpolation first needs to compute a
series of coefficients, namely the second derivatives, which only depends on the
sample points. This calculation only needs to be performed once. Then the
evaluation of the function can be done using equations 3.13, 3.14 and 3.16.
Finally, as for the Newton interpolator, any modification of the points requires
a new computation of the coefficients. The behavior can be reused from the
class NewtonInterpolator.

The second derivatives needed by the algorithm are stored in the variable
used to store the coefficients of Newton’s algorithm.

The class SplineInterpolator has two additional instance variables needed
to store the end point derivatives y′0 and y′n. Corresponding methods needed to
set or reset these values are implemented. If the value of y′0 or y′n is changed
then the coefficients must be reset.

Natural or constrained cubic spline is flagged independently at each point
by testing if the corresponding end-point derivative has been supplied or not.
The second derivatives are computed used lazy initialization by the method
computeSecondDerivatives.

3.6.2 Cubic spline interpolation — Smalltalk implemen-
tation

Listing 3.5 shows the implementation of cubic spline interpolation in Smalltalk.
The class DhbSplineInterpolator is a subclass of class DhbNewtonInterpolator.
The code examples 3.1 and 3.2 can directly be applied to cubic spline interpola-
tion after replacing the class name DhbLagrangeInterpolator with DhbSplineInterpolator.

If the end-point derivative is nil the corresponding end-point is treated as
a natural spline.

The method defaultSamplePoints overrides that of the superclass to create
a sorted collection. Thus, as each point is added to the implicit collection, the

66 CHAPTER 3. INTERPOLATION

collection of sample points remains in increasing order of abscissa as required
by the cubic spline algorithm.

Listing 3.5 Smalltalk implementation of cubic spline interpolation

Class DhbSplineInterpolator
Subclass of DhbNewtonInterpolator

Instance variable names: startPointDerivative endPointDerivative

Instance methods

computeSecondDerivatives

| size u w s dx inv2dx |

size := pointCollection size.

coefficients := Array new: size.

u := Array new: size - 1.

startPointDerivative isNil

ifTrue:

[coefficients at: 1 put: 0.

u at: 1 put: 0]

ifFalse:

[coefficients at: 1 put: -1 / 2.

s := 1 / ((self xPointAt: 2) x - (self xPointAt: 1) x).

u at: 1

put: 3 * s

* (s * ((self yPointAt: size) - (self

yPointAt: size - 1))

- startPointDerivative)].

2 to: size - 1

do:

[:n |

dx := (self xPointAt: n) - (self xPointAt: (n - 1)).

inv2dx := 1 / ((self xPointAt: n + 1) - (self xPointAt:

n - 1)).

s := dx * inv2dx.

w := 1 / (s * (coefficients at: n - 1) + 2).

coefficients at: n put: (s - 1) * w.

u at: n

put: ((((self yPointAt: n + 1) - (self yPointAt:

n))

/ ((self xPointAt: n + 1) - (self xPointAt:

n))

- (((self yPointAt: n) - (self

yPointAt: n - 1)) / dx)) * 6

* inv2dx - ((u at: n - 1) * s))

3.6. CUBIC SPLINE INTERPOLATION 67

* w].

endPointDerivative isNil

ifTrue: [coefficients at: size put: 0]

ifFalse:

[w := 1 / 2.

s := 1 / ((self xPointAt: size) - (self xPointAt: (size

- 1))).

u at: 1

put: 3 * s * (endPointDerivative

- (s * (self yPointAt: size) - (self

yPointAt: size - 1))).

coefficients at: size

put: s - (w * (u at: size - 1) / ((coefficients at:

size - 1) * w + 1))].

size - 1 to: 1

by: -1

do:

[:n |

coefficients at: n

put: (coefficients at: n) * (coefficients at: n + 1)

+ (u at: n)]

defaultSamplePoints

^SortedCollection sortBlock: [:a :b | a x < b x]

endPointDerivative: aNumber

endPointDerivative := aNumber.

self resetCoefficients.

resetEndPointDerivatives

self setEndPointDerivatives: (Array new: 2).

setEndPointDerivatives: anArray

startPointDerivative := anArray at: 1.

endPointDerivative := anArray at: 2.

self resetCoefficients.

startPointDerivative: aNumber

startPointDerivative := aNumber.

self resetCoefficients.

68 CHAPTER 3. INTERPOLATION

value: aNumber

| answer n1 n2 n step a b |

coefficients isNil ifTrue: [self computeSecondDerivatives].

n2 := pointCollection size.

n1 := 1.

[n2 - n1 > 1] whileTrue:

[n := (n1 + n2) // 2.

(self xPointAt: n) > aNumber ifTrue: [n2 := n] ifFalse:

[n1 := n]].

step := (self xPointAt: n2) - (self xPointAt: n1).

a := ((self xPointAt: n2) - aNumber) / step.

b := (aNumber - (self xPointAt: n1)) / step.

^a * (self yPointAt: n1) + (b * (self yPointAt: n2))

+ ((a * (a squared - 1) * (coefficients at: n1)

+ (b * (b squared - 1) * (coefficients at: n2))) *

step squared

/ 6)

3.7 Which method to choose?

At this point some reader might experience some difficulty in choosing among
the many interpolation algorithms discussed in this book. There are indeed
many ways to skin a cat. Selecting a method depends on what the user intends
to do with the data.

First of all, the reader should be reminded that Lagrange interpolation,
Newton interpolation and Neville’s algorithm are different alorithms computing
the values of the same function, namely the Lagrange interpolation polynomial.
In other words, the interpolated value resulting from each 3 algorithms is the
same (up to rounding errors of course).

The Lagrange interpolation polynomial can be subject to strong variations
(if not wild in some cases, figure 3.1 for example) if the sampling points are
not smooth enough. A cubic spline may depart from the desired function if the
derivatives on the end points are not constrained to proper values. A rational
function can do a good job in cases where polynomials have problems. To
conclude, let me give you some rules of thumb to select the best interpolation
method based on my personal experience.

If the function to interpolate is not smooth enough, which maybe the case
when not enough sampling points are available, a cubic spline is preferable to the
Lagrange interpolation polynomial. Cubic splines are traditionally used in curve
drawing programs. Once the second derivatives have been computed, evaluation
time is of the order of O(n). You must keep in your mind the limitation6 imposed

6The curvature of a cubic spline is somewhat limited. What happens is that the curvature
and the slope (first derivative) are strongly coupled. As a consequence a cubic spline gives a
smooth approximation to the interpolated points.

3.7. WHICH METHOD TO CHOOSE? 69

on the curvature when using a 3rd order polynomial.
If the Lagrange interpolation polynomial is used to quickly evaluate a tabu-

lated7 function, Newton interpolation is the algorithm of choice. Like for cubic
spline interpolation, the evaluation time is of the order of O(n) once the coeffi-
cients have been computed.

Neville’s algorithm is the only choice if an estimate of error is needed in
addition to the interpolated value. The evaluation time of the algorithm is of
the order of O

(
n2
)
.

Lagrange interpolation can be used for occasional interpolation or when the
values over which interpolation is made are changing at each interpolation. The
evaluation time of the algorithm is of the order of O

(
n2
)
. Lagrange interpola-

tion is slightly slower than Neville’s algorithm as soon as the number of points
is larger than 38. However, Neville’s algorithm needs to allocate more memory.
Depending on the operating system and the amount of available memory the ex-
act place where Lagrange interpolation becomes slower than Neville’s algorithm
is likely to change.

If the function is smooth but a Lagrange polynomial is not reproducing the
function in a proper way, a rational function can be tried using Bulirsch-Stoer
interpolation.

Table 3.1 shows a summary of the discussion. If you are in doubt, I recom-

Table 3.1: Recommended polynomial interpolation algorithms

Feature Recommended algorithm
Error estimate desired Neville
Couple of sample points Lagrange
Medium to large number of sample points Neville
Many evaluations on fixed sample Newton
Keep curvature under constraint Cubic spline
Function hard to reproduce Bulirsch-Stoer

mend that you make a test first for accuracy and then for speed of execution.
Drawing a graph such as in the figures presented in this chapter is quite helpful
to get a proper feeling about the possibility offered by various interpolation al-
gorithms on a given set of sample points. If neither Lagrange interpolation nor
Bulirsch-Stoer nor cubic spline is doing a good job at interpolating the sample
points, you should consider using curve fitting (c.f. chapter 10) with an ad-hoc
function.

7A tabulated function is a function, which has been computed at a finite number of its
argument.

8Such a number is strongly dependent on the operating system and virtual machine. Thus,
the reader should check this number him/herself.

70 CHAPTER 3. INTERPOLATION

Chapter 4

Iterative algorithms

Cent fois sur le métier remettez votre ouvrage.
Nicolas Boileau

When a mathematical function cannot be approximated with a clever expres-
sion, such as Lanczos formula introduced in the chapter 2.4.1, one must resort
to compute that function using the integral, the recurrence formula or the series
expansion. All these algorithms have one central feature in common: the rep-
etition of the same computation until some convergence criteria is met. Such
repetitive computation is called iteration.

Figure 4.1 shows the class diagram of the classes discussed in this chapter.
This chapter first discusses the implementation of a general-purpose iterative
process. Then, we describe a generalization for the finding of a numerical result.
Other chapters discuss examples of sub-classing of these classes to implement
specific algorithms.

Iteration is used to find the solution of a wide variety of problems other than
just function evaluation. Finding the location where a function is zero, reached
a maximum or a minimum is another example. Some data mining algorithms
also use iteration to find a solution (c.f. section 12.6).

4.1 Successive approximations

A general-purpose iterative process can be decomposed in three main steps:

• a set-up phase

• an iteration phase until the result is acceptable

• a clean-up phase

These steps are translated schematically into the flow diagram shown in Figure
4.2.

71

72 CHAPTER 4. ITERATIVE ALGORITHMS

IterativeProcess

desiredPrecision:
evaluate
evaluateIteration

finalizeIterations
hasConverged
initializeIterations
iterations
maximumIterations:
precision
precisionOf:relativeTo:
result

precision
desiredPrecision
maximumIterations
result
iterations

FunctionalIterator

initializeIterations
relativePrecision
setFunction:

functionBlock
relativePrecision

AbstractFunction

(chapter 2)

Figure 4.1: Class diagram for iterative process classes

Figure 4.2: Successive approximation algorithm

4.1. SUCCESSIVE APPROXIMATIONS 73

The set-up phase allows determining constant parameters used by the sub-
sequent computations. Often a first estimation of the solution is defined at
this time. In any case an object representing the approximate solution is con-
structed. Depending on the complexity of the problem a class will explicitly
represent the solution object. Otherwise the solution shall be described by a
few instance variables of simple types (numbers and arrays).

After the set-up phase the iterative process proper is started. A transfor-
mation is applied to the solution object to obtain a new object. This process is
repeated unless the solution object resulting from the last transformation can
be considered close enough to the sought solution.

During the clean-up phase resources used by the iterative process must be
release. In some cases additional results may be derived before leaving the
algorithm.

Let us now explicit each of the three stages of the algorithm.

The step computing or choosing an initial object is strongly dependent on
the nature of the problem to be solved. In some methods, a good estimate of the
solution can be computed from the data. In others using randomly generated
objects yields good results. Finally, one can also ask the application’s user for
directions. In many cases this step is also used to initialize parameters needed
by the algorithm.

The step computing the next object contains the essence of the algorithm.
In general a new object is generated based on the history of the algorithm.

The step deciding whether or not an object is sufficiently close to the sought
solution is more general. If the algorithm is capable of estimating the precision
of the solution — that is, how close the current object is located from the exact
solution — one can decide to stop the algorithm by comparing the precision to
a desired value. This is not always the case, however. Some algorithms, genetic
algorithms for example, do not have a criterion for stopping.

Whether or not a well-defined stopping criterion exists, the algorithm must
be prevented from taking an arbitrary large amount of time. Thus, the object
implementing an iterative process ought to keep track of the number of iterations
and interrupt the algorithm if the number of iterations becomes larger than a
given number.

Design

Now we can add some details to the algorithm. The new details are shown in Figure 4.1 with the box It-
erativeProcess grayed.figure 4.3. This schema allows us to determine the structure of a general object

implementing the iterative process. It will be implemented as an abstract class.
An abstract class is a class with does not have object instances. A object
implementing a specific algorithm is an instance of a particular subclass of the
abstract class.

The gray boxes in figure 4.3 represent the methods, which must be imple-
mented explicitly by the subclass. The abstract class calls them. However,
the exact implementation of these methods is not defined at this stage. Such
methods are called hook methods.

74 CHAPTER 4. ITERATIVE ALGORITHMS

Figure 4.3: Detailed algorithm for successive approximations

4.1. SUCCESSIVE APPROXIMATIONS 75

Using this architecture the abstract class is able to implement the itera-
tive process without any deep knowledge of the algorithm. Algorithm specific
methods are implemented by the subclass of the abstract class.

Let us call IterativeProcess the class of the abstract object. The class
IterativeProcess needs the following instance variables.

iterations keeps track of the number of iterations, that is the number of
successive approximations,

maximumIterations maximum number of allowed iterations,

desiredPrecision the precision to attain, that is, how close to the solution
should the solution object be when the algorithm is terminated,

precision the precision achieved by the process. Its value is updated after
each iteration and it is used to decide when to stop.

The methods of the class IterativeProcess are shown in figure 4.4 in corre-
spondence with the general execution flow shown in figure 4.3. The two methods
initializeIterations and finalizeIterations should be implemented by
the subclass but the abstract class provides a default behavior: doing nothing.
The method evaluateIteration must be implemented by each subclass.

Since the precision of the last iteration is kept in an instance variable, the
method hasConverged can be called at any time after evaluation, thus providing
a way for client classes to check whether the evaluation has converged or not.

4.1.1 Iterative process — Smalltalk implementation

Even though we are dealing for the moment with an abstract class we are able
to present a scenario of use illustrating the public interface to the class. Here is
how a basic utilization of an iterative process object would look like.

Code example 4.1
| iterativeProcess result |

iterativeProcess := ¡a subclass of DhbIterativeProcess¿ new.

result := iterativeProcess evaluate.

iterativeProcess hasConverged

ifFalse:[¡special case processing¿].

The first statement creates an object to handle the iterative process. The second
one performs the process and retrieves the result, whatever it is. The final
statement checks for convergence.

To give the user a possibility to have more control, one can extend the public
interface of the object to allow defining the parameters of the iterative process:
the desired precision and the maximum number of iterations. In addition, the
user may want to know the precision of the attained result and the number
of iterations needed to obtain the result. The following code sample shows an
example of use for all public methods defined for an iterative process. The

76 CHAPTER 4. ITERATIVE ALGORITHMS

Figure 4.4: Methods for successive approximations

4.1. SUCCESSIVE APPROXIMATIONS 77

precision of the attained result and the number of iterations are printed on the
transcript window.

Code example 4.2
| iterativeProcess result precision |

iterativeProcess := ¡a subclass of DhbIterativeProcess¿ new.

iterativeProcess desiredPrecision: 1.0e-6; maximumIterations:

25.

result := iterativeProcess evaluate.

iterativeProcess hasConverged

ifTrue: [Transcript nextPutAll: ’Result obtained after

’.

iterativeProcess iteration printOn: Transcript.

Transcript nextPutAll: ’iterations. Attained precision is

’.

iterativeProcess precision printOn: Transcript.

]

ifFalse:[Transcript nextPutAll: ’Process did not converge’.].

Transcript cr.

Listing 4.1 shows the Smalltalk implementation of the iterative process.
In the Smalltalk implementation, the class IterativeProcess has one in-

stance variable in addition to the ones described in the preceding section. This
variable, called result, is used to keep the solution object of the process. The
method result allows direct access to it. Thus, all subclasses can use this in-
stance variable as a placeholder to store any type of result. As a convenience
the method evaluate also returns the instance variable result.

Default values for the desired precision and the maximum number of iter-
ations are kept in class methods for easy editing. The method initialize loads
these default values for each newly created instance. The default precision is
set to the machine precision discussed in section 1.3.2.

The methods used to modify the desired precision (desiredPrecision:)
and the maximum number of iterations (maximumIterations:) check the value
to prevent illegal definitions, which could prevent the algorithm from terminat-
ing.

Since there is no explicit declaration of abstract class and abstract methods
in Smalltalk1 the three methods initializeIterations, evaluateIteration
and finalizeIterations, are implemented with a reasonable default behavior.
The methods initializeIterations and finalizeIterations do nothing.
The method evaluateIteration calls the method subclassResponsibility,
which raises an exception when called. Using this technique is the Smalltalk
way of creating an abstract method.

1An abstract class is a class containing at least an abstract method; an abstract method
contains the single conventional statement:
self subclassResponsibility

78 CHAPTER 4. ITERATIVE ALGORITHMS

Listing 4.1 Smalltalk implementation of an iterative process

Class DhbIterativeProcess
Subclass of Object

Instance variable names: precision desiredPrecision maximumIterations result

iterations

Class methods

defaultMaximumIterations

^50

defaultPrecision

^DhbFloatingPointMachine new defaultNumericalPrecision

Instance methods

desiredPrecision: aNumber

aNumber > 0

ifFalse: [^self error: ’Illegal precision: ’, aNumber

printString].

desiredPrecision := aNumber.

evaluate

iterations := 0.

self initializeIterations.

[iterations := iterations + 1.

precision := self evaluateIteration.

self hasConverged or: [iterations >= maximumIterations]]

whileFalse: [].

self finalizeIterations.

^self result

evaluateIteration

^self subclassResponsibility

finalizeIterations

hasConverged

^precision <= desiredPrecision

initialize

4.2. EVALUATION WITH RELATIVE PRECISION 79

desiredPrecision := self class defaultPrecision.

maximumIterations := self class defaultMaximumIterations.

^self

initializeIterations

^self

iterations

^iterations

maximumIterations: anInteger

(anInteger isInteger and: [anInteger > 1])

ifFalse: [^self error: ’Invalid maximum number of iteration:

’, anInteger printString].

maximumIterations := anInteger.

precision

^precision

precisionOf: aNumber1 relativeTo: aNumber2

^aNumber2 > DhbFloatingPointMachine new defaultNumericalPrecision

ifTrue: [aNumber1 / aNumber2]

ifFalse:[aNumber1]

result

^result

Note: The method precisionOf:relativeTo: implements the
computation of the relative precision. This is discussed in section
4.2.1.

4.2 Evaluation with relative precision
Figure 4.1 with the box
FunctionalIterator
grayed.

So far we have made no assumption about the nature of the solution searched
by an iterative process. In this section we want to discuss the case when the
solution is a numerical value.

As discussed in section 1.3.2 a floating-point number is a representation
with constant relative precision. It is thus meaningless to use absolute precision
to determine the convergence of an algorithm. The precision of an algorithm
resulting in a numerical value ought to be determined relatively.

One way to do it is to have the method evaluateIteration returning a
relative precision instead of an absolute number. Relative precision, however,
can only be evaluated if the final result is different from zero. If the result is zero,

80 CHAPTER 4. ITERATIVE ALGORITHMS

the only possibility is to check for absolute precision. Of course, in practice one
does not check for equality with zero. The computation of a relative precision is
carried only if the absolute value of the result is larger than the desired precision.

The reasoning behind the computation of the relative error is quite general.
Thus, a general-purpose class FunctionalIterator has been created to imple-
ment a method computing the relative precision from an absolute precision and
a numerical result. In addition, since all subclasses of FunctionalIterator use
a function a general method to handle the definition of that function is also
supplied.

4.2.1 Relative precision — Smalltalk implementation

In this case the public interface is extended with a creation method taking as
argument the function on which the process operates. The code example of
section 4.1.1 then becomes:

4.2. EVALUATION WITH RELATIVE PRECISION 81

Code example 4.3 | iterativeProcess result |

iterativeProcess := ¡a subclass of DhbFunctionalIterator¿ function:

(DhbPolynomial coefficients: #(1 2 3).

result := iterativeProcess evaluate.

iterativeProcess hasConverged

ifFalse:[¡special case processing¿].

In this example the function on which the process will operate is the polynomial
3x2 + 2x+ 1 (c.f. section 2.2).

Listing 4.2 shows the implementation of the abstract class DhbFunctionalIterator
in Smalltalk.

This class has one instance variable functionBlock to store the function. A
single class method allows creating a new instance while defining the function.

As we have seen in section ??, a function can be any object responding
to the message value:. This allows supplying any block of Smalltalk code as
argument to the constructor method. However, the user can also supply a class
implementing the computation of the function with a method with selector
value:. For example, an instance of the class DhbPolynomial discussed in
section ?? can be used.

The instance method setFunction: is used to set the instance variable
functionBlock. In order to prevent a client class from sending the wrong
object, the method first checks whether the supplied object responds to the
message value:. This is one way of ensuring that the arguments passed to a
method conform to the expected protocol. This way of doing is only shown as an
example, however. It is not recommend in practice. The responsibility of sup-
plying the correct arguments to a Smalltalk method is usually the responsibility
of the client class.

The method initializeIterations first checks whether a function block
has been defined. Then it calls the method computeInitialValues. This
method is a hook method, which a subclass must implement to compute the
value of the result at the beginning of the iterative process.

The computation of relative precision is implemented at two levels. One gen-
eral method, precisionOf:relativeTo:, implemented by the superclass allows
the computation of the relative precision relative to any value. Any iterative
process can use this method. The method relativePrecision implements the
computation of the precision relative to the current result.

Listing 4.2 Smalltalk implementation of the class DhbFunctionalIterator

Class DhbFunctionalIterator
Subclass of DhbIterativeProcess

Instance variable names: functionBlock relativePrecision

Class methods

function: aBlock

82 CHAPTER 4. ITERATIVE ALGORITHMS

^self new setFunction: aBlock; yourself

Instance methods

initializeIterations

functionBlock isNil ifTrue: [self error: ’No function supplied’].

self computeInitialValues

relativePrecision: aNumber

^self precisionOf: aNumber relativeTo: result abs

setFunction: aBlock

(aBlock respondsTo: #value:)

ifFalse:[self error: ’Function block must implement the

method value:’].

functionBlock := aBlock.

4.3 Examples

As we have dealt with abstract classes, this chapter did not give concrete exam-
ples of use. By consulting the rest of this book the reader will find numerous
examples of subclasses of the two classes described in this chapter. Table 4.1
lists the sections where each algorithm using the iterative process framework is
discussed.

Table 4.1: Algorithms using iterative processes

Algorithm or class of algorithm Superclass Chapter or section
Zero finding Function iterator Chapter 5
Integration Function iterator Chapter 6
Infinite series and continued fractions Function iterator Chapter 7
Matrix eigenvalues Iterative process Section 8.6
Non-linear least square fit Iterative process Section 10.9
Maximum likelihood fit Iterative process Section 10.10
Function minimization Function iterator Chapter 11
Cluster analysis Iterative process Section 12.6

Chapter 5

Finding the zero of a
function

Le zéro, collier du néant.1

Jean Cocteau

The zeroes of a function are the values of the function’s variable for which the
value of the function is zero. Mathematically, given the function f (x), z is
a zero of when f (z) = 0. This kind of problem is can be extended to the
general problem of computing the value of the inverse function, that is finding
a value x such that f (x) = c where c is a given number. The inverse function
is noted as f−1 (x). Thus, one wants to find the value of f−1 (c) for any c. The
problem can be transformed into the problem of finding the zero of the function
f̃ (x) = f (x)− c.

The problem of finding the values at which a function takes a maximum or
minimum value is called searching for the extremes of a function. This problem
can be transformed into a zero-finding problem if the derivative of the function
can be easily computed. The extremes are the zeroes of the function’s derivative.
Figure 5.1 shows the class diagram of the classes discussed in this chapter.

5.1 Introduction

Let us begin with a concrete example.
Often an experimental result is obtained by measuring the same quantity

several times. In scientific publications, such a result is published with two
numbers: the average and the standard deviation of the measurements. This
is true for medical publication as well. As we have already discussed in section
2.3.1, obstetricians prefer to think in terms of risk and prefer to use centiles
instead of average and standard deviation. Assuming that the measurements

1The zero, a necklace for emptiness.

83

84 CHAPTER 5. FINDING THE ZERO OF A FUNCTION

BisectionZeroFinder

evaluateIteration

findNegativeXFrom:range:

findPositiveXFrom:range:

setNegativeX:

setPositiveX:

positiveX

negativeX

NewtonInterpolator

evaluateIteration

initialValue:

setDerivative:

setFunction:

derivativeBlock

FunctionalIterator

(chapter 4)

AbstractFunction

(chapter 2)

Figure 5.1: Class diagram for zero finding classes

were distributed according to a normal distribution (c.f. section 9.6), the 90th
centile is the solution to the following equation:

erf (x) = 0.9 (5.1)

That is, we need to find the zero of the function f (x) = erf (x) − 0.9. The
answer is x = 1.28 with a precision of two decimals. Thus, if µ and σ are
respectively the average and standard deviation of a published measurement,
the 90th centile is given by µ+ 1.28 · σ. Using equation 2.18 the 10th centile is
given by µ− 1.28 · σ.

5.2 Finding the zeroes of a function — Bisection
method

Figure 5.1 with the box Bi-
sectionZeroFinder grayed. Let assume that one knows two values of x for which the function takes values

of opposite sign. Let us call xpos the value such that f (xpos) > 0 and xneg the
value such that f (xneg) < 0. If the function is continuous between xpos and xneg,
there exists at least one zero of the function in the interval [xpos, xneg]. This
is illustrated in figure 5.2. If the function f is not continuous over the interval
where the sign of the function changes, then the presence of a zero cannot be
guaranteed2. The continuity requirement is essential for the application of the
bisection algorithm.

The values xpos and xneg are the initial values of the bisection algorithm.
The algorithm goes as follows:

1. Compute x =
xpos−xneg

2 .

2. If f (x) > 0, set xpos = x and goto step 4.

2The inverse function is such an example. It changes sign over 0 but has no zeroes for any
finite x

5.2. FINDING THE ZEROES OF A FUNCTION — BISECTION METHOD85

Figure 5.2: The bisection algorithm

3. Otherwise set xneg = x.

4. If |xpos, xneg| > ε go back to step 1. ε is the desired precision of the
solution.

The first couple of steps of the bisection algorithm are represented geometrically
on figure 5.2. Given the two initial values, xpos and xneg, the first iteration of
the algorithm replaces xpos with x1. The next step replaces xneg with x2.

For a given pair of initial values, xpos and xneg, the number of iterations
required to attain a precision ε is given by:

n =

⌈
log2

|xpos, xneg|
ε

⌉
. (5.2)

For example if the distance between the two initial values is 1 the number of
iterations required to attain a precision of 10−8 is 30. It shows that the bisection
algorithm is rather slow.

Knowledge of the initial values, xpos and xneg, is essential for starting the
algorithm. Methods to define them must be supplied. Two convenience methods
are supplied to sample the function randomly over a given range to find each
initial value. The random number generator is discussed in section 9.4.

The bisection algorithm is a concrete implementation of an iterative process.
In this case, the method evaluateIteration of figure 4.4 implements steps 2,
3 and 4. The precision at each iteration is |xpos − xneg| since the zero of the
function is always inside the interval defined by xpos and xneg.

86 CHAPTER 5. FINDING THE ZERO OF A FUNCTION

5.2.1 Bisection algorithm — General implementation

The class of the object implementing the bisection algorithm is a subclass of the
abstract class FunctionalIterator. The class BisectionZeroFinder needs
the following additional instance variables.

positiveX xpos and

negativeX xneg

The bisection algorithm proper is implemented only within the method evaluateIteration.
Other necessary methods have already been implemented in the iterative process
class.

5.2.2 Bisection algorithm — Smalltalk implementation

Finding the zero of a function is performed by creating an instance of the class
DhbBisectionZeroFinder and giving the function as the argument of the cre-
ation method as explained in section 4.2.1. For example the following code finds
the solution of equation 5.1.

Code example 5.1
| zeroFinder result |

zeroFinder:= DhbBisectionZeroFinder function: [:x | x errorFunction - 0.9].

zeroFinder setPositiveX: 10; setNegativeX: 0.

result := zeroFinder evaluate. zeroFinder

hasConverged

ifFalse:[¡special case processing¿].

The second line creates the object responsible to find the zero. The third line
defines the initial values, xpos and xneg. The fourth line performs the algorithm
and stores the result if the algorithm has converged. The last two lines check
for convergence and take corrective action if the algorithm did not converge.

Listing 5.1 shows the implementation of the bisection zero finding algorithm
in Smalltalk.

The class DhbBisectionZeroFinder is a subclass of the class DhbFunctionalIterator.
As one can see only a few methods need to be implemented. Most of them per-
tain to the definition of the initial interval. In particular, convenience methods
are supplied to find a positive and negative function value over a given interval.

The methods defining the initial values, xpos and xneg, are setPositiveX:

and setNegativeX: respectively. An error is generated in each method if the
function’s value does not have the proper sign. The convenience methods to
find random starting values are respectively findPositiveXFrom:range: and
findNegativeXFrom:range:. The method computeInitialValues does not
compute the initial values. Instead it makes sure that xpos and xneg have been
properly defined.

5.2. FINDING THE ZEROES OF A FUNCTION — BISECTION METHOD87

Listing 5.1 Smalltalk implementation of the bisection algorithm

Class DhbBisectionZeroFinder
Subclass of DhbFunctionalIterator

Instance variable names: positiveX negativeX

Instance methods

computeInitialValues

positiveX isNil

ifTrue: [self error: ’No positive value supplied’].

negativeX isNil

ifTrue: [self error: ’No negative value supplied’].

evaluateIteration

result := (positiveX + negativeX) * 0.5.

(functionBlock value: result) > 0

ifTrue: [positiveX := result]

ifFalse:[negativeX := result].

^self relativePrecision: (positiveX - negativeX) abs

findNegativeXFrom: aNumber1 range: aNumber2

| n |

n := 0.

[negativeX := Number random * aNumber2 + aNumber1.

(functionBlock value: negativeX) < 0

] whileFalse: [n := n + 0.1.

n > maximumIterations

ifTrue: [self error: ’Unable to find a

negative function value’].

].

findPositiveXFrom: aNumber1 range: aNumber2

| n |

n := 0.

[positiveX := Number random * aNumber2 + aNumber1.

(functionBlock value: positiveX) > 0

] whileFalse: [n := n + 1.

n > maximumIterations

ifTrue: [self error: ’Unable to find a

positive function value’].

].

88 CHAPTER 5. FINDING THE ZERO OF A FUNCTION

setNegativeX: aNumber

(functionBlock value: aNumber) < 0

ifFalse:[self error: ’Function is not negative at x = ’,

aNumber printString].

negativeX := aNumber.

setPositiveX: aNumber

(functionBlock value: aNumber) > 0

ifFalse:[self error: ’Function is not positive at x = ’,

aNumber printString].

positiveX := aNumber.

5.3 Finding the zero of a function — Newton’s
method

Figure 5.1 with the box
NewtonZeroFinder
grayed.

Isaac Newton has designed an algorithm working by successive approximations[Bass].
Given a value x0 chosen in the vicinity of the desired zero, the following series:

Main equation⇒ xn+1 = xn −
f (xn)

f ′ (xn)
, (5.3)

where f ′ (x) is the first derivative of f (x), converges toward a zero of the
function . This algorithm is sometimes called Newton-Ralphson[Press et al.].

Figure 5.3 shows the geometrical interpretation of the series. f ′ (x) is the
slope of the tangent to the curve of the function f (x) at the point xn. The
equation of this tangent is thus given by:

y = (x− xn) · f ′ (xn) + f (xn) (5.4)

One can then see that xn+1 is the point where the tangent to the curve at the
point xn crosses the x-axis. The algorithm can be started at any point where
the function’s derivative is non- zero.

The technique used in Newton’s algorithm is a general technique often used
in approximations. The function is replaced by a linear approximation3, that is
a straight line going through the point defined by the preceding value and its
function’s value. The slope of the straight line is given by the first derivative
of the function. The procedure is repeated until the variation between the new
value and the preceding one is sufficiently small. We shall see other examples of
this technique in the remainder of this book (c.f. sections 10.9, 10.10 and 11.1).

From equation 5.3, one can see that the series may not converge if f ′ (x)
becomes zero. If the derivative of the function is zero in the vicinity of the zero,

3Mathematically, this corresponds to estimate the function using the first two terms of its
Taylor series.

5.3. FINDING THE ZERO OF A FUNCTION — NEWTON’S METHOD 89

Figure 5.3: Geometrical representation of Newton’s zero finding algorithm

the bisection algorithm gives better results. Otherwise Newton’s algorithm is
highly efficient. It usually requires 5-10 times less iteration than the bisection
algorithm. This largely compensates for the additional time spent in computing
the derivative.

The class implementing Newton’s algorithm belongs to a subclass of the
functional iterator described in section 4.2. An additional instance variable is
needed to store the function’s derivative.

5.3.1 Newton’s method — Smalltalk implementation

Listing 5.2 shows the complete implementation in Smalltalk. The class DhbNewtonZeroFinder
is a subclass of the class DhbFunctionalIterator described in section 4.2.1. For
example the following code finds the solution of equation 5.1.

Code example 5.2
| zeroFinder result |

zeroFinder:= DhbNewtonZeroFinder

function: [:x | x errorFunction - 0.9]

derivative: [:x | DhbErfApproximation new normal: x].

zeroFinder initialValue: 1.

result := zeroFinder evaluate.

zeroFinder hasConverged

ifFalse:[¡special case processing¿].

The second line creates the object responsible to find the zero supplying the
function and the derivative4. The third line defines the starting value. The

4As we have seen in section 2.3, the normal distribution is the derivative of the error
function.

90 CHAPTER 5. FINDING THE ZERO OF A FUNCTION

fourth line performs the algorithm and stores the result if the algorithm has
converged. The last two lines check for convergence and take corrective action
if the algorithm did not converge.

The method computeInitialValues is somewhat complex. First, it checks
whether the user supplied an initial value. If not, it is assigned to 0. Then the
method checks whether the user supplied a derivative. If not a default derivative
function is supplied as a block closure by the method defaultDerivativeBlock.
The supplied block closure implements the formula of equation ?? (on page ??).
If a derivative is supplied, it is compared to the result of the derivative supplied
by default. This may save a lot of trouble if the user made an error in coding
the derivative. Not supplying a derivative has some negative effect on the speed
and limits the precision of the final result. The method initializeIterations

also checks whether the derivative is nearly zero for the initial value. If that is
the case, the initial value is changed with a random walk algorithm. If no value
can be found such that the derivative is non-zero an error is generated.

If the function is changed, the supplied derivative must be suppressed. Thus,
the method setFunction: must also force a redefinition of the derivative. A
method allows defining the initial value. A creation method defining the function
and derivative is also supplied for convenience.

Like for the bisection, the algorithm itself is coded within the method evaluateIteration.
Other methods needed by the algorithm have been already implemented in the
superclasses.

Listing 5.2 Smalltalk implementation of Newton’s zero-finding method

Class DhbNewtonZeroFinder
Subclass of DhbFunctionalIterator

Instance variable names: derivativeBlock

Class methods

function: aBlock1 derivative: aBlock2

^(self new) setFunction: aBlock1; setDerivative: aBlock2;

yourself

Instance methods

computeInitialValues

| n |

result isNil

ifTrue: [result := 0].

derivativeBlock isNil

ifTrue: [derivativeBlock := self defaultDerivativeBlock].

n := 0.

5.3. FINDING THE ZERO OF A FUNCTION — NEWTON’S METHOD 91

[(derivativeBlock value: result) equalsTo: 0]

whileTrue: [n := n + 1.

n > maximumIterations

ifTrue: [self error: ’Function’’s derivative

seems to be zero everywhere’].

result := Number random + result].

defaultDerivativeBlock

^[:x | 5000 * ((functionBlock value: (x + 0.0001)) - (

functionBlock value: (x - 0.0001)))]

evaluateIteration

| delta |

delta := (functionBlock value: result) / (derivativeBlock

value: result).

result := result - delta.

^self relativePrecision: delta abs

initialValue: aNumber

result := aNumber.

setDerivative: aBlock

| x |

(aBlock respondsTo: #value:)

ifFalse:[self error: ’Derivative block must implement the

method value:’].

x := result ifNil: [Number random] ifNot: [:base | base +

Number random].

((aBlock value: x) relativelyEqualsTo: (self

defaultDerivativeBlock value: x) upTo: 0.0001)

ifFalse:[self error: ’Supplied derivative is not correct’].

derivativeBlock := aBlock.

setFunction: aBlock

super setFunction: aBlock.

derivativeBlock := nil.

92 CHAPTER 5. FINDING THE ZERO OF A FUNCTION

5.4 Example of zero-finding — Roots of polyno-
mials

The zeroes of a polynomial function are called the roots of the polynomial. A
polynomial of degree n has at most n real roots. Some5 of them maybe complex,
but are not covered in this book.

If x0 is a root of the polynomial P (x), then P (x) can be exactly divided
by the polynomial x− x0. In other words there exists a polynomial P1 (x) such
that:

P (x) = (x− x0) · P1 (x) (5.5)

Equation 5.5 also shows that all roots of P1 (x) are also roots of P (x). Thus,
one can carry the search of the roots using recurrence. In practice a loop is
more efficient6. The process is repeated at most n times and will be interrupted
if a zero finding step does not converge.

One could use the division algorithm of section 2.2.1 to find P1 (x). In this
case, however, the inner loop of the division algorithm — that is, the loop over
the coefficients of the dividing polynomial — is not needed since the dividing
polynomial has only two terms. In fact, one does not need to express x − x0

at all as a polynomial. To carry the division one uses a specialized algorithm
taking the root as the only argument. This specialized division algorithm is
called deflation [Press et al.].

Polynomials are very smooth so Newton’s algorithm is quite efficient for
finding the first root. To ensure the best accuracy for the deflation it is rec-
ommended to find the root of smallest absolute value first. This works without
additional effort since our implementation of Newton’s algorithm uses 0 at the
starting point by default. At each step the convergence of the zero-finder is
checked. If a root could not be found the process must be stopped. Otherwise,
the root finding loop is terminated when the degree of the deflated polynomial
becomes zero.

5.4.1 Roots of polynomials — Smalltalk implementation

Roots of a polynomial can be obtained as an OrderedCollection. For example,
the following code sample retrieves the roots of the polynomial x3−2x2−13x−10:

Code example 5.3

(DhbPolynomial coefficients: #(-10 -13 -2 1)) roots

The methods needed to get the roots are shown in Listing 5.3.
The deflation algorithm is implemented in the method deflateAt: using the

iterator method collect: (c.f. section B.3.2). An instance variable is keeping
track of the remainder of the division within the block closure used by the
method collect:.

5If the degree of the polynomial is odd, there is always at least one non-complex root.
Polynomials of even degree may have only complex roots and no real roots.

6The overhead comes from allocating the structures needed by the method in each call.

5.4. EXAMPLE OF ZERO-FINDING — ROOTS OF POLYNOMIALS 93

The roots are kept in an OrderedCollection object constructed in the
method roots:. The size of the OrderedCollection is initialize to the maxi-
mum expected number of real roots. Since some of the roots may be complex,
we are storing the roots in an OrderedCollection, instead of an Array, so that
the number of found real roots can easily be obtained. This method takes as
argument the desired precision used in the zero finding algorithm. A method
root uses the default numerical machine precision as discussed in section 1.4.

Listing 5.3 Smalltalk implementation of finding the roots of a polynomial

Class DhbPolynomial
Subclass of Object

Instance variable names: coefficients

Instance methods

deflatedAt: aNumber

| remainder next newCoefficients|

remainder := 0.

newCoefficients := coefficients collect:

[:each |

next := remainder.

remainder := remainder * aNumber + each.

next].

^self class new: (newCoefficients copyFrom: 2 to:

newCoefficients size) reverse

roots

^self roots: DhbFloatingPointMachine new

defaultNumericalPrecision

roots: aNumber

| pol roots x rootFinder |

rootFinder := DhbNewtonZeroFinder new.

rootFinder desiredPrecision: aNumber.

pol := self class new: (coefficients reverse collect: [:each |

each asFloat]).

roots := OrderedCollection new: self degree.

[rootFinder setFunction: pol; setDerivative: pol derivative.

x := rootFinder evaluate.

rootFinder hasConverged

] whileTrue: [roots add: x.

94 CHAPTER 5. FINDING THE ZERO OF A FUNCTION

pol := pol deflatedAt: x.

pol degree > 0

ifFalse: [^roots].

].

^roots

5.5 Which method to choose

There are other zero-finding techniques: regula falsi, Brent [Press et al.]. For
each of these methods, however, a specialist of numerical methods can design a
function causing that particular method to fail.

In practice the bisection algorithm is quite slow as can be seen from equation
5.2. Newton’s algorithm is faster for most functions you will encounter. For
example, it takes 5 iterations to find the zero of the logarithm function with
Newton’s algorithm to a precision of 3 · 10−9 whereas the bisection algorithm
requires 29 to reach a similar precision. On the other hand bisection is rock solid
and will always converge over an interval where the function has no singularity.
Thus, it can be used as a recovery when Newton’s algorithm fails.

My own experience is that Newton’s algorithm is quite robust and very fast.
It should suffice in most cases. As we have seen Newton’s algorithm will fail if
it encounters a value for which the derivative of the function is very small. In
this case, the algorithm jumps far away from the solution. For these cases, the
chances are that the bisection algorithm will find the solution if there is any.
Thus, combining Newton’s algorithm with bisection is the best strategy if you
need to design a foolproof algorithm.

Implementing an object combining both algorithms is left as an exercise to
the reader. Here is a quick outline of the strategy to adopt. Newton’s algorithm
must be modified to keep track of values for which the function takes negative
values and positive values — that is the values xpos and xneg — making sure
that the value |xpos − xneg| never increases. Then, at each step, one must check
that the computed change does not cause the solution to jump outside of the
interval defined by xpos and xneg. If that is the case, Newton’s algorithm must
be interrupted for one step using the bisection algorithm.

Chapter 6

Integration of functions

Les petits ruisseaux font les grandes rivières1

French proverb

Many functions are defined by an integral. For example, the three functions
discussed in the last 3 sections of chapter 2 were all defined by an integral.
When no other method is available the only way to compute such function is to
evaluate the integral. Integrals are also useful in probability theory to compute
the probability of obtaining a value over a given interval. This aspect will be
discussed in chapter 9. Finally integrals come up in the computation of surfaces
and of many physical quantities related to energy and power. For example, the
power contained in an electromagnetic signal is proportional to the integral of
the square of the signal’s amplitude.

The French proverb quoted at the beginning of this chapter is here to remind
people that an integral is defined formally as the infinite sum of infinitesimal
quantities.

6.1 Introduction

Let us begin with a concrete example. This time we shall take a problem from
physics 101.

When light is transmitted through a narrow slit, it is diffracted. The inten-
sity of the light transmitted at an angle ϑ, I (ϑ), is given by:

I (ϑ) =
sin2 ϑ

ϑ2
(6.1)

If one wants to compute the fraction of light which is transmitted within the
first diffraction peak, one must compute the expression:

I (ϑ) =
1

π

∫ π

−π

sin2 ϑ

ϑ2
dϑ. (6.2)

1Small streams build great rivers.

95

96 CHAPTER 6. INTEGRATION OF FUNCTIONS

SimpsonIntegrator

evaluateIteration

TrapezeIntegrator

evaluateIteration

from:to:

from

to

sum

step

FunctionalIterator

(chapter 4)

RombergIntegrator

evaluateIteration

order:

order

points

interpolator
NevilleInterpolator

(chapter 3)

Figure 6.1: Class diagram of integration classes

The division by π is there because the integral of I (ϑ) from −∞ to +∞ is equal
to π. No closed form exists for the integral of equation 6.2: it must be computed
numerically. This answer is 90.3%.

In this chapter we introduce 3 integration algorithms. Figure 6.1 shows the
corresponding class diagram. The first one, trapeze integration, is only intro-
duced for the sake of defining a common framework for the next two algorithms:
Simpson and Romberg integration. In general, the reader should use Romberg’s
algorithm. It is fast and very precise. There are, however, some instances where
Simpson’s algorithm can be faster if high accuracy is not required.

6.2 General framework — Trapeze integration
method

Let us state it at the beginning. One should not use the trapeze integration
algorithm in practice. The interest of this algorithm is to define a general
framework for numerical integration. All subclasses of the class responsible for
implementing the trapeze integration algorithm will reuse most the mechanisms
described in this section.

The trapeze numerical integration method takes its origin in the series ex-
pansion of an integral. This series expansion is expressed by the Euler-Maclaurin

6.2. GENERAL FRAMEWORK — TRAPEZE INTEGRATION METHOD97

Figure 6.2: Geometrical interpretation of the trapeze integration method

formula shown hereafter [Bass]:∫ b

a

f (x) dx =
b− a

2
[f (a) + f (b)]−

∑
n

(b− a)
2

(2n)!
B2n

[
d2n−1f (b)

dx2n−1
− d2n−1f (a)

dx2n−1

]
,

(6.3)
where the numbers B2n are the Bernouilli numbers.

The next observation is that, if the interval of integration is small enough,
the series in the second term of equation 6.3 would yield a contribution negligible
compared to that of the first term. Thus, we can write:∫ b

a

f (x) dx ≈ b− a
2

[f (a) + f (b)] , (6.4)

if b − a is sufficiently small. The approximation of equation 6.4 represents the
area of a trapeze whose summits are the circled points in Figure 6.2. Finally,
one must remember the additive formula between integrals:∫ b

a

f (x) dx =

∫ c

a

f (x) dx+

∫ b

c

f (x) dx, (6.5)

for any c. We shall use this property by chosing a c located between a and b.
The resulting strategy is a divide-and-conquer strategy. The integration

interval is divided until one can be sure that the second term of equation 6.3
becomes indeed negligible. As one would like to re-use the points at which the
function has been evaluated during the course of the algorithm, the integration
interval is halved at each iteration. The first few steps are outlined in figure 6.2.
An estimation of the integral is obtained by summing the areas of the trapezes
corresponding to each partition.

98 CHAPTER 6. INTEGRATION OF FUNCTIONS

Let x
(n)
0 , . . . , x

(n)
2n be the partition of the interval at iteration n. Let ε(n) be

the length of each interval between these points. We thus have:
ε(n) = b− a

2n

x
(n)
0 = a

x
(n)
i = a+ iε(n) for i = 1, . . . , 2n.

(6.6)

The corresponding estimation for the integral is:

I(n) = ε(n)

[
f (a) + f (b) + 2

2n−1∑
i=1

f
(
x

(n)
i

)]
. (6.7)

To compute the next estimation, it suffices to compute the value of the function
at the even values of the partition because the odd values were already computed
before. One can derive the following recurrence relation:

Main equation⇒
I(n+1) =

I(n)

2
+ ε(n)

2n−1∑
i=1

f
(
x

(n)
2i−1

)
, (6.8)

with the initial condition:

I(0) =
b− a

2
[f (a) + f (b)] . (6.9)

Note that the sum on the right-hand side of equation 6.8 represents the sum of
the function’s values at the new points of the partition.

End game strategy
The final question is when should the algorithm be stopped? A real honest

answer is we do not know. The magnitude of the series in equation 6.3 is difficult
to estimate as the Bernouilli numbers become very large with increasing n. An
experimental way is to watch for the change of the integral estimate In other
words the absolute value of the last variation,

∣∣I(n) − I(n+1)
∣∣ , is considered a

good estimate of the precision. This kind of heuristic works for most functions.
At each iteration the number of function evaluation doubles. This means

that the time spent in the algorithm grows exponentially with the number of
iterations. Thus, the default maximum number of iteration must be kept quite
low compared to that of the other methods.

In practice, however, trapeze integration converges quite slowly and should
not be used. Why bother implementing it then? It turns out that the more elab-
orate methods, Simpson and Romberg integration, require the computation of
the same sums needed by the trapeze integration. Thus, the trapeze integration
is introduced to be the superclass of the other better integration methods.

One must keep in mind, however, that the magnitude of the series in equation
6.3 can become large for any function whose derivatives of high orders have
singularities over the interval of integration. The convergence of the algorithm

6.2. GENERAL FRAMEWORK — TRAPEZE INTEGRATION METHOD99

can be seriously compromised for such functions. This remark is true for the
other algorithms described in this chapter. For example, none of the algorithms
is able to give a precise estimate of the beta function using equation 2.31 with
x > 1 and y < 1 (c.f. section 2.5) because, for these values, the derivatives of
the function to integrate have a singularity at t = 1.

Another problem can come up if the function is nearly zeroes at regular

intervals. For example, evaluating the integral of the function f (x) = sin(2mx)
x

from −π to π for a moderate value of m. In this case, the terms I(0) to I(m) will
have a null contribution. This would cause the algorithm to stop prematurely.
Such special function behavior is of course quite rare. Nevertheless the reader
must be aware of the limitations of the algorithm. This remark is valid for all
algorithms exposed in this chapter.

6.2.1 Trapeze integration — General implementation
Figure 6.1 with the box
TrapezeIntegrator grayed.The class implementing trapeze integration is a subclass of the functional iter-

ator discussed in section 4.2. Two instance variables are needed to define the
integration interval. Additional instance variables must keep track of the par-
tition of the interval and of the successive estimations. Consequently, the class
has the following instance variables.

from contains the lower limit of the integration’s interval, i.e. a.

to contains the lower limit of the integration’s interval, i.e. b.

step contains the size of the interval’s partition, i.e. ε(n).

sum contains the intermediate sums, i.e. I(n).

Although trapeze integration is not a practical algorithm, we give an example
of coding for both language implementations. The reason is that the public
interface used by trapeze integration is the same for all integration classes.

The example shown in the next two sections is the integration of the inverse
function. In mathematics the natural logarithm of x, lnx, is defined as the inte-
gral from 1 to x of the inverse function. Of course, using numerical integration is
a very inefficient way of computing a logarithm. This example, however, allows
the reader to investigate the accuracy (since the exact solution is known) and
performances of all algorithms presented in this chapter. The interested reader
should try the example for various setting of the desired precision and look at
the number of iterations needed for a desired precision. She can also verify how
accurate is the estimated precision.

6.2.2 Trapeze integration — Smalltalk implementation

Listing 6.1 shows the Smalltalk implementation of the trapeze integration method.
In Smalltalk the code for the computation of the integral defining the natural
logarithm is as follows:

100 CHAPTER 6. INTEGRATION OF FUNCTIONS

Code example 6.1

| integrator ln2 ln3 |

integrator := DhbTrapezeIntegrator function: [:x | 1.0 /

x] from: 1 to: 2.

ln2 := integrator evaluate.

integrator from: 1 to: 3.

ln3 := integrator evaluate.

The line after the declaration creates a new instance of the class DhbTrapezeIntegrator
for the inverse function. The limits of the integration interval are set from 1 to
2 at creation time. The third line retrieves the value of the integral. The fourth
line changes the integration interval and the last line retrieves the value of the
integral over the new integration interval.

The class DhbTrapezeIntegrator is a subclass of the class AbstractFunctionIterator
defined in section 4.2.1. The default creation class method new has been over-
loaded to prevent creating an object without initialized instance variables. The
proper creation class method defines the function and the integration interval.

The method from:to: allows changing the integration interval for a new
computation with the same function.

Note that the initialization of the iterations (method computeInitialValues,
c.f. section 4.1.1) also corresponds to the first iteration of the algorithm. The
method highOrderSum computes the sum of the right-hand side of equation 6.8.

Listing 6.1 Smalltalk implementation of trapeze integration

Class DhbTrapezeIntegrator
Subclass of DhbFunctionalIterator

Instance variable names: from to sum step

Class methods

defaultMaximumIterations

^13

new

^self error: ’Method new:from:to: must be used’

new: aBlock from: aNumber1 to: aNumber2

^super new initialize: aBlock from: aNumber1 to: aNumber2

Instance methods

computeInitialValues

6.3. SIMPSON INTEGRATION ALGORITHM 101

step := to - from.

sum := ((functionBlock value: from) + (functionBlock value: to)) * step /2.

result := sum.

evaluateIteration

| oldResult |

oldResult := result.

result := self higherOrderSum.

^ self relativePrecision: (result - oldResult) abs

from: aNumber1 to: aNumber2

from := aNumber1.

to := aNumber2.

higherOrderSum

| x newSum |

x := step / 2 + from.

newSum := 0.

[x < to]

whileTrue: [newSum := (functionBlock value: x) + newSum.

x := x + step.

].

sum := (step * newSum + sum) / 2.

step := step / 2.

^ sum

initialize: aBlock from: aNumber1 to: aNumber2

functionBlock := aBlock.

self from: aNumber1 to: aNumber2.

^ self

6.3 Simpson integration algorithm
Figure 6.1 with the box
SimpsonIntegrator
grayed.

Simpson integration algorithm consists in replacing the function to integrate by
a second order Lagrange interpolation polynomial[Bass] (c.f. section 3.2). One
can then carry the integral analytically. Let f (x) be the function to integrate.
For a given interval of integration, [a, b], the function is evaluated at the ex-
tremities of the interval and at its middle point c = a+b

2 . As defined in equation
3.1 the second order Lagrange interpolation polynomial is then given by:

P2 (x) =
2

(b− a)
2 [(x− b) (x− c) f (a) + (x− c) (x− a) f (b) + (x− a) (x− b) f (c)] .

(6.10)

102 CHAPTER 6. INTEGRATION OF FUNCTIONS

The integral of the polynomial over the interpolation interval is given by:∫ b

a

P2 (x) dx =
b− a

6
[f (a) + f (b) + 4f (c)] . (6.11)

As for trapeze integration, the interval is partitioned into small intervals. Let
us assume that the interval has been divided into subintervals. By repeating
equation 6.11 over each subinterval, we obtain:∫ b

a

P2 (x) dx =
ε(n)

3

f (a) + f (b) + 2

2n−1∑
i=1

f
(
x

(n)
2i−1

)
+ 4

2n−1∑
i=0

f
(
x

(n)
2i

) .
(6.12)

Equation 6.12 uses the notations introduced in section 6.2. Except for the
first iteration, the right-hand side of equation 6.12 can be computed from the
quantities I(n) defined in equation 6.7. Thus, we have:

Main equation⇒
∫ b

a

P2 (x) dx =
1

3

[
4I(n) − I(n−1)

]
for n > 1 (6.13)

This can be checked by verifying that I(n−1) is equal to the first sum of equation
6.12 times and that I(n) is equal to the addition of the two sums of equation
6.12 times ε(n). As advertised in section 6.2 we can re-use the major parts of
the trapeze algorithm: computation of the sums and partition of the integration
interval.

Like in the case of the trapeze algorithm, the precision of the algorithm is
estimated by looking at the differences between the estimation obtained previ-
ously and the current estimation. At the first iteration only one function point
is computed. This can cause the process to stop prematurely if the function is
nearly zero at the middle of the integration interval. Thus, a protection must
be built in to prevent the algorithm from stopping at the first iteration.

6.3.1 Simpson integration — General implementation

The class implementing Simpson algorithm is a subclass of the class implement-
ing trapeze integration. The method evaluateIteration is the only method
needing change. The number of iterations is checked to prevent returning after
the first iteration.

The public interface is the same as that of the superclass. Thus, all the
examples shown in sections 6.2.2 and ?? can be used for Simpson algorithm by
just changing the name of the class.

6.3.2 Simpson integration — Smalltalk implementation

Listing 6.2 shows the complete implementation in Smalltalk.
The class DhbSimpsonIntegrator is a subclass of the class DhbTrapezeIntegrator

defined in section 6.2.2.

6.4. ROMBERG INTEGRATION ALGORITHM 103

Listing 6.2 Smalltalk implementation of the Simpson integration algorithm

Class DhbSimpsonIntegrator
Subclass of DhbTrapezeIntegrator

Instance methods

evaluateIteration

| oldResult oldSum |

iterations < 2

ifTrue: [self higherOrderSum.

^ 1].

oldResult := result.

oldSum := sum.

result := (self higherOrderSum * 4 - oldSum) / 3.

^self relativePrecision: (result - oldResult) abs

6.4 Romberg integration algorithm
Figure 6.1 with the box
RombergIntegrator
grayed.

If one goes back to equation 6.3 one notices that the second term is of the order
of the square of the integration interval. Romberg’s algorithm uses this fact to
postulate that I(n) is a smooth function of the square of the size of interval’s
partition ε(n). Romberg’s algorithm introduces the parameter k where k − 1
is the degree of the interpolation’s polynomial2. The result of the integral is
estimated by extrapolating the series I(n−k), . . . , I(n) at the value ε(n) = 0.
Since we have:

ε(n) =
ε(n−1)

2
, (6.14)

one only needs to interpolate over successive powers of 1/4 , starting with 1: 1,
1/4, 1/16, 1/256, etc. In this case, extrapolation is safe because the value at
which extrapolation is made is very close to the end of the interval defined by
the sample points and actually becomes closer and closer with every iteration.

Thus, Romberg’s algorithm requires at least k iterations. The good news is
that this algorithm converges very quickly and, in general, only a few iterations
are needed after the five initial ones. A polynomial of 4th degree — that is k = 5
— is generally sufficient [Press et al.].

Extrapolation is performed using Neville’s algorithm (c.f. section 3.4) be-
cause it computes an estimate of the error on the interpolated value. That error
estimate can then be used as the estimate of the error on the final result.

If k = 1 Romberg’s algorithm is equivalent to trapeze integration. If k = 2,
the interpolation polynomial is given by:

P1 (x) = y1 +
x− x1

x2 − x1
(y2 − y1) . (6.15)

2In other words, k is the number of points over which the interpolation is performed (c.f.
section 3.2).

104 CHAPTER 6. INTEGRATION OF FUNCTIONS

At the nth iteration we have: y1 = I(n−1), y2 = I(n) and x2 = x1/4. Thus, the
interpolated value at 0 is:

P1 (0) = I(n−1) +
4

3

[
I(n) − I(n−1)

]
=

1

3

[
4I(n) − I(n−1)

]
(6.16)

Thus, for k = 2 Romberg’s algorithm is equivalent to Simpson’s algorithm.
For higher order, however, Romberg’s algorithm is much more efficient than
Simpson method as soon as precision is required (c.f. a comparison of the result
in section 6.6).

Using interpolation on the successive results of an iterative process to obtain
the final result is a general procedure known as Richardson’s deferred approach
to the limit [Press et al.]. This technique can be used whenever the estimated
error can be expressed as a function of a suitable parameter depending on the
iterations. The choice of the parameter, however, is critical. For example, if one
had interpolated over the size of the interval’s partition instead of its square,
the method would not converge as well3.

6.4.1 Romberg integration — General implementation

The class implementing Romberg’s algorithm needs the following additional
instance variables:

order the order of the interpolation, i.e. k,

interpolator an instance of Neville’s interpolation class,

points an OrderedCollection containing the most recent sum estimates, i.e.
I(n−k), . . . , I(n).

The method evaluateIteration (c.f. section 4.1) contains the entire algorithm.
At each iteration the collection of point receives a new point with an abscissa
equal to the quarter of that of the last point and an ordinate equal to the next
sum estimate . If not enough points are available, the method returns a precision
such that the iterative process will continue. Otherwise, the extrapolation is
performed. After the result of the extrapolation has been obtained the oldest
point is removed. In other words, the collection of points is used as a last-
in-last-out list with a constant number of elements equal to the order of the
interpolation. Of the two values returned by Neville’s interpolation (c.f. section
3.4), the interpolated value is stored in the result and the error estimate is
returned as the precision for the other.

3It converges at the same speed as Simpson’s algorithm. This can be verified by running
the comparison programs after changing the factor 0.25 used to compute the abscissa of the
next point into 0.5.

6.4. ROMBERG INTEGRATION ALGORITHM 105

6.4.2 Romberg integration — Smalltalk implementation

Listing 6.3 shows the Smalltalk implementation of Romberg’s algorithm. The
class DhbRombergIntegrator is a subclass of the class DhbTrapezeIntegrator
defined in section 6.2.2.

The class method defaultOrder defines the default order to 5. This method
is used in the method initialize so that each newly created instance is created
with the default interpolation order. The method order: allows changing the
default order if needed.

The sample points defining the interpolation are stored in an OrderedCollection.
This collection is created in the method computeInitialValues. Since the
number of points will never exceed the order of the interpolation the maximum
size is preset when the collection is created. The method computeInitialValues

also creates the object in charge of performing the interpolation and it stores
the first point in the collection of sample points.

Listing 6.3 Smalltalk implementation of Romberg integration

Class DhbRombergIntegrator
Subclass of DhbTrapezeIntegrator

Instance variable names: order points interpolator

Class methods

defaultOrder

^5

Instance methods

computeInitialValues

super computeInitialValues.

points := OrderedCollection new: order.

interpolator := DhbNevilleInterpolator points: points.

points add: 1 @ sum.

evaluateIteration

| interpolation |

points addLast: (points last x * 0.25) @ self higherOrderSum.

points size < order

ifTrue: [^1].

interpolation := interpolator valueAndError: 0.

points removeFirst.

result := interpolation at: 1.

^self relativePrecision: (interpolation at: 2) abs

initialize

106 CHAPTER 6. INTEGRATION OF FUNCTIONS

order := self class defaultOrder.

^ super initialize

order: anInteger

anInteger < 2

ifTrue: [self error: ’Order for Romberg integration must be

larger than 1’].

order := anInteger.

6.5 Evaluation of open integrals

An open integral is an integral for which the function to integrate cannot be
evaluated at the boundaries of the integration interval. This is the case when
one of the limit is infinite or when the function to integrate has a singularity
at one of the limits. If the function to integrate has one or more singularity
in the middle of the integration interval, the case can be reduced to that of
having a singularity at the limits using the additive formula between integrals
6.5. Generalization of the trapeze algorithm and the corresponding adaptation
of Romberg’s algorithm can be found in [Press et al.].

Bag of tricks
My experience is that using a suitable change of variable can often remove the

problem. In particular, integrals whose integration interval extends to infinity
can be rewritten as integrals over a finite interval. We give a few examples
below.

For an integral starting from minus infinity, a change of variable t = 1
x can

be used as follows: ∫ a

−∞
f (x) dx =

∫ 0

1
a

f

(
1

t

)
dt

t2
for a < 0. (6.17)

For such integral to be defined, the function must vanish at minus infinity faster
than x2. This means that:

lim
t→0

1

t2
f

(
1

t

)
= 0. (6.18)

If a > 0, the integration must be evaluated in two steps, for example one over
the interval]−∞,−1] using the change of variable of equation 6.17 and one over
the interval [−1, a] using the original function.

For integral ending at positive infinity the same change of variable can also be
made. However, if the interval of integration is positive, the change of variable
t = e−x can be more efficient. In this case, one makes the following transforma-
tion: ∫ +∞

a

f (x) dx =

∫ e−a

0

f (− ln t)
dt

t
for a > 0. (6.19)

6.6. WHICH METHOD TO CHOSE? 107

For this integral to be defined one must have:

lim
t→0

1

t
f (ln t) = 0. (6.20)

By breaking up the interval of integration is several pieces one can chose a
change of variable most appropriate for each piece.

6.6 Which method to chose?

An example comparing the results of the three algorithms is given in section
6.6.1 for Smalltalk and section ?? for Java. The function to integrate is the
inverse function in both cases. The integration interval is from 1 to 2 so that
the value of the result is known, namely ln 2. Integration is carried for various
values of the desired precision. The reader can then compare the attained
precision (both predicted and real) and the number of iterations4 required for
each algorithm. Let us recall that the number of required function evaluations
grows exponentially with the number of iterations.

The results clearly show that the trapeze algorithm is ruled out as a practical
method. As advertised in section 6.2 it is not converging quickly toward a
solution.

Romberg’s algorithm is the clear winner. At given precision, it requires the
least number of iterations. This is the algorithm of choice in most cases.

Simspon’s algorithm may be useful if the required precision is not too high
and if the time to evaluate the function is small compared to the interpolation.
In such cases Simspon’s algorithm can be faster than Romberg’s algorithm.

Sections 6.6.1 and ?? gives some sample code the reader can use to investi-
gate the various integration algorithms. The results of the code execution are
shown in table 6.1. The columns of this table are:

εmax the desired precision,

n the number of required iterations; let us recall that the corresponding number
of function’s evaluations is 2n+1,

ε̃ the estimated precision of the result,

ε the effective precision of the result, that is the absolute value of the difference
between the result of the integration algorithm and the true result.

4Note that the number of iterations printed in the examples in one less than the real number
of iterations because the first iteration is performed in the set-up phase of the iterative process.

108 CHAPTER 6. INTEGRATION OF FUNCTIONS

Table 6.1: Comparison between integration algorithms

Trapeze algorithm Simpson algorithm Romberg algorithm
εmax n ε̃ ε n ε̃ ε n ε̃ ε
10−5 8 4.1 · 10−6 9.5 · 10−7 4 9.9 · 10−6 4.7 · 10−7 4 1.7 · 10−9 1.4 · 10−9

10−7 11 6.4 · 10−8 1.5 · 10−8 6 4.0 · 10−8 1.9 · 10−9 4 1.7 · 10−9 1.4 · 10−9

10−9 15 2.5 · 10−10 5.8 · 10−11 8 1.5 · 10−10 7.3 · 10−12 5 1.4 · 10−11 3.7 · 10−12

10−11 18 3.9 · 10−12 9.0 · 10−13 9 9.8 · 10−12 5.7 · 10−13 6 7.6 · 10−14 5.7 · 10−15

10−13 21 4.8 · 10−14 2.8 · 10−14 11 3.8 · 10−14 1.9 · 10−15 6 7.6 · 10−14 5.7 · 10−15

6.6.1 Smalltalk comparison

The script of Listing 6.4 can be executed as such in any Smalltalk window.
The function to integrate is specified as a block closure as discussed in section

??.

Listing 6.4 Smalltalk comparison script for integration algorithms

| a b integrators |

a := 1.0.

b := 2.0.

integrators := Array with: (DhbTrapezeIntegrator new: [:x | 1.0 / x] from: a to: b)

with: (DhbSimpsonIntegrator new: [:x | 1.0 / x] from: a to: b)

with: (DhbRombergIntegrator new: [:x | 1.0 / x] from: a to: b).

#(1.0e-5 1.0e-7 1.0e-9 1.0e-11 1.0e-13) do: [:precision |

Transcript cr; cr; nextPutAll: ’===> Precision: ’.

precision printOn: Transcript.

integrators do: [:integrator |

Transcript cr; nextPutAll: ’***** ’, integrator class name,’:’; cr.

integrator desiredPrecision: precision.

Transcript nextPutAll: ’Integral of 1/x from ’.

a printOn: Transcript.

Transcript nextPutAll: ’ to ’.

b printOn: Transcript.

Transcript nextPutAll: ’ = ’.

integrator evaluate printOn: Transcript.

Transcript nextPutAll: ’ +- ’.

integrator precision printOn: Transcript.

Transcript cr; nextPutAll: ’ (’.

integrator iterations printOn: Transcript.

Transcript nextPutAll: ’ iterations, true error = ’.

(integrator result - 2 ln) printOn: Transcript.

Transcript nextPutAll: ’)’; cr.

]]

Chapter 7

Series

On ne peut pas partir de l’infini, on peut y aller.1

Jules Lachelier

Whole families of functions are defined with infinite series expansion or a contin-
ued fraction. Before the advent of mechanical calculators, a person could earn
a Ph.D. in mathematics by publishing tabulated values of a function evaluated
by its series expansion or continued fraction. Some people developed a talent
to perform such tasks.

Some reported stories make the task of evaluating series sound like a real
business. A German nobleman discovered that one of its peasants had a talent
for numbers. He then housed him in his mansion and put him to work on
the calculation of a table of logarithms. The table was published under the
nobleman’s name[Ifrah].

Nowadays we do not need to look for some talented peasant, but we still pub-
lish the result of computations made by other than ourselves. Overall computers
are better treated than peasants were, though. . .

7.1 Introduction

It will not come as a surprise to the reader that the computation of infinite series
is made on a computer by computing a sufficient but finite number of terms.
The same is true for continued fractions. Thus, the computation of infinite
series and continued fractions uses the iterative process framework described in
chapter 4. In this case the iteration consists of computing successive terms.

The present chapter begins by exposing a general framework on how to
compute infinite series and continued fractions. Then, we show two examples
of application of this framework by implementing two functions, which are very
important to compute probabilities: the incomplete gamma function and the
incomplete beta function.

1One cannot start at infinity; one can reach it, however.

109

110 CHAPTER 7. SERIES

InfiniteSeries

evaluateIteration
initializeIterations

termServer

IterativeProcess

(chapter 4)

ContinuedFraction

evaluateIteration
initializeIterations

numerator
denominator

IncompleteBetaFunction

value:

alpha1
alpha2
fraction
inverseFraction
logNorm

IncompleteGammaFunction

value:

alpha
alphaLogGamma
series
fraction

SeriesTermServer

setArgument:

x
lastTerm

IncompleteGamma
SeriesTermServer

initialTerm
setParameter:
termAt:

alpha
sum

IncompleteGamma
FractionTermServer

initialTerm
setParameter:
termAt:

alpha IncompleteBeta
FractionTermServer

initialTerm
setParameter:second:
termsAt:

alpha1
alpha2

Figure 7.1: Smalltalk class diagram for infinite series and continued fractions

For illustrative purposes, the implementation in Smalltalk is using a different
architecture from the one used by the Java implementation. It should be noted
that each implementation could have been implemented in the other language.
Figure 7.1 shows the class diagram of the Smalltalk implementation. Figure 7.2
shows the class diagram of the Java implementation.

The Smalltalk implementation uses two general-purpose classes to implement
an infinite series and a continued fraction respectively. Each class then use a
Strategy pattern class [Gamma et al.] to compute each term of the expansion.

The Java implementation uses two abstract classes to implement an infi-
nite series and a continued fraction respectively. Each concrete implementation
necessitates the creation of a concrete subclass.

In spite of the difference in architecture, the reader can verify on each class
diagram that the number of classes needed for a concrete implementation is the
same in each case.

An interesting exercise for the reader is to implement the architecture pre-
sented in Java in Smalltalk and vice versa.

7.2 Infinite series

Many functions are defined with an infinite series, that is a sum of an infinite
number of terms. The most well known example is the series for the exponential
function:

ex =

∞∑
n=0

xn

n!
. (7.1)

For such a series to be defined, the terms of the series must become very small as
the index increases. If that is the case an infinite series may be used to evaluate a

7.2. INFINITE SERIES 111

InfiniteSeries

computeTermAt:

evaluateIteration
getResult
initializeIterations
initialValue

setArgument:

result
x
lastTerm

IterativeProcess

(chapter 4)

ContinuedFraction

computeFactors:

evaluateIteration
getResult
initializeIterations
initialValue

setArgument

result
x
numerator
denominator
factors

IncompleteGamma
FunctionSeries

initialTerm
setParameter:
termAt:

alpha
sum

IncompleteGamma
FunctionFraction

computeFactorsAt:
initialValue

alpha
sum

IncompleteBeta
FunctionFraction

computeFactorsAt:
initialValue

alpha1
alpha2

IncompleteGammaFunction

value:

alpha
alphaLogGamma
series
fraction

IncompleteBetaFunction

value:

alpha1
alpha2
fraction
inverseFraction
logNorm

Figure 7.2: Java class diagram for infinite series and continued fractions

function, for which no closed expression exists. For this to be practical, however,
the series should converge quickly so that only a few terms are needed. For
example, computing the exponential of 6 to the precision of an IEEE 32 bit
floating number requires nearly 40 terms. This is clearly not an efficient way to
compute the exponential.

Discussing the convergence of a series is outside of the scope of this book.
Let us just state that in general numerical convergence of a series is much harder
to achieve than mathematical convergence. In other words the fact that a series
is defined mathematically does not ensure that it can be evaluated numerically.

A special remark pertains to alternating series. In an alternating series
the signs of consecutive terms are opposite. Trigonometric functions have such
a series expansion. Alternating series have very bad numerical convergence
properties: if the terms are large rounding errors might suppress the convergence
altogether. If one cannot compute the function in another way it is best to
compute the terms of an alternating series in pairs to avoid rounding errors.

In practice, a series must be tested for quick numerical convergence prior
to its implementation. As for rounding errors the safest way is to do this ex-
perimentally, that is, print out the terms of the series for a few representative2

values of the variable. In the rest of this chapter we shall assume that this
essential step has been made.

To evaluate an infinite series, one carries the summation until the last added
term becomes smaller than the desired precision. This kind of logic is quite

2By representative, I mean either values, which are covering the domain over which the
function will be evaluated, or values, which are suspected to give convergence problems.

112 CHAPTER 7. SERIES

similar to that of an iterative process. Thus, the object used to compute an
infinite series belongs to a subclass of the iterative process classe discussed in
chapter 4.

7.2.1 Infinite series — Smalltalk implementation
Figure 7.1 with the boxes
InfiniteSeries and Seri-
esTermServer grayed.

Listing 7.1 shows a general Smalltalk implementation of a class evaluating an
infinite series. The class being abstract, we do not give examples here. Concrete
examples are given in section 7.4.2.

The Smalltalk implementation uses a Strategy pattern. The class DhbInfiniteSeries
is a subclass of the class DhbIterativeProcess, discussed in section 4.1.1. This
class does not implement the algorithm needed to compute the terms of the se-
ries directly. It delegates this responsibility to an object stored in the instance
variable termServer. Two hook methods, initialTerm and termAt: are used
to obtain the terms of the series from the term server object.

The method evaluateIteration uses the method precisionOf:relativeTo:

to return a relative precision as discussed in section 4.2.1.
To implement a specific series, an object of the class DhbInfiniteSeries is

instantiated with a specific term server. A concrete example will be shown in
section 7.4.2.

Because of its generic nature, the class DhbInfiniteSeries does not im-
plement the function behavior described in section ?? (method value:). It is
the responsibility of each object combining an infinite series with a specific term
server to implement the function behavior. An example is given in section 7.4.2.

Listing 7.1 Smalltalk implementation of an infinite series

Class DhbInfiniteSeries
Subclass of DhbIterativeProcess

Instance variable names: termServer

Class methods

server: aTermServer

^self new initialize: aTermServer

Instance methods

evaluateIteration

| delta |

delta := termServer termAt: iterations.

result := result + delta.

^ self precisionOf: delta abs relativeTo: result abs

initialize: aTermServer

7.3. CONTINUED FRACTIONS 113

termServer := aTermServer.

^ self

initializeIterations

result := termServer initialTerm

The computation of the terms of the series is delegated to an object instantiated
from a server class. The abstract server class is called DhbInfiniteSeriesTermServer.
It is responsible to compute the terms at each iteration. This class receives the
argument of the function defined by the series, which is kept in the instance
variable x. The instance variable lastTerm is provided to keep the last com-
puted term since the next term can often be computed from the previous one.
The code of this abstract class is shown in Listing 44.

Listing 7.2 Smalltalk implementation of a term server

Class DhbSeriesTermServer
Subclass of Object

Instance variable names: x lastTerm

Instance methods

setArgument: aNumber

x := aNumber asFloat.

7.3 Continued fractions

A continued fraction is an infinite series of cascading fractions of the following
form:

f (x) = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 + · · ·

(7.2)

In general, both sets of coefficients a0, . . . and b0, . . . depend on the function’s
argument x. This dependence in implicit in equation 7.2 to keep the nota-
tion simple. Since the above expression is quite awkward to read - besides
being a printer’s nightmare - one usually uses a linear notation as follows
[Abramovitz & Stegun], [Press et al.]:

f (x) = b0 +
a1

b1+

a2

b2+

a3

b3+

a4

b4+
· · · (7.3)

The problem in evaluating such a fraction is that, a priori, one must begin the
evaluation from the last term. Fortunately, methods allowing the evaluation

114 CHAPTER 7. SERIES

from the beginning of the fractions have been around since the seventeen’s
century. A detailed discussion of several methods is given in [Press et al.]. In
this book, we shall only discuss the modified Lentz’ method which has the
advantage to work for a large class of fractions.

Implementing the other methods discussed in [Press et al.] is left as an exer-
cise to the reader. The corresponding classes can be subclassed from the classes
found in this chapter.

In 1976, Lentz proposed the following two auxiliary series:
C0 = b0,
D0 = 0,
Cn = an

Cn−1
+ bn for n > 0,

Dn = 1
anDn−1+bn

for n > 0.

(7.4)

These two series are used to construct the series:{
f0 = C0,
fn = fn−1CnDn.

(7.5)

One can prove by induction that this series converges toward the continued
fraction as n gets large.

In general continued fractions have excellent convergence properties. Some
care, however, must be given when one of the auxiliary terms Cn or 1/Dn be-
come nearly zero3. To avoid rounding errors, Thompson and Barnett, in 1986,
proposed a modification of the Lentz method in which any value of the coeffi-
cients smaller than a small floor value is adjusted to the floor value [Press et al.].
The floor value is chosen to be the machine precision of the floating-point rep-
resentation (instance variable smallNumber described in section 1.4).

In terms of architecture, the implementation of a continued fraction is similar
to that of the infinite series.

7.3.1 Continued fractions — Smalltalk implementation
Figure 7.1 with the box
ContinuedFraction
grayed.

Listing 7.3 shows the implementation of a continued fraction in Smalltalk.
The class DhbContinuedFraction is built as a subclass of the class DhbInfiniteSeries.

Thus, it uses also the Strategy pattern.
The method limitedSmallValue: implements the prescription of Thomp-

son and Barnett.

Listing 7.3 Smalltalk implementation of a continued fraction

Class DhbContinuedFraction
Subclass of DhbInfiniteSeries

Instance variable names: numerator denominator

3That is, a value which is zero within the precision of the numerical representation.

7.4. INCOMPLETE GAMMA FUNCTION 115

Instance methods

evaluateIteration

| terms delta |

terms := termServer termsAt: iterations.

denominator := 1 / (self limitedSmallValue: ((terms at: 1) * denominator + (terms at: 2))).

numerator := self limitedSmallValue: ((terms at: 1) / numerator + (terms at: 2)).

delta := numerator * denominator.

result := result * delta.

^ (delta - 1) abs

initializeIterations

numerator := self limitedSmallValue: termServer initialTerm.

denominator := 0.

result := numerator

limitedSmallValue: aNumber

^aNumber abs < DhbFloatingPointMachine new smallNumber

ifTrue: [DhbFloatingPointMachine new smallNumber]

ifFalse: [aNumber]

7.4 Incomplete Gamma function

The incomplete gamma function is the integral of a gamma distribution. It
is used in statistics to evaluate the probability of finding a measurement larger
than a given value when the measurements are distributed according to a gamma
distribution. In particular, the incomplete gamma function is used to compute
the confidence level of χ2 values when assessing the validity of a parametric fit.
Several examples of use of this function will be introduced in chapters 9 and 10.

Figure 7.3 shows the incomplete gamma function (solid line) and its corre-
sponding probability density function (dotted line) for α = 2.5.

The gamma distribution is discussed in section ??. The χ2 confidence level
is discussed in section 10.3. General χ2 fits are discussed in section 10.9.

7.4.1 Mathematical definitions

The incomplete gamma function is defined by the following integral:

Γ (x, α) =
1

Γ (α)

∫ x

0

tα−1e−tdt. (7.6)

Thus, the value of the incomplete gamma function lies between 0 and 1. The
function has one parameter α. The incomplete gamma function is the dis-
tribution function of a gamma probability density function with parameters
α and 1 (c.f. section ?? for a description of the gamma distribution and its

116 CHAPTER 7. SERIES

Figure 7.3: The incomplete gamma function and the gamma distribution

parameters). This integral can be expressed as the following infinite series
[Abramovitz & Stegun]:

Γ (x, α) =
e−xxα

Γ (α)

∞∑
n=0

Γ (α)

Γ (α+ 1 + n)
xn. (7.7)

Written in this form we can see that each term of the series can be computed
from the previous one. Using the recurrence formula for the gamma function —
equation 2.23 in section 2.4.1 — we have:

Main equation⇒ {
a0 = 1

α ,
an = x

α+1+nan−1.
(7.8)

The series in equation 7.7 converges well for x < α+ 1.
The incomplete gamma function can also be written as [Abramovitz & Stegun]:

Γ (x, α) =
e−xxα

Γ (α)

1

F (x− α+ 1, α)
, (7.9)

where F (x, α) is the continued fraction:

F (x, α) = x+
1 (α− 1)

x+ 2+

2 (α− 2)

x+ 4+

3 (α− 3)

x+ 6+
. . . (7.10)

Using the notation introduced in equation 7.3 in section 7.3 the terms of the
continued fraction are given by the following expressions:

Main equation⇒ {
bn = x− α+ 2n for n = 0, 1, 2, . . .
an = n (α− n) for n = 1, 2, . . .

(7.11)

7.4. INCOMPLETE GAMMA FUNCTION 117

It turns out that the continued fraction in equation 7.9 converges for x > α+ 1
[Press et al.], that is, exactly where the series expansion of equation 7.7 did not
converge very well. Thus, the incomplete gamma function can be computed
using one of the two methods depending on the range of the argument.

The reader will notice that equations 7.7 and 7.9 have a common factor. The
denominator of that factor can be evaluated in advance in logarithmic form to
avoid floating-point overflow (c.f. discussion in section 2.4.1). For each function
evaluation the entire factor is computed in logarithmic form to reduce rounding
errors. Then it is combined with the value of the series or the continued fraction
to compute the final result.

To avoid a floating-point error when evaluating the common factor, the value
of the incomplete gamma function at x = 0 — which is of course 0 — must be
returned separately.

7.4.2 Incomplete Gamma function — Smalltalk implemen-
tation

Figure 7.1 with
the boxes Incom-
pleteGammaFunction,
IncompleteGammaSeriesTermServer

and
IncompleteGammaFractionTermServer

grayed.

Three classes are needed to implement the incomplete gamma function in Smalltalk.
The class DhbIncompleteGamaFunction is in charge of computing the function
itself. This is the object, which responds to the method value: to provide
a function-like behavior to the object. It is shown in Listing 7.4 and has the
following instance variables.

alpha contains the function’s parameter, i.e. α,

alphaLogGamma used to cache the value of Γ (α) for efficiency purposes,

series contains the infinite series associated to the function,

fraction contains the continued fraction associated to the function.

The instance variables series and fraction are assigned using lazy initializa-
tion.

Depending on the range of the argument, the class delegates the rest of the
computing to either a series or a continued fraction. In each case, a term server
class provides the computation of the terms. They are shown in listings 7.5 and
7.6.

Listing 7.4 Smalltalk implementation of the incomplete gamma function

Class DhbIncompleteGammaFunction
Subclass of Object

Instance variable names: alpha alphaLogGamma series fraction

Class methods

shape: aNumber

118 CHAPTER 7. SERIES

^super new initialize: aNumber

Instance methods

evaluateFraction: aNumber

fraction isNil

ifTrue:

[fraction := DhbIncompleteGammaFractionTermServer new.

fraction setParameter: alpha].

fraction setArgument: aNumber.

^(DhbContinuedFraction server: fraction)

desiredPrecision: DhbFloatingPointMachine new defaultNumericalPrecision;

evaluate

evaluateSeries: aNumber

series isNil

ifTrue: [series := DhbIncompleteGammaSeriesTermServer new.

series setParameter: alpha.

].

series setArgument: aNumber.

^ (DhbInfiniteSeries server: series)

desiredPrecision: DhbFloatingPointMachine new defaultNumericalPrecision;

evaluate

initialize: aNumber

alpha := aNumber asFloat.

alphaLogGamma := alpha logGamma.

^ self

value: aNumber

| x norm |

aNumber = 0

ifTrue: [^0].

x := aNumber asFloat.

norm := [(x ln * alpha - x - alphaLogGamma) exp] when: ExAll

do: [:signal | signal exitWith: nil].

norm isNil

ifTrue: [^1].

^x - 1 < alpha

ifTrue: [(self evaluateSeries: x) * norm]

ifFalse: [1 - (norm / (self evaluateFraction: x))]

Listing 7.5 shows the implementation of the term server for the series expansion.
It needs two instance variables: one to store the parameter α; one to store the
sum accumulated in the denominator of equation 7.8. The two lines of equation

7.4. INCOMPLETE GAMMA FUNCTION 119

7.8 are implemented respectively by the methods initialTerm (for n = 0) and
termAt: (for n ≥ 1).

Listing 7.5 Smalltalk implementation of the series term server for the incom-
plete gamma function

Class DhbIncompleteGammaSeriesTermServer
Subclass of DhbSeriesTermServer

Instance variable names: alpha sum

Instance methods

initialTerm

lastTerm := 1 / alpha.

sum := alpha.

^ lastTerm

setParameter: aNumber

alpha := aNumber asFloat

termAt: anInteger

sum := sum + 1.

lastTerm := lastTerm * x / sum.

^ lastTerm

Listing 7.6 shows the implementation of the term server for the continued frac-
tion. It needs one instance variable to store the parameter α. Equation 7.11
is implemented by the methods initialTerm (for n = 0) and termsAt: (for
n ≥ 1).

Listing 7.6 Smalltalk implementation of the fraction term server for the in-
complete gamma function

Class DhbIncompleteGammaFractionTermServer
Subclass of DhbSeriesTermServer

Instance variable names: alpha

Instance methods

initialTerm

lastTerm := x - alpha + 1.

^ lastTerm

setParameter: aNumber

120 CHAPTER 7. SERIES

Figure 7.4: The incomplete beta function and the beta distribution

alpha := aNumber asFloat

termsAt: anInteger

lastTerm := lastTerm + 2.

^ Array with: (alpha - anInteger) * anInteger with: lastTerm

An example of use of the incomplete gamma function can be found in section
9.6.2.

7.5 Incomplete Beta function

The incomplete beta function is the integral of a beta distribution. It used
in statistics to evaluate the probability of finding a measurement larger than a
given value when the measurements are distributed according to a beta distribu-
tion. It is also used to compute the confidence level of the Student distribution
(t-test) and of the Fisher-Snedecor distribution (F -test). The beta distribution
is discussed in section C.1. The t-test is discussed in section 10.2. The F -test
is discussed in section 10.1.

Figure 7.4 shows the incomplete beta function (solid line) and its corre-
sponding probability density function (dotted line) for α1 = 4.5 and α2 = 2.5.

7.5.1 Mathematical definitions

The incomplete beta function is defined over the interval [0, 1] by the following
integral:

B (x;α1, α2) =
1

B (α1, α2)

∫ x

0

tα1−1 (1− t)α2−1
dt, (7.12)

7.5. INCOMPLETE BETA FUNCTION 121

where B (α1, α2) is the beta function defined in section 2.5. The function has
two parameters α1 and α2. By definition, the value of the incomplete beta
function is comprised between 0 and 1.

None of the series expansions of this integral have good numerical conver-
gence. There is, however, a continued fraction development which converges
over a sufficient range [Abramovitz & Stegun]:

B (x;α1, α2) =
xα1−1 (1− x)

α2−1

α1B (α1, α2)

1

F (x;α1, α2)
, (7.13)

where
F (x;α1, α2) = 1 +

a1

1+

a2

1+

a3

1+
· · · (7.14)

Using the notation introduced in section 7.3 we have:

⇐Main equation

bn = 1 for n = 0, 1, 2, . . .

a2n =
n (α2 − n)x

(α1 + 2n) (α1 + 2n− 1)
for n = 1, 2, . . .

a2n+1 =
(α1 + n) (α1 + α2 + n)x
(α1 + 2n) (α1 + 2n− 1)

for n = 1, 2, . . .

(7.15)

The continued fraction in equation 7.13 converges rapidly for x > α1+1
α1+α2+2 [Press et al.].

To compute the incomplete beta function over the complementary range, one
uses the following symmetry property of the function:

B (x;α1, α2) = 1−B (1− x;α2, α1) (7.16)

Since 1− x < α2+1
α1+α2+2 if x < α1+1

α1+α2+2 , we can now compute the function over
the entire range.

To avoid a floating-point error when evaluating the leading factor of equation
7.13, the values of the incomplete beta function at x = 0 — which is 0 — and
at x = 1 — which is 1 — must be returned separately.

7.5.2 Incomplete Beta function — Smalltalk implementa-
tion

Figure 7.1 with the
boxes Incomplete-
BetaFunction and
IncompleteBetaFractionTermServer

grayed.

Listing 7.7 shows the implementation of the incomplete beta function in Smalltalk.
Two classes are needed to implement the incomplete beta function. The class

DhbIncompleteBetaFunction is in charge of computing the function itself. This
class has the following instance variables.

alpha1 contains the first function’s parameter, i.e. α1,

alpha2 contains the second function’s parameter, i.e. α2,

logNorm used to cache the value of lnB (α1, α2) for efficiency purposes,

fraction contains the continued fraction associated to the functionB (x;α1, α2),

122 CHAPTER 7. SERIES

inverseFraction contains the continued fraction associated to the function
B (1− x;α2, α1).

Depending on the range of the argument, the class delegates the rest of the
computing to a continued fraction using the original parameters or the reversed
parameters if the symmetry relation must be used. A term server class allows
the computing of the terms. Its code is shown in listing 7.8. The two instance
variables - fraction and inverseFraction -, contain an instance of the term
server, one for each permutation of the parameters, thus preventing the unnec-
essary creation of new instances of the term server at each evaluation. These
instance variables are assigned using lazy initialization.

Listing 7.7 Smalltalk implementation of the incomplete beta function

Class DhbIncompleteBetaFunction
Subclass of Object

Instance variable names: alpha1 alpha2 fraction inverseFraction logNorm

Class methods

shape: aNumber1 shape: aNumber2

^ super new initialize: aNumber1 shape: aNumber2

Instance methods

evaluateFraction: aNumber

fraction isNil

ifTrue:

[fraction := DhbIncompleteBetaFractionTermServer new.

fraction setParameter: alpha1 second: alpha2].

fraction setArgument: aNumber.

^(DhbContinuedFraction server: fraction)

desiredPrecision: DhbFloatingPointMachine new defaultNumericalPrecision;

evaluate

evaluateInverseFraction: aNumber

inverseFraction isNil

ifTrue:

[inverseFraction := DhbIncompleteBetaFractionTermServer new.

inverseFraction setParameter: alpha2 second: alpha1].

inverseFraction setArgument: (1 - aNumber).

^(DhbContinuedFraction server: inverseFraction)

desiredPrecision: DhbFloatingPointMachine new defaultNumericalPrecision;

evaluate

initialize: aNumber1 shape: aNumber2

7.5. INCOMPLETE BETA FUNCTION 123

alpha1 := aNumber1.

alpha2 := aNumber2.

logNorm := (alpha1 + alpha2) logGamma - alpha1 logGamma - alpha2 logGamma.

^ self

value: aNumber

| norm |

aNumber = 0

ifTrue: [^ 0].

aNumber = 1

ifTrue: [^ 1].

norm := (aNumber ln * alpha1 + ((1 - aNumber) ln * alpha2) + logNorm) exp.

^ (alpha1 + alpha2 + 2) * aNumber < (alpha1 + 1)

ifTrue: [norm / ((self evaluateFraction: aNumber) * alpha1)]

ifFalse: [1 - (norm / ((self evaluateInverseFraction: aNumber) * alpha2))]

Listing 7.8 shows the implementation of the term server. It needs two instance
variables to store the parameters α1 and α2. Equation 7.15 is implemented by
the methods initialTerm (for n = 0) and termsAt: (for n ≥ 1).

Listing 7.8 Smalltalk implementation of the term server for the incomplete
beta function

Class DhbIncompleteBetaFractionTermServer
Subclass of DhbSeriesTermServer

Instance variable names: alpha1 alpha2

Instance methods

initialTerm

^ 1

setParameter: aNumber1 second: aNumber2

alpha1 := aNumber1.

alpha2 := aNumber2

termsAt: anInteger

| n n2 |

n := anInteger // 2.

n2 := 2 * n.

^Array with: (n2 < anInteger

ifTrue: [x negated * (alpha1 + n) * (alpha1 + alpha2 + n)

/ ((alpha1 + n2) * (alpha1 + 1 + n2))]

ifFalse: [x * n * (alpha2 - n) / ((alpha1 + n2) * (alpha1 - 1 + n2))])

with: 1

An example of use of the incomplete beta function can be found in sections 10.1
and 10.2.

124 CHAPTER 7. SERIES

Chapter 8

Linear algebra

On ne trouve pas l’espace, il faut toujours le construire.1

Gaston Bachelard

Linear algebra concerns itself with the manipulation of vectors and matrices.
The concepts of linear algebra are not difficult and linear algebra is usually
taught in the first year of university. Solving systems of linear equations are
even taught in high school. Of course, one must get used to the book keeping
of the indices. The concise notation introduced in linear algebra for vector and
matrix operations allows expressing difficult problems in a few short equations.
This notation can be directly adapted to object oriented programming.

Figure 8.1 shows the classes described in this chapter. Like chapter 2, this
chapter discusses some fundamental concepts and operations that shall be used
throughout the rest of the book. It might appear austere to many readers
because, unlike the preceding chapters, it does not contains concrete examples.
However, the reader will find example of use of linear algebra in nearly all
remaining chapters of this book.

The chapter begins with a reminder of operations defined on vectors and
matrices. Then, two methods for solving systems of linear equations are dis-
cussed. This leads to the important concept of matrix inversion. Finally the
chapter closes of the problem of finding eigenvalues and eigenvectors.

8.1 Vectors and matrices

Linear algebra concerns itself with vectors in multidimensional spaces and the
properties of operations on these vectors. It is a remarkable fact that such
properties can be studied without explicit specification of the space dimension2.

1Space is not to be found; it must always be constructed.
2In fact, most mathematical properties discussed in this chapter are valid for space with

an infinite number of dimensions (Hilbert spaces).

125

126 CHAPTER 8. LINEAR ALGEBRA

JacobiTransformation

clusters:
dataServer:
evaluateIteration
finalizeIteration
minimumClusterSize
minimumRelativeClusterSize

eigenvalue (result)
lowerRows
transform

IterativeProcess

(chapter 4)

Vector

+
-
*
accumulate:
dimension
negate
norm
scaleBy:
tensorProduct:

Matrix

*
+
-
accumulate:
columnAt:
determinant
inverse
numberOfColumns
numberOfRows
rowAt:
scaleBy:
squared
transpose

rows
lupDecomposition

LinearEquations

solution
solutionAt:

rows
solutions

LUPDecomposition

solve:
inverseMatrixComponents

rows
permutation
parity

SymmetricMatrix

+
-
inverse

LargestEigenValueFinder

eigenvalue
eigenvector
evaluateIteration
initialize:
initializeIteration
nextLargestEigenValueFinder

eigenvector
transposeEigenvector
matrix

Figure 8.1: Linear algebra classes

A vector is an object in a multidimensional space. It is represented by its
components measured on a reference system. A reference system is a series
of vectors from which the entire space can be generated. A commonly used
mathematical notation for a vector is a lower case bold letter, v for example. If
the set of vectors u1, . . . ,un is a reference system for a space with n dimension,
then any vector of the space can be written as:

v = v1u1 + · · ·+ vnun, (8.1)

where v1, . . . , vn are real numbers in the case of a real space or complex numbers
in a complex space. The numbers v1, . . . vn are called the components of the
vector.

A matrix is a linear operator over vectors from one space to vectors in another
space not necessarily of the same dimension. This means that the application
of a matrix on a vector is another vector. To explain what linear means, we
must quickly introduce some notation.

A matrix is commonly represented with an upper case bold letter, M for
example. The application of the matrix M on the vector M is denoted by
M · v. The fact that a matrix is a linear operator means that

M · (αu + βv) = αM · u + βM · v, (8.2)

for any matrix M, any vectors u and v, any numbers α and β.
Matrices are usually represented using a table of numbers. In general, the

number of rows and the number of columns are not the same. A square matrix

8.1. VECTORS AND MATRICES 127

is a matrix having the same number of rows and columns. A square matrix
maps a vector onto another vector of the same space.

Vectors and matrices have an infinite number of representations depending
on the choice of reference system. Some properties of matrices are independent
from the reference system. Very often the reference system is not specified
explicitly. For example, the vector v of equation 8.1 is represented by the array
of numbers (v1v2 · · · vn) where n is the dimension of the vector. Writing the
components of a vector within parentheses is customary. Similarly a matrix is
represented with a table of numbers called the components of the matrix; the
table is also enclosed within parentheses. For example, the n by m matrix A is
represented by:

A =

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 . (8.3)

The components can be real or complex numbers. In this book we shall deal
only with vectors and matrices having real components.

For simplicity a matrix can also be written with matrix components. That
is, the n by m matrix A can be written in the following form:

A =

(
B C
D E

)
, (8.4)

where B, C, D and E are all matrices of lower dimensions. Let B be a p by q
matrix. Then, C is a p by m − q matrix, D is a n − p by q matrix and E is a
n− p by m− q matrix.

Using this notation one can carry all conventional matrix operations using
formulas similar to those written with the ordinary number components. There
is, however, one notable exception: the order of the products must be preserved
since matrix multiplication is not commutative. For example, the product be-
tween two matrices expressed as matrix components can be carried out as:(

B1 C1

D1 E1

)
·
(

B2 C2

D2 E2

)
=

(
B1 ·B2 + C1 ·D2 B1 ·C2 + C1 ·E2

D1 ·B2 + E1 ·D2 D1 ·C2 + E1 ·E2

)
,

(8.5)
In equation 8.5 the dimension of the respective matrix components must permit
the corresponding product. For example the number of rows of the matrices B1

and C1 must be equal to the number of columns of the matrices B2 and C2

respectively.
Common operations defined on vectors and matrices are summarized below.

In each equation, the left-hand side shows the vector notation and the right-hand
side shows the expression for coordinates and components.

The sum of two vectors of dimension n is a vector of dimension n:

w = u + v wi = ui + vi for i = 1, . . . , n
(8.6)

128 CHAPTER 8. LINEAR ALGEBRA

The product of a vector of dimension n by a number α is a vector of dimension
n:

w = αv wi = αvi for i = 1, . . . , n
(8.7)

The scalar product of two vectors of dimension n is a number:

s = u · v s =

n∑
i=1

uivi

(8.8)
The norm of a vector is denoted |v|. The norm is the square root of the scalar
product with itself.

|v| =
√

v · v |v| =

√√√√ n∑
i=1

vivi

(8.9)
The tensor product of two vectors of respective dimensions n and m is an n by
m matrix:

T = u⊗ v Tij = uivj for i = 1, . . . , n
and j = 1, . . . ,m

(8.10)
The sum of two matrices of same dimensions is a matrix of same dimensions:

C = A + B cij = aij + bij for i = 1, . . . , n
and j = 1, . . . ,m

(8.11)
The product of a matrix by a number α is a matrix of same dimensions:

B = αA bij = αaij for i = 1, . . . , n
and j = 1, . . . ,m

(8.12)
The transpose of a n by m matrix is a m by n matrix:

B = AT bij = aji for i = 1, . . . , n
and j = 1, . . . ,m

(8.13)
The product of a n by m matrix with a vector of dimension n is a vector of
dimension m:

u = A · v ui =

n∑
i=1

aijvi for i = 1, . . . ,m

(8.14)
The transposed product of a vector of dimension m by a n by m matrix is a
vector of dimension n:

u = v ·A ui =

m∑
i=1

ajivi for i = 1, . . . ,m

(8.15)

8.1. VECTORS AND MATRICES 129

The product of a n by p matrix with a p by m matrix is a n by m matrix:

C = A ·B cij =

p∑
k=1

aikakj for i = 1, . . . ,m

j = 1, . . . ,m
(8.16)

There are of course other operations (the outer product for example) but they
will not be used in this book.

To conclude this quick introduction, let us mention matrices with special
properties.

A square matrix is a matrix which has the same number of rows and columns.
To shorten sentences, we shall speak of a square matrix of dimension n instead
of a n by n matrix.

An identity matrix I is a matrix such that

I · v = v (8.17)

for any vector v. This implies that the identity matrix is a square matrix. the
representation of the identity matrix contains 1 in the diagonal and 0 off the
diagonal in any system of reference. For any square matrix A we have:

I ·A = A · I = A (8.18)

One important property for the algorithms discussed in this book is sym-
metry. A symmetrical matrix is a matrix such that AT = A. In any system of
reference the components of a symmetric matrix have the following property:

aij = aji, for all i and j. (8.19)

The sum and product of two symmetric matrices is a symmetric matrix. The
matrix AT ·A is a symmetric matrix for any matrix A. If the matrix A repre-
sented in equation 8.4 is symmetric, we have D = CT.

8.1.1 Vector and matrix — Smalltalk implementation
Figure 8.1 with the box Vec-
tor and Matrix grayed.Listings 8.1 and 8.2 show respectively the implementation of vectors and ma-

trices as Smalltalk classes. A special implementation for symmetric matrices is
shown in listing 8.3.

The public interface is designed as to map itself as close as possible to the
mathematical definitions. Here are some example of code using operations be-
tween vectors and matrices:

Code example 8.1
| u v w a b c|

u := #(1 2 3) asVector.

v := #(3 4 5) asVector.

a := DhbMatrix rows: #((1 0 1) (-1 -2 3)).

130 CHAPTER 8. LINEAR ALGEBRA

b := DhbMatrix rows: #((1 2 3) (-2 1 7) (5 6 7)).

w := 4 * u + (3 * v).

c := a * b.

v := a * u.

w := c transpose * v.

w := v * c.

In the first two lines after the declarative statement, the vectors u and v are
defined from their component array using the creator method asVector. They
are 3-dimensional vectors. The matrices a and b are created by supplying the
components to the class creation method rows:. The matrix a is a 2 by 3
matrix, whereas the matrix b is a square matrix of dimension 3. In all cases
the variable w is assigned to a vector and the variable c is assigned to a matrix.
First, the vector w is assigned to a linear combination of the vectors u and v.
Apart from the parentheses required for the second product, the expression is
identical to what one would write in mathematics (compare this expression with
equation 8.1).

Next the matrix c is defined as the product of the matrices a and b in this
order. It is a direct transcription of the left part of equation 8.16 up to the case
of the operands.

The next assignment redefines the vector v as the product of the matrix A
with the vector u. It is now a 2-dimensional vector. Here again the correspon-
dence between the Smalltalk and the mathematical expression is direct.

The last two lines compute the vector w as the transpose product with
the matrix a. The result of both line is the same3. The first line makes the
transposition of the matrix a explicit, whereas the second line used the implicit
definition of the transpose product. The second line is faster than the previous
one since no memory assignment is required for the temporary storage of the
transpose matrix.

The use of other methods corresponding to the operations defined in equa-
tions 8.6 to 8.16 are left as an exercise to the reader.

Implementation
A vector is akin to an instance of the Smalltalk class Array, for which math-

ematical operations have been defined. Thus, a vector in Smalltalk can be
implemented directly as a subclass of the class Array. A matrix is an object
whose instance variable is an array of vectors.

The operations described in the preceding section can be assigned to the cor-
responding natural operators. The multiplication, however, can involve several
types of operands. It can be applied between

1. a vector and a number,

3There is a subtle difference between regular vectors and transposed vectors, which is
overlooked by our choice of implementation, however. Transposed vectors or covariant vectors
as they are called in differential geometry should be implemented in a proper class. This
extension is left as an exercise to the reader.

8.1. VECTORS AND MATRICES 131

2. a matrix and a number or

3. a vector and a matrix.

Thus, the multiplication will be implemented using double dispatching as ex-
plained in section 2.2.1 for operations between polynomials. Double dispatching
is described in appendix (c.f. section B.4).

The method asVector is defined for compatibility with a similar method
defined in the class Array to construct a vector out of an array object. A
method asVector could be defined also for instances of the class Collection.
This is left as an exercise for the reader.

The method tensorProduct returns an instance of a symmetric matrix.
This class is defined in listing 8.3.

The method accumulate is meant to be used when there is a need to add
several vectors. Indeed the following code

Code example 8.2
| a b c d e |

a := #(1 2 3 4 5) asVector.

b := #(2 3 4 5 6) asVector.

c := #(3 4 5 6 7) asVector.

d := #(4 5 6 7 8) asVector.

e := a+b+c+d.

creates a lots of short-lived vectors, namely one for each addition. Using the
method accumulate reduces the memory allocation:

Code example 8.3
| a b c d e |

a := #(1 2 3 4 5) asVector.

b := #(2 3 4 5 6) asVector.

c := #(3 4 5 6 7) asVector.

d := #(4 5 6 7 8) asVector.

e := a copy.

e accumulate: b; accumulate: c; accumulate: d.

If vectors of large dimension are used, using accumulation instead of addition
can make a big difference in performance since many large short-lived objects
put a heavy toll of the garbage collector.

Listing 8.1 Vector class in Smalltalk

Class DhbVector
Subclass of Array

Instance methods

* aNumberOrMatrixOrVector

132 CHAPTER 8. LINEAR ALGEBRA

^aNumberOrMatrixOrVector productWithVector: self

+ aVector

| answer n |

answer := self class new: self size.

n := 0.

self with: aVector do:

[:a :b |

n := n + 1.

answer at: n put: (a + b).

].

^answer

- aVector

| answer n |

answer := self class new: self size.

n := 0.

self with: aVector do:

[:a :b |

n := n + 1.

answer at: n put: (a - b).

].

^answer

accumulate: aVectorOrAnArray

1 to: self size do: [:n | self at: n put: ((self at: n) + (

aVectorOrAnArray at: n))].

accumulateNegated: aVectorOrAnArray

1 to: self size do: [:n | self at: n put: ((self at: n) - (

aVectorOrAnArray at: n))].

asVector

^ self

dimension

^ self size

negate

1 to: self size do: [:n | self at: n put: (self at: n) negated].

norm

^ (self * self) sqrt

8.1. VECTORS AND MATRICES 133

normalized

^ (1 / self norm) * self

productWithMatrix: aMatrix

^ aMatrix rowsCollect: [:each | each * self]

productWithVector: aVector

| n |

n := 0.

^self inject: 0

into: [:sum :each | n := n + 1. (aVector at: n) * each +

sum]

scaleBy: aNumber

1 to: self size do: [:n | self at: n put: ((self at: n) *

aNumber)].

tensorProduct: aVector

self dimension = aVector dimension

ifFalse:[^self error: ’Vector dimensions mismatch to build

tensor product’].

^DhbSymmetricMatrix rows: (self collect: [:a | aVector collect:

[:b | a * b]])

The class DhbMatrix has two instance variables:

rows an array of vectors, each representing a row of the matrix and

lupDecomposition a pointer to an object of the class DhbLUPDecomposition
containing the LUP decomposition of the matrix if already computed.
LUP decomposition is discussed in section 8.3.

This implementation reuses the vector implementation of the vector scalar prod-
uct to make the code as compact as possible. the iterator methods columnsCollect:,
columnsDo:, rowsCollect: and rowsDo: are designed to limit the need for in-
dex management to these methods only.

An attentive reader will have noticed that the iterator methods rowsDo:

and rowsCollect: present a potential breach of encapsulation. Indeed, the
following expression

aMatrix rowsDo:[:each | each at: 1 put: 0]

changes the matrix representation outside of the normal way. Similarly, the
expression

aMatrix rowsCollect:[:each | each]

134 CHAPTER 8. LINEAR ALGEBRA

gives direct access to the matrix’s internal representation.
The method square implements the product of the transpose of a matrix

with itself. This construct is used in several algorithms presented in this book.
The reader should compare the Smalltalk code with the Java code. The

Java implementation makes the index management explicit. Since there are no
iterator methods in Java, there is no other choice.

Note: The presented matrix implementation is straightforward. De-
pending on the problem to solve, however, it is not the most efficient
one. Each multiplication allocates a lot of memory. If the problem
is such that one can allocate memory once for all, more efficient
methods can be designed.

The implementation of matrix operations — addition, subtraction, product
— uses double or multiple dispatching to determine whether or not the result is
a symmetric matrix. Double and multiple dispatching are explained in sections
B.4 and B.5. The reader who is not familiar with multiple dispatching should
trace down a few examples between simple matrices using the debugger.

Listing 8.2 Matrix classes in Smalltalk

Class DhbMatrix
Subclass of Object

Instance variable names: rows lupDecomposition

Class methods

new: anInteger

^ self new initialize: anInteger

rows: anArrayOrVector

^ self new initializeRows: anArrayOrVector

Instance methods

* aNumberOrMatrixOrVector

^ aNumberOrMatrixOrVector productWithMatrix: self

+ aMatrix

^ aMatrix addWithRegularMatrix: self

- aMatrix

^ aMatrix subtractWithRegularMatrix: self

accumulate: aMatrix

8.1. VECTORS AND MATRICES 135

| n |

n := 0.

self rowsCollect: [:each | n := n + 1. each accumulate: (

aMatrix rowAt: n)]

accumulateNegated: aMatrix

| n |

n := 0.

self rowsCollect: [:each | n := n + 1. each accumulateNegated: (

aMatrix rowAt: n)]

addWithMatrix: aMatrix class: aMatrixClass

| n |

n := 0.

^ aMatrixClass rows: (self rowsCollect: [:each | n := n + 1.

each + (aMatrix rowAt: n)])

addWithRegularMatrix: aMatrix

^ aMatrix addWithMatrix: self class: aMatrix class

addWithSymmetricMatrix: aMatrix

^ aMatrix addWithMatrix: self class: self class

asSymmetricMatrix

^ DhbSymmetricMatrix rows: rows

columnAt: anInteger

^ rows collect: [:each | each at: anInteger]

columnsCollect: aBlock

| n |

n := 0.

^rows last collect: [:each | n := n + 1. aBlock value: (self

columnAt: n)]

columnsDo: aBlock

| n |

n := 0.

^ rows last do: [:each | n := n + 1. aBlock value: (self

columnAt: n)]

initialize: anInteger

rows := (1 to: anInteger) asVector collect: [:each | DhbVector

new: anInteger].

136 CHAPTER 8. LINEAR ALGEBRA

initializeRows: anArrayOrVector

rows := anArrayOrVector asVector collect: [:each | each

asVector].

isSquare

^ rows size = rows last size

isSymmetric

^ false

lupDecomposition

lupDecomposition isNil

ifTrue: [lupDecomposition :=DhbLUPDecomposition equations:

rows].

^ lupDecomposition

negate

rows do: [:each |each negate].

numberOfColumns

^ rows last size

numberOfRows

^ rows size

printOn: aStream

| first |

first := true.

rows do:

[:each |

first ifTrue: [first := false]

ifFalse:[aStream cr].

each printOn: aStream.

].

productWithMatrix: aMatrix

^ self productWithMatrixFinal: aMatrix

productWithMatrixFinal: aMatrix

^ self class rows: (aMatrix rowsCollect: [:row | self

columnsCollect: [:col | row * col]])

productWithSymmetricMatrix: aSymmetricMatrix

8.1. VECTORS AND MATRICES 137

^ self class rows: (self rowsCollect: [:row | aSymmetricMatrix

columnsCollect: [:col | row * col]])

productWithTransposeMatrix: aMatrix

^ self class rows: (self rowsCollect: [:row | aMatrix

rowsCollect: [:col | row * col]])

productWithVector: aVector

^ self columnsCollect: [:each | each * aVector]

rowAt: anInteger

^ rows at: anInteger

rowsCollect: aBlock

^ rows collect: aBlock

rowsDo: aBlock

^ rows do: aBlock

scaleBy: aNumber

rows do: [:each | each scaleBy: aNumber].

squared

^ DhbSymmetricMatrix rows: (self columnsCollect: [:col | self

columnsCollect: [:colT | col * colT]])

subtractWithMatrix: aMatrix class: aMatrixClass

| n |

n := 0.

^ aMatrixClass rows: (self rowsCollect: [:each | n := n + 1.

each - (aMatrix rowAt: n)])

subtractWithRegularMatrix: aMatrix

^ aMatrix subtractWithMatrix: self class: aMatrix class

subtractWithSymmetricMatrix: aMatrix

^ aMatrix subtractWithMatrix: self class: self class

transpose

^ self class rows: (self columnsCollect: [:each | each])

transposeProductWithMatrix: aMatrix

138 CHAPTER 8. LINEAR ALGEBRA

^ self class rows: (self columnsCollect: [:row | aMatrix

columnsCollect: [:col | row * col]])

Listing 8.3 shows the implementation of the class DhbSymmetricMatrix repre-
senting symmetric matrices. A few algorithms are implemented differently for
symmetric matrices.

The reader should pay attention to the methods implementing addition,
subtraction and products. Triple dispatching is used to ensure that the addition
or subtraction of two symmetric matrices yields a symmetric matrix whereas
the same operations between a symmetric matrix and a normal matrix yield a
normal matrix. Product requires quadruple dispatching.

Listing 8.3 Symmetric matrix classes in Smalltalk

Class DhbSymmetricMatrix
Subclass of DhbMatrix

Class methods

identity: anInteger

^ self new initializeIdentity: anInteger

Instance methods

+ aMatrix

^ aMatrix addWithSymmetricMatrix: self

- aMatrix

^ aMatrix subtractWithSymmetricMatrix: self

addWithSymmetricMatrix: aMatrix

^ aMatrix addWithMatrix: self class: self class

clear

rows do: [:each | each atAllPut: 0].

initializeIdentity: anInteger

rows := (1 to: anInteger) asVector collect: [:n | (DhbVector

new: anInteger) atAllPut: 0; at: n put: 1; yourself].

isSquare

^ true

isSymmetric

8.2. LINEAR EQUATIONS 139

^ true

productWithMatrix: aMatrix

^ aMatrix productWithSymmetricMatrix: self

productWithSymmetricMatrix: aSymmetricMatrix

^ aSymmetricMatrix productWithMatrixFinal: self

subtractWithSymmetricMatrix: aMatrix

^ aMatrix subtractWithMatrix: self class: self class

8.2 Linear equations

A linear equation is an equation in which the unknowns appear to the first order
and are combined with the other unknowns only with addition or subtraction.
For example, the following equation:

3x1 − 2x2 + 4x3 = 0, (8.20)

is a linear equation for the unknowns x1, x2 and x3. The following equation

3x2
1 − 2x2 + 4x3 − 2x2x3 = 0, (8.21)

is not linear because x1 appears as a second order term and a term containing
the product of the unknowns x2 and x3 is present. However, equation 8.21 is
linear for the unknown x2 (or x3) alone. A system of linear equation has the
same number of equations as there are unknowns. For example 3x1 + 2y2 + 4z3 = 16

2x1 − 5y2 − z3 = 6
x1 − 2y2 − 2z3 = 10

(8.22)

is a system of linear equation which can be solved for the 3 unknowns x1, x2

and x3. Its solution is x1 = 2, x2 = −1 and x3 = 3.
A system of linear equations can be written in vector notation as follows:

A · x = y. (8.23)

The matrix A and the vector z are given. Solving the system of equations
is looking for a vector x such that equation 8.23 holds. The vector x is the
solution of the system. A necessary condition for a unique solution to exist
is that the matrix A be a square matrix. Thus, we shall only concentrate on
square matrices4. A sufficient condition for the existence of a unique solution is

4It is possible to solve system of linear equations defined with a non-square matrix using
technique known as singular value decomposition (SVD). In this case, however, the solution
of the system is not a unique vector, but a subspace of n-dimensional space where n is the
number of columns of the system’s matrix. The SVD technique is similar to the techniques
used to find eigenvalues and eigenvectors.

140 CHAPTER 8. LINEAR ALGEBRA

that the rank of the matrix — that is the number of linearly independent rows
— is equal to the dimension of the matrix. If the conditions are all fulfilled, the
solution to equation 8.23 can be written in vector notation:

x = A−1y. (8.24)

where A−1 denotes the inverse of the matrix A (c.f. section 8.5).
Computing the inverse of a matrix in the general case is numerically quite

demanding (c.f. section 8.5). Fortunately, there is no need to explicitly compute
the inverse of a matrix to solve a system of equations. Let us first assume that
the matrix of the system is a triangular matrix, that is we have:

Tx = y′. (8.25)

where T is a matrix such that:

Tij = 0 for i > j. (8.26)

Backward substitution
The solution of the system of equation 8.25 can be obtained using backward

substitution. The name backward comes from the fact that the solution begins
by calculating the component with the highest index; then it works its way
backward on the index calculating each components using all components with
higher index.

Main equation⇒
xn =

y′n
tnn

,

xi =

y′i −
n∑

j=i+1

tijxj

a′nn
for i = n− 1, . . . , 1.

(8.27)

Gaussian elimination
Any system as described by equation 8.23 can be transformed into a system

based on a triangular matrix. This can be achieved through a series of transfor-
mations leaving the solution of the system of linear equations invariant. Let us
first rewrite the system under the form of a single matrix S defined as follows:

S =

a11 a12 . . . a1n y1

a21 a22 . . . a2n y2
...

...
. . .

...
...

an1 an2 . . . ann yn

 . (8.28)

Among all transformations leaving the solution of the system represented by
the matrix S invariant, there are two transformations, which help to obtain
a system corresponding to triangular matrix. First, any row of the matrix S

8.2. LINEAR EQUATIONS 141

can be exchanged. Second, a row of the matrix S can be replaced by a linear
combination5 of that row with another one. The trick is to replace all rows
of the matrix S, except for the first one, with rows having a vanishing first
coefficient.

If a11 = 0, we permute the first row with row i such that ai1 6= 0. Then,
we replace each row j, where j > 1, by itself subtracted with the first row
multiplied by ai1/a11 This yields a new system matrix S′ of the form:

S′ =

a′11 a′12 . . . a′1n y′1
0 a′22 . . . a′2n y′2
...

...
. . .

...
...

0 a′n2 . . . a′nn y′n

 . (8.29)

This step is called pivoting the system on row 1 and the element a11 after the
permutation is called the pivot. By pivoting the system on the subsequent rows,
we shall obtain a system built on a triangular matrix as follows:

S(n) =

a

(n)
11 a

(n)
12 a

(n)
13 . . . a

(n)
1n y

(n)
1

0 a
(n)
22 a

(n)
23 . . . a

(n)
2n y

(n)
2

0 0 a
(n)
33 . . . a

(n)
3n y

(n)
3

...
...

. . .
...

...
0 0 . . . 0 a

(n)
nn y

(n)
n

 . (8.30)

This algorithm is called Gaussian elimination. Gaussian elimination will fail if
we are unable to find a row with a non-zero pivot at one of the steps. In that
case the system does not have a unique solution .

The first n columns of the matrix S(n) can be identified to the matrix T
of equation 8.25 and the last column of the matrix S(n) corresponds to the
vector y′ of equation 8.25. Thus, the final system can be solved with backward
substitution.

Note: The reader can easily understand that one could have made
a transformation to obtain a triangular matrix with the elements
above the diagonal all zero. In this case, the final step is called
forward substitution since the first component of the solution vector
is computed first. The two approaches are fully equivalent.

Fine points
A efficient way to avoid a null pivot is to systematically look for the row having

the largest pivot at each step. To be precise, before pivoting row i, it is first

exchanged with row j such that
∣∣∣a(i−1)
ij

∣∣∣ > ∣∣∣a(i−1)
ik

∣∣∣ for all k = i, . . . , n if such row

exists. The systematic search for the largest pivot ensures optimal numerical
precision [Phillips & Taylor].

5In such linear combination, the coefficient of the replaced row must not be zero.

142 CHAPTER 8. LINEAR ALGEBRA

The reader will notice that all operations can be performed in place since
the original matrix S is not needed to compute the final result.

Finally it should be noted that the pivoting step can be performed on several
vectors y at the same time. If one must solve the same system of equations for
several sets of constants, pivoting can be applied to all constant vectors by
extending the matrix S with as many columns as there are additional constant
vectors as follows:

S =

a11 a12 . . . a1n y11 . . . ym1

a21 a22 . . . a2n y12 . . . ym2
...

...
. . .

...
...

. . .
...

an1 an2 . . . ann y1n . . . ymn

 . (8.31)

backward substitution must of course be evaluated separately for each constant
vector.

Gaussian elimination is solely dedicated to solving systems of linear equa-
tions. The algorithm is somewhat slower than LUP decomposition described in
section 8.3. When applied to systems with several constant vectors, however,
Gaussian elimination is faster since the elimination steps are made only once. In
the case of LUP decomposition, obtaining the solution for each vector requires
more operations than those needed by backward substitution.

8.2.1 Linear equations — General implementation
Figure 8.1 with the box Lin-
earEquations grayed. Although using matrix and vector notation greatly simplifies the discussion of

Gaussian elimination, there is little gain in making an implementation using
matrices and vectors explicitly.

The class creation methods or constructors will take as arguments either a
matrix and a vector or an array of arrays and an array. The class implementing
Gaussian elimination has the following instance variables:

rows an array or a vector whose elements contain the rows of the matrix S.

solutions an array whose elements contain the solutions of the system corre-
sponding to each constant vector.

Solving the system is entirely triggered by retrieving the solutions. The in-
stance variable solutions is used to keep whether or not Gaussian elimination
has already taken place. If this variable is nil Gaussian elimination has not
yet been performed. Gaussian elimination is performed by the method solve.
At the end of the algorithm, the vector of solutions is allocated into the in-
stance variable solutions. Similarly, backward substitution is triggered by the
retrieving of a solution vector. If the solution for the specified index has not yet
been computed, backward substitution is performed and the result is stored in
the solution array.

8.2. LINEAR EQUATIONS 143

8.2.2 Linear equations — Smalltalk implementation

Listing 8.4 shows the class DhbLinearEquationSystem implementing Gaussian
elimination in Smalltalk.

To solve the system of equations 8.22 using Gaussian elimination, one needs
to write to evaluate the following expression:

Code example 8.4
(DhbLinearEquationSystem equations: #((3 2 4)

(2 -5 -1)

(1 -2 2))

constant: #(16 6 10)

) solution.

This expression has been written on three lines to delineate the various steps.
The first two lines create an instance of the class DhbLinearEquationSystem

by feeding the coefficients of the equations, rows by rows, on the first line and
giving the constant vector on the second line. The last line is a call to the
method solution retrieving the solution of the system.

Solving the same system with an additional constant vector requires a little
more code, but not much:

Code example 8.5
| s sol1 sol2 |

s := DhbLinearEquationSystem equations: #((3 2 4) (2 -5 -1) (1 -2 2))

constants: #((16 6 10)

(7 10 9)).

sol1 := s solutionAt: 1.

sol2 := s solutionAt: 2.

In this case, the creation method differs in that the two constant vectors are
supplied in an array columns by columns. Similarly, the two solutions must be
fetched one after the other.

The class DhbLinearEquationSystem The class method equations:constants:

allows to create a new instance for a given matrix and a series of constant vec-
tors.

The method solutionAt: returns the solution for a given constant vector.
The index specified as argument to that method corresponds to that of the
desired constant vector.

The method solve performs all required pivoting steps using a do: iterator.
The method pivotStepAt: first swaps rows to bring a pivot having the largest
absolute value in place and then invokes the method pivotAt: to perform the
actual pivoting.

Convenience methods equations:constant: and solution are supplied to
treat the most frequent case where there is only one single constant vector. How-
ever, the reader should be reminded that LUP decomposition is more effective
in this case.

144 CHAPTER 8. LINEAR ALGEBRA

If the system does not have a solution — that is, if the system’s matrix
is singular — an arithmetic error occurs in the method pivotAt: when the
division with the zero pivot is performed. The method solutionAt: traps this
error within an exception handling structure and sets the solution vector to
a special value — the integer 0 — as a flag to prevent attempting Gaussian
elimination a second time. Then, the value nil is returned to represent the
non-existent solution.

Listing 8.4 Smalltalk implementation of a system of linear equations

Class DhbLinearEquationSystem
Subclass of Object

Instance variable names: rows solutions

Pool dictionaries: SystemExceptions

Class methods

equations: anArrayOfArrays constant: anArray

OfArrays constant: anArray

^self new initialize: anArrayOfArrays constants: (Array with:

anArray)

equations: anArrayOfArrays constants: anArrayOfConstantArrays

^self new initialize: anArrayOfArrays constants:

anArrayOfConstantArrays

Instance methods

backSubstitutionAt: anInteger

| size answer accumulator |

size := rows size.

answer := Array new: size.

size to: 1 by: -1 do:

[:n |

accumulator := (rows at: n) at: (anInteger + size).

(n + 1) to: size

do: [:m | accumulator := accumulator - ((answer at: m)

* ((rows at: n) at: m))].

answer at: n put: (accumulator / ((rows at: n) at: n))].

solutions at: anInteger put: answer.

initialize: anArrayOfArrays constants: anArrayOfConstantArrays

| n |

n := 0.

rows := anArrayOfArrays collect: [:each | n := n + 1. each, (

anArrayOfConstantArrays collect: [:c | c at: n])].

^ self

8.2. LINEAR EQUATIONS 145

largestPivotFrom: anInteger

| valueOfMaximum indexOfMaximum |

valueOfMaximum := (rows at: anInteger) at: anInteger.

indexOfMaximum := anInteger.

(anInteger + 2) to: rows size do:

[:n |

((rows at: n) at: anInteger) > valueOfMaximum

ifTrue: [valueOfMaximum := (rows at: n) at:

anInteger.

indexOfMaximum := n].

].

^indexOfMaximum

pivotAt: anInteger

| inversePivot rowPivotValue row pivotRow |

pivotRow := rows at: anInteger.

inversePivot := 1 / (pivotRow at: anInteger).

(anInteger + 1) to: rows size do:

[:n |

row := rows at: n.

rowPivotValue := (row at: anInteger) * inversePivot.

anInteger to: row size do:

[:m |

row at: m put: ((row at: m) - ((pivotRow at: m) *

rowPivotValue))].

].

pivotStepAt: anInteger

self swapRow: anInteger withRow: (self largestPivotFrom:

anInteger);

pivotAt: anInteger.

printOn: aStream

| first delimitingString n k |

n := rows size.

first := true.

rows do:

[:row |

first ifTrue: [first := false]

ifFalse: [aStream cr].

delimitingString := ’(’.

k := 0.

row do:

[:each |

146 CHAPTER 8. LINEAR ALGEBRA

aStream nextPutAll: delimitingString.

each printOn: aStream.

k := k + 1.

delimitingString := k < n ifTrue: [’ ’] ifFalse: [’

: ’].

].

aStream nextPut: $).

].

solution

^self solutionAt: 1

solutionAt: anInteger

solutions isNil

ifTrue: [[self solve] when: ExError do: [:signal |solutions

:= 0. signal exitWith: nil.]].

solutions = 0

ifTrue: [^nil].

(solutions at: anInteger) isNil

ifTrue: [self backSubstitutionAt: anInteger].

^ solutions at: anInteger

solve

1 to: rows size do: [:n | self pivotStepAt: n].

solutions := Array new: ((rows at: 1) size - rows size).

swapRow: anInteger1 withRow: anInteger2

| swappedRow |

anInteger1 = anInteger2

ifFalse: [swappedRow := rows at: anInteger1.

rows at: anInteger1 put: (rows at:

anInteger2).

rows at: anInteger2 put: swappedRow].

8.3 LUP decomposition

LUP decomposition is another technique to solve a system of linear equations.
It is an alternative to the Gaussian elimination [Cormen et al.]. Gaussian elimi-
nation can solve a system with several constant vectors, but all constant vectors
must be known before starting the algorithm.

LUP decomposition is done once for the matrix of a given system. Thus, the
system can be solved for any constant vector obtained after the LUP decomposi-
tion. In addition, LUP decomposition gives a way to calculate the determinant
of a matrix and it can be used to compute the inverse of a matrix.

8.3. LUP DECOMPOSITION 147

LUP stands for Lower, Upper and Permutation. It comes from the observa-
tion that any non-singular square matrix A can be decomposed into a product
of 3 square matrices of the same dimension as follows:

A = L ·U ·P, (8.32)

where L is a matrix whose components located above the diagonal are zero
(lower triangular matrix), U is a matrix whose components located below the
diagonal are zero (upper triangular matrix) and P is a permutation matrix.
The decomposition of equation 8.32 is non-unique. One can select a unique
decomposition by requiring that all diagonal elements of the matrix L be equal
to 1.

The proof that such decomposition exists is the algorithm itself. It is a
proof by recursion. We shall first start to construct an LU decomposition, that
is an LUP decomposition with an identity permutation matrix. Let us write the
matrix as follows:

A =

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 =

(
a11 wT

v A′

)
, (8.33)

where v and w are two vectors of dimension n− 1 and A′ is a square matrix of
dimension n − 1. Written in this form, one can write an LU decomposition of
the matrix A as follows:

⇐Main equationA =

(
a11 wT

v A′

)
=

(
1 0
v
a11

In−1

)
·
(
a11 wT

0 A′ − v ⊗w
a11

)
, (8.34)

where In−1 is an identity matrix of dimension n− 1. The validity of equation
8.34 can be verified by carrying the product of the two matrices of the right-
hand side using matrix components as discussed in section 8.1. We now are
left with the problem of finding an LU decomposition for the matrix A′− v⊗w

a11
.

This matrix is called the Shur’s complement of the matrix with respect to the
pivot element a11. Let us assume that we have found such a decomposition for
that matrix, that is, that we have:

⇐Main equationA′ − v ⊗w

a11
= L′ ·U′. (8.35)

The we have:(
1 0
v
a11

In−1

)
·
(
a11 wT

0 L′ ·U′
)

=

(
1 0
v
a11

In−1

)
·
(

1 0
0 L′

)
·
(
a11 wT

0 U′

)

=

(
1 0
v
a11

L′

)
·
(
a11 wT

0 U′

)
. (8.36)

The above equality can be verified by carrying the multiplication with matrix
components. The second line of equation 8.36 is the LU decomposition of the

148 CHAPTER 8. LINEAR ALGEBRA

matrix A, which we were looking for. The algorithm is constructed recursively
on the successive Shur’s complements. For practical implementation, however,
it is best to use a loop.

Building the Shur’s complement involves a division by the pivot element. As
for Gaussian elimination, the algorithm runs into trouble if this element is zero.
The expression for the Shur’s complement (equations 8.35) shows that, if the
pivot element is small, rounding errors occur when computing the elements of
the Shur’s complement. The strategy avoiding this problem is the same as for
Gaussian elimination. One must find the row having the component with the
largest absolute value and use this component as the pivot. This is where the
permutation matrix comes into play. It will keep track of each row permutation
required to bring the row selected for pivoting into the first position. If a non-
zero pivot element cannot be found at one step, then the matrix A is singular
and no solution to the system of equation can be found (c.f. similar discussion
in section 8.2).

Now that we have proved that an LUP decomposition exists for any non-
singular matrix, let us see how it is used to solve a system of linear equations.
Consider the system described by equation 8.23; using the LUP decomposition
of the matrix A, it can be rewritten as:

LU · x = P · y, (8.37)

where we have used the fact that P−1 = P for any permutation matrix. Equa-
tion 8.37 can be solved in two steps. First one solves the system

L · x̃ = P · y (8.38)

using forward substitution. Then, one solves the system

U · x = x̃ (8.39)

using backward substitution. One can see that the LUP decomposition can be
used several times to solve a linear system of equations with the same matrix
and different constant vectors.

Performing LUP decomposition is faster than performing Gaussian elimina-
tion because Gaussian elimination must also transform the constant vector. To
compute the solution vector, however, Gaussian elimination only needs back-
ward substitution whereas LUP requires both forward and backward substitu-
tion. The end result is that solving a system of linear equation for a single con-
stant vector is slightly faster using LUP decomposition. If one needs to solve
the same system of equations for several constant vectors known in advance,
Gaussian elimination is faster. If the constant vectors are not known in advance
— or cannot be all stored with the original matrix — LUP decomposition is the
algorithm of choice.

8.3.1 LUP decomposition — General implementation
Figure 8.1 with the box
LUPDecomposition
grayed.

To implement the LUP algorithm, let us first note that we do not need much
storage for the three matrices L, U and P. Indeed, the permutation matrix

8.3. LUP DECOMPOSITION 149

P can be represented with a vector of integers of the same dimension as the
matrix rows. Since the diagonal elements of the matrix L are set in advance, we
only need to store elements located below the diagonal. These elements can be
stored in the lower part of the matrix U. Looking at the definition of the Shur’s
complement (equation 8.35) and at equation 8.36 we can see that all operations
can be performed within a matrix of the same size as the original matrix6.

The implementation of the LUP algorithm must create storage to place the
components of the matrix whose LUP decomposition is to be computed. A
method implements the solving of the system of equations for a given constant
vector. Within the method the LUP decomposition itself is performed if it has
not yet been made using lazy initialization. During the computation of the
LUP decomposition the parity of the permutation is tracked. This information
is used to compute the determinant of the matrix (c.f. section 8.4). Thus, the
class implementing LUP decomposition has the following instance variables.

rows contains a copy of the rows of the matrix representing the system of linear
equations, i.e.the matrix A; copying the matrix is necessary since LUP
decomposition destroys the components; at the end of the LUP decompo-
sition, it will contain the components of the matrices L and U,

permutation contains an array of integers describing the permutation, i.e.the
matrix P,

parity contains parity of the permutation for efficiency purpose 7.

The instance variable permutation is set to undefined (nil in Smalltlak,
null in Java) at initialization time by default. It is used to check whether the
decomposition has already been made or not.

The method solve implements the solving of the equation system for a
given constant vector. It first checks whether the LUP decomposition has been
performed. If not, LUP decomposition is attempted. Then, the methods imple-
menting the forward and backward substitution algorithms are called in succes-
sion.

8.3.2 LUP decomposition — Smalltalk implementation

Listing 8.5 shows the methods of the class DhbLUPDecomposition implementing
LUP decomposition in Smalltalk.

To solve the system of equations 8.22 using LUP decomposition, one needs
to write to evaluate the following expression:

Code example 8.6
(DhbLUPDecomposition equations: #((3 2 4) (2 -5 -1) (1 -2 2)))

solve: #(16 6 10).

6If the matrix A is no longer needed after solving the system of equation, the LUP decom-
position can even be performed inside the matrix A itself.

7The parity is needed to compute the determinant. It could be computed from the parity
matrix. However, the overhead of keeping track of the parity is negligible compared to the
LUP steps and it is much faster than computing the parity.

150 CHAPTER 8. LINEAR ALGEBRA

This expression has been written on two lines to delineate the various steps.
The first line creates an instance of the class DhbLUPDecomposition by giving
the coefficients of the equations, rows by rows. The second line is a call to the
method solve: retrieving the solution of the system for the supplied constant
vector.

Solving the same system for several constant vectors requires storing the
LUP decomposition in a variable:

Code example 8.7
| s sol1 sol2 |

s := DhbLUPDecomposition equations: #((3 2 4) (2 -5 -1) (1 -2 2)).

sol1 := s solve: #(16 6 10).

sol2 := s solve: #(7 10 9).

When the first solution is fetched, the LUP decomposition is performed; then
the solution is computed using forward and backward substitutions. When
the second solution is fetched, only forward and backward substitutions are
performed.

The default creation class method new has been overloaded to prevent cre-
ating an object without initialized instance variables. The proper creation class
method, equations:, takes an array of arrays, the components of the matrix A.
When a new instance is initialized the supplied coefficients are copied into the
instance variable rows and the parity of the permutation is set to one. Copying
the coefficients is necessary since the storage is reused during the decomposition
steps. In addition, some Smalltalk protect constants such as the one used in
the code examples above. In this later case, copying is necessary to prevent a
read-only exception.

A second creation method direct: allows the creation of an instance using
the supplied system’s coefficients directly. The user of this creation method
must keep in mind that the coefficients are destroyed. This creation method
can be used when the coefficients have been computed to the sole purpose of
solving the system of equations (c.f. sections 10.9.2 and 10.10.2 for an example
of use).

The method protectedDecomposition handles the case when the matrix
is singular by trapping the exception occurring in the method decompose per-
forming the actual decomposition. When this occurs, the instance variable
permutation is set to the integer 0 to flag the singular case. Then, any subse-
quent calls to the method solve: returns nil.

Listing 8.5 Smalltalk implementation of the LUP decomposition

Class DhbLUPDecomposition
Subclass of Object

Instance variable names: rows permutation parity

Class methods

8.3. LUP DECOMPOSITION 151

direct: anArrayOfArrays

^ self new initialize: anArrayOfArrays.

equations: anArrayOfArrays

^self new initialize: (anArrayOfArrays collect: [:each |

each deepCopy]).

Instance methods

backwardSubstitution: anArray

| n sum answer|

n := rows size.

answer := DhbVector new: n.

n to: 1 by: -1 do:

[:i |

sum := anArray at: i.

(i + 1) to: n do: [:j | sum := sum - (((rows at: i)

at: j) * (answer at: j))].

answer at: i put: sum / ((rows at: i) at: i)].

^ answer

decompose

| n |

n := rows size.

permutation := (1 to: n) asArray.

1 to: (n - 1) do:

[:k |

self swapRow: k withRow: (self largestPivotFrom: k);

pivotAt: k].

forwardSubstitution: anArray

| n sum answer |

answer := permutation collect: [:each | anArray at: each].

n := rows size.

2 to: n do:

[:i |

sum := answer at: i.

1 to: (i - 1) do: [:j | sum := sum - (((rows at: i)

at: j) * (answer at: j))].

answer at: i put: sum].

^ answer

initialize: anArrayOfArrays

rows := anArrayOfArrays.

parity := 1.

^ self

152 CHAPTER 8. LINEAR ALGEBRA

largestPivotFrom: anInteger

| valueOfMaximum indexOfMaximum value |

valueOfMaximum := ((rows at: anInteger) at: anInteger) abs.

indexOfMaximum := anInteger.

(anInteger + 1) to: rows size do:

[:n |

value := ((rows at: n) at: anInteger) abs.

value > valueOfMaximum

ifTrue: [valueOfMaximum := value.

indexOfMaximum := n]].

^ indexOfMaximum

pivotAt: anInteger

| inversePivot size k |

inversePivot := 1 / ((rows at: anInteger) at: anInteger).

size := rows size.

k := anInteger + 1.

k to: size

do: [:i |

(rows at: i) at: anInteger put: ((rows at: i) at:

anInteger) * inversePivot.

k to: size

do: [:j |

(rows at: i) at: j put: ((rows at: i) at: j)

- (((rows at: i) at: anInteger) * ((rows at: anInteger) at: j))]

].

printOn: aStream

| first delimitingString n k |

n := rows size.

first := true.

rows do:

[:row |

first ifTrue: [first := false]

ifFalse: [aStream cr].

delimitingString := ’(’.

row do:

[:each |

aStream nextPutAll: delimitingString.

each printOn: aStream.

delimitingString := ’ ’].

aStream nextPut: $)].

protectedDecomposition

8.4. COMPUTING THE DETERMINANT OF A MATRIX 153

[self decompose] when: ExAll do: [:signal | permutation := 0.

signal exitWith: nil].

solve: anArrayOrVector

permutation isNil

ifTrue: [self protectedDecomposition].

^permutation = 0

ifTrue: [nil]

ifFalse:[self backwardSubstitution: (self

forwardSubstitution: anArrayOrVector)]

swapRow: anInteger1 withRow: anInteger2

anInteger1 = anInteger2

ifFalse: [| swappedRow |

swappedRow := rows at: anInteger1.

rows at: anInteger1 put: (rows at: anInteger2).

rows at: anInteger2 put: swappedRow.

swappedRow := permutation at: anInteger1.

permutation at: anInteger1 put: (permutation at:

anInteger2).

permutation at: anInteger2 put: swappedRow.

parity := parity negated.

].

8.4 Computing the determinant of a matrix

The determinant of a matrix is defined as

det A =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

∣∣∣∣∣∣∣∣∣ =
∑
π

sign (π) a1π(1)a2π(1) · · · anπ(1), (8.40)

where π represents a permutation of the indices 1 to n. The sum of equation
8.40 is made over all possible permutations. Thus, the sum contains n! terms.
Needless to say, the direct implementation of equation 8.40 to compute a deter-
minant is highly inefficient.

Fortunately, the determinant of a matrix can be computed directly from
its LUP decomposition. This comes from the following three properties of the
determinants:

1. the determinant of a product of two matrices is the product of the deter-
minants of the two matrices;

2. the determinant of a permutation matrix is 1 or -1 depending on the parity
of the permutation;

154 CHAPTER 8. LINEAR ALGEBRA

3. the determinant of a triangular matrix is the product of its diagonal ele-
ments.

Applying the three properties above to equation 8.32 shows us that the deter-
minant of the matrix A is simply the product of the diagonal elements of the
matrix U times the sign of the permutation matrix P.

The parity of the permutation can be tracked while performing the LUP
decomposition itself. The cost of this is negligible compared to the rest of the
algorithm so that it can be done whether or not the determinant is needed .
The initial parity is 1. Each additional permutation of the rows multiplies the
parity by -1.

8.4.1 Computing the determinant of matrix — General
implementation

Our implementation uses the fact that objects of the class Matrix have an
instance variable in which the LUP decomposition is kept. This variable is
initialized using lazy initialization: if no LUP decomposition exists, it is cal-
culated. Then the computation of the determinant is delegated to the LUP
decomposition object.

Since the LUP decomposition matrices are kept within a single storage unit,
a matrix, the LUP decomposition object calculates the determinant by taking
the product of the diagonal elements of the matrix of the LUP decomposition
object and multiplies the product by the parity of the permutation to obtain
the final result.

8.4.2 Computing the determinant of matrix — Smalltalk
implementation

Listing 8.6 shows the methods of classes DhbMatrix and DhbLUPDecomposition

needed to compute a matrix determinant.

Listing 8.6 Smalltalk methods to compute a matrix determinant

Class DhbMatrix
Subclass of Object

Instance variable names: rows lupDecomposition

Instance methods

determinant

^self lupDecomposition determinant

8.5. MATRIX INVERSION 155

Class DhbLUPDecomposition
Subclass of Object

Instance variable names: rows permutation parity

Instance methods

determinant

| n |

permutation isNil

ifTrue: [self protectedDecomposition].

permutation = 0

ifTrue: [^0].

8.4.3 Computing the determinant of matrix — Java im-
plementation

The code computing the determinant of a matrix consists of the method determinant

of the class Matrix (c.f. listing 8.2) and the method determinant of the class
LUPDecomposition (c.f. listing ??).

8.5 Matrix inversion

The inverse of a square matrix A is denoted A−1. It is defined by the following
equation:

A ·A−1 = I, (8.41)

where I is the identity matrix.
To determine the coefficients of the inverse matrix, one could use equation

8.41 as a system of n2 linear equations if n is the dimension of the matrix A.
this system could be solved using either Gaussian elimination (c.f. section 8.2)
or LUP decomposition (c.f. section 8.3).

Using Gaussian elimination for such a system requires solving a system with
n constant vectors. This could be done, but it is not very practical in terms
of storage space except for matrices of small dimension. If we already have the
LUP decomposition of the matrix A, however, this is indeed a solution. One
can solve equation 8.41 for each columns of the matrix A−1. Specifically, ci,
the ith column of the matrix A, is the solution of the following system:

A · ci = ei for i = 1, . . . , n, (8.42)

where ei is the ith column of the identity matrix, that is a vector with zero
components except for the ith component whose value is 1.

For large matrices, however, using LUP decomposition becomes quite slow.
A cleverer algorithm for symmetric matrices is given in [Cormen et al.] with

156 CHAPTER 8. LINEAR ALGEBRA

no name. In this book, we shall refer to this algorithm as the CLR algorithm
(acronym of the authors of [Cormen et al.]).

Let A be a symmetric matrix. In section 8.1 we have seen that it can be
written in the form:

A =

(
B CT

C D

)
, (8.43)

where B and D are two symmetric matrices and C is in general not a square
matrix. Then the inverse can be written as:

Main equation⇒
A−1 =

(
B−1 + B−1 ·CT · S−1 ·C ·B−1 B−1 ·CT · S−1

−S−1 ·C ·B−1 S−1

)
, (8.44)

where the matrix S is called the Schur’s complement of the matrix A with
respect to the partition of equation 8.43. The matrix S is also a symmetric
matrix, given by the expression:

Main equation⇒ S = D−C ·B−1 ·CT. (8.45)

The reader can verify that equation 8.44 gives indeed the inverse of A by plug-
ging 8.45 into 8.44 and carrying the multiplication with 8.43 in the conventional
way. The result of the multiplication is an identity matrix. In particular, the
result is independent of the type of partition described in equation 8.43.

The CRL algorithm consists of computing the inverse of a symmetric matrix
using equations 8.43, 8.44 and 8.45 recursively. It is a divide-and-conquer algo-
rithm in which the partition of equation 8.43 is further applied to the matrices
B and S. First the initial matrix is divided into four parts of approximately
the same size. At each step the two inverses, B−1 and S−1 are computed using
a new partition until the matrices to be inverted are either 2 by 2 or 1 by 1
matrices.

In the book of Cormen et al. [Cormen et al.] the divide and conquer algo-
rithm supposes that the dimension of the matrix is a power of two to be able
to use Strassen’s algorithm for matrix multiplication. We have investigated an
implementation of Strassen’s algorithm, unfortunately its performance is still
inferior to that of regular multiplication for matrices of dimension up to 512,
probably because of the impact of garbage collection8. Indeed, the increase in
memory requirement can be significant for matrices of moderate size. A 600 by
600 matrix requires 2.7 megabytes of storage. Extending it to a 1024 by 1024
would require 8 megabytes of storage.

Implementation strategy
In our implementation, we have generalized the divide and conquer strategy to

any dimension. The dimension of the upper partition is selected at each partition
to be the largest power of two smaller than the dimension of the matrix to be
partitioned. Although the dimension of the matrices is not an integral power
of two the number of necessary partitions remains a logarithmic function of the

8The author thanks Thomas Cormen for enlightening E-mails on this subject.

8.5. MATRIX INVERSION 157

Figure 8.2: Comparison of inversion time for non-symmetrical matrices

dimension of the original matrix, thus preserving the original idea of the CRL
algorithm. It turns out that the number of necessary partitions is, in most cases,
smaller than the number of partitions needed if the dimension of the original
matrix is extended to the nearest largest power of two.

Both LUP and CRL algorithm perform within a time O
(
n2
)

where n is the
dimension of the matrix. Figure 8.2 shows the time needed to inverse a non-
symmetrical matrix using CRL algorithm (solid line) and LUP decomposition
(broken line), as well as the ratio between the two times (dotted line). The
CRL algorithm has a large overhead but a smaller factor for the dependency on
dimension. Thus, computing the inverse of a matrix using LUP decomposition
is faster than the CLR algorithm for small matrices and slower for large matri-
ces. As a consequence, our implementation of matrix inversion uses a different
algorithm depending on the dimension of the matrix: if the dimension of the
matrix is below a critical dimension, LUP decomposition is used; otherwise the
CRL algorithm is used. In addition, LUP decomposition is always used if it has
already been computed for another purpose.

On figure 8.2 we can determine that the critical dimension, below which the
LUP decomposition works faster than the CRL algorithm, is about 36. These
data were collected on a Pentium II running Windows NT 4.0. As this value
is depending on the performance of the operating system, the reader is advised
to determine the critical dimension again when installing the classes on another
system.

In practice, the CLR algorithm described in equations 8.43 to 8.45 can only
be applied to symmetric matrices. In [Cormen et al.] Cormen et al. propose to

158 CHAPTER 8. LINEAR ALGEBRA

generalize it to matrices of any size by observing the following identity:

A ·
[(

AT ·A
)−1 ·AT

]
= I (8.46)

which can be verified for any matrix A. Thus, the expression in bracket can
be considered as the inverse of the matrix A. In mathematics, it is called the
pseudo-inverse or the Moore-Penrose inverse. Since the product AT ·A is always
a symmetric matrix, its inverse can be computed with the CRL algorithm. In
practice, however. this technique is plagued with rounding errors and should be
used with caution (c.f. section 8.5.2).

8.5.1 Matrix inversion — Smalltalk implementation

Listing 8.7 shows the complete implementation in Smalltalk. It contains addi-
tional methods for the classes DhbMatrix and DhbSymmetricMatrix.

For symmetric matrices the method inverse first tests whether the dimen-
sion of the matrix is below a given threshold — defined by the class method
lupCRLCriticalDimension — or whether the LUP decomposition of the ma-
trix was already performed. In that case, the inverse is computed from the LUP
decomposition using the method described at the beginning of section 8.5. Oth-
erwise the CRL algorithm is used. The implementation of the CRL algorithm
is straightforward thanks to the matrix operators defined in section 8.1.1.

For non-symmetric matrices the method inverse first tests whether the
matrix is square or not. If the matrix is square, LUP decomposition is used. If
the matrix is not square the pseudo inverse is computed using equation 8.46.

In both cases there is no error handling. Inverting a singular matrix produces
an arithmetic error which must be handled by the calling method.

Listing 8.7 Smalltalk implementation of matrix inversion

Class DhbSymmetricMatrix
Subclass of DhbMatrix

Class methods

join: anArrayOfMatrices

| rows n |

rows := OrderedCollection new.

n := 0.

(anArrayOfMatrices at: 1) rowsDo:

[:each |

n := n + 1.

rows add: each, ((anArrayOfMatrices at: 3) columnAt: n)].

n := 0.

(anArrayOfMatrices at: 2) rowsDo:

8.5. MATRIX INVERSION 159

[:each |

n := n + 1.

rows add: ((anArrayOfMatrices at: 3) rowAt: n), each].

^ self rows: rows

lupCRLCriticalDimension

^ 36

Instance methods

crlInverse

| matrices b1 cb1ct cb1 |

matrices := self split.

b1 := (matrices at: 1) inverse.

cb1 := (matrices at: 3) * b1.

cb1ct := (cb1 productWithTransposeMatrix: (matrices at: 3))

asSymmetricMatrix.

matrices at: 3 put: (matrices at: 2) * cb1.

matrices at: 2 put: ((matrices at: 2) accumulateNegated: cb1ct)

inverse.

matrices at: 1 put: (b1 accumulate: (cb1

transposeProductWithMatrix: (matrices at: 3))).

(matrices at: 3) negate.

^ self class join: matrices

inverse

^ (rows size < self class lupCRLCriticalDimension or:

[lupDecomposition notNil])

ifTrue: [self lupInverse]

ifFalse: [self crlInverse]

split

| n b d c |

n := self largestPowerOf2SmallerThan: rows size.

^Array with: (self class rows: ((1 to: n) asVector collect: [

:k | (rows at: k) copyFrom: 1 to: n]))

with:(self class rows: (((n+1) to: rows size)

asVector collect: [:k | (rows at: k) copyFrom: (n+1) to: rows

size]))

with: (self class superclass rows: (((n+1) to: rows

size) asVector collect: [:k | (rows at: k) copyFrom: 1 to: n]))

Class DhbMatrix
Subclass of Object

160 CHAPTER 8. LINEAR ALGEBRA

Instance variable names: rows lupDecomposition

Class methods

lupCRLCriticalDimension

^ 40

Instance methods

inverse

^self isSquare

ifTrue: [self lupInverse]

ifFalse: [self squared inverse * self transpose]

largestPowerOf2SmallerThan: anInteger

| m m2|

m := 2.

[m2 := m * 2.

m2 < anInteger] whileTrue:[m := m2].

^ m

lupInverse

^ self class rows: self lupDecomposition inverseMatrixComponents

8.5.2 Matrix inversion — Rounding problems

Operations with large matrices are well known to exhibit serious rounding prob-
lems. The reason is that the computation of the vector product of each row and
column is a sum: the higher the dimension and the longer the sum. For large
matrix dimensions the magnitude of the sum can mask small contributions from
single products. Successive multiplications thus amplify initial small deviations.
This is especially the case when computing the inverse of a general matrix using
the CRL algorithm combined with the pseudo-inverse (8.46).

Now is the time to unveil the mystery example of section 1.3.3 about round-
ing errors propagation. The problem solved in this example is matrix inversion.
The parameter describing the complexity of the problem is the dimension of the
matrix. This is the quantity plotted along the x-axis of figure 1.1. Let A the
matrix to be inverted. The matrix M defined by

M = A−1 ·A− I, (8.47)

should have all its components equal to zero. The precision of the result is
defined as the largest absolute value over all components of the matrix M.
That quantity is plotted along the y-axis of figure 1.1.

Method A computes the inverse of the matrix using LUP decomposition,
method B using the CRL algorithm. The general data correspond to a matrix

8.6. MATRIX EIGENVALUES AND EIGENVECTORS OF A NON-SYMMETRIC MATRIX161

whose components were generated by a random number generator (c.f. section
9.4). They were all comprised between 0 and 1. For the special data the
matrix A is a covariance matrix (c.f. section 12.2) obtained by generating 1000
vectors with random components comprised between 0 and 1. For method B
general data, the inverse of a non-symmetrical matrix is computed using the
CRL algorithm combined with equation 8.46. In this general form, the CRL
algorithm is faster the LUP for matrices of dimensions larger than about 165.
The precision, however, is totally unreliable as can been seen on Figure 1.1.

8.6 Matrix eigenvalues and eigenvectors of a non-
symmetric matrix

A non-zero vector u is called an eigenvector of the matrix M if there exists a
complex number λ such that:

M · u = λu. (8.48)

the number λ is called an eigenvalue of the matrix M. Equation 8.48 implies
that the matrix M must be a square matrix. In general a non-singular matrix
of dimension n has n eigenvalues and eigenvectors. Some eigenvalues, however,
may be double9. Discussing the existence of eigenvalues in the general case
goes beyond the scope of this book. Equation 8.48 shows that an eigenvector
is defined up to a constant10. One can prove that two eigenvectors of the same
matrix, but corresponding to two different eigenvalues, are orthogonal to each
other [Bass]. Thus, the eigenvectors of a matrix form a complete set of reference
in a n dimensional space.

Computing the eigenvalues and eigenvectors of an arbitrary matrix is a dif-
ficult task. Solving this problem in the general case is quite demanding numer-
ically. In the rest of this section we give an algorithm which works well when
the absolute value of one of the eigenvalues is much larger than that of the
others. The next section discusses Jacobi’s algorithm finding all eigenvalues of
a symmetrical matrix.

For an arbitrary square matrix the eigenvalue with the largest absolute value
can be found with an iterative process. Let u be an arbitrary vector and let λmax

be the eigenvalue with the largest absolute value. Let us define the following
series of vectors:

⇐Main equation{
u0 = u,

uk = 1
λmax

M · uk−1 for k > 0.
(8.49)

9Eigenvalues are the roots of a polynomial of degree n. A double eigenvalue has two
different eigenvectors.

10If the vector u is an eigenvector of the matrix M with eigenvalue λ, so are all vectors αu
for any α 6= 0.

162 CHAPTER 8. LINEAR ALGEBRA

It is easy to prove11 that:
lim
k→∞

uk = umax, (8.50)

where umax is the eigenvector corresponding to λmax. Using this property, the
following algorithm can be applied.

1. Set u = (1, 1, . . . , 1).

2. Set u′ = Mu.

3. Set λ = u′1, that is the first component of the vector u′.

4. Set u = 1
λu′.

5. Check for convergence of λ. Go to step 2 if convergence is not yet attained.

The algorithm will converge toward λmax if the initial vector u is not an eigen-
vector corresponding to a null eigenvalue of the matrix M. If that is the case,
one can chose another initial vector.

Once the eigenvalue with the largest absolute value has been found, the
remaining eigenvalues can be found by replacing the matrix M with the matrix:

M′ = M · (I− umax ⊗ vmax) , (8.51)

where I is the identity matrix of same dimension as the matrix M and vmax is
the eigenvector of the matrix MT corresponding to λmax

12. Using the fact that
eigenvectors are orthogonal to each other, one can prove that the matrix M′ of
equation 8.51 has the same eigenvalues as the matrix except for λmax which is
replaced by 0. A complete proof of the above can be found in [Bass].

All eigenvalues and eigenvectors of the matrix M can be found by repeating
the process above n times. However, this works well only if the absolute values
of the eigenvalues differ from each consecutive ones by at least an order of
magnitude. Otherwise, the convergence of the algorithm is not very good. In
practice, this algorithm can only be used to find the first couple of eigenvalues.

8.6.1 Finding the largest eigenvalue — General implemen-
tation

Figure 8.1 with the
box LargestEigenVal-
ueFinder grayed.

The object in charge of finding the largest eigenvalue is of course an instance of a
subclass of the iterative process class described in 4.1. As the reader can see very
few methods are required because most of the work is already implemented in
the framework for iterative processes. The implementation is identical in both
languages and will be discussed here. The largest eigenvalue finder has the
following instance variables:

11Hint: one must write the vector u as a linear combination of the eigenvectors of the matrix
M. Such linear combination exists because the eigenvectors of a matrix form a complete
system of reference.

12The transpose of a matrix has the same eigenvalues, but not necessarily the same eigen-
vectors.

8.6. MATRIX EIGENVALUES AND EIGENVECTORS OF A NON-SYMMETRIC MATRIX163

matrix the matrix whose largest eigenvalue is sought,

eigenValue the sought eigenvalue,

eigenVector the sought eigenvector and

transposedEigenVector the eigenvector of the transposed matrix.

The creation method takes the matrix as argument. Two accessor methods are
supplied to retrieve the results, the eigenvalue and the eigenvector.

The method initializeIterations creates a vector to the matrix dimen-
sion and sets all its components equal to 1. As the algorithm progresses this
vector will contain the eigenvector of the matrix. Similarly, a vector, which will
contain the eigenvector of the transposed matrix, is created in the same way. In
principle one should add a part to verify that this vector does not correspond
to a null eigenvalue of the matrix. This small improvement is left as an exercise
to the reader.

The algorithm is implemented within the single method evaluateIteration

as described in section 4.1. The relative precision of the sought eigenvalue is
the precision used to break out of the iterative process.

Since the algorithm determines both the eigenvalue and the eigenvector the
object in charge of the algorithm keeps both of them and must give access to
both of them. Two accessor methods are supplied to retrieve the results, the
eigenvalue and the eigenvector.

The largest eigenvalue finder is responsible to create the object responsible
for finding the next eigenvalue when needed. Thus, the eigenvector of the trans-
posed matrix is also computed along with the regular eigenvector. The method
nextLargestEigenValueFinder returns a new instance of the class, which can
be used to compute the next largest eigenvalue, by computing a new matrix as
described in equation 8.51.

8.6.2 Finding the largest eigenvalue — Smalltalk imple-
mentation

Listing 8.8 shows the Smalltalk implementation of the class DhbLargestEigenValueFinder,
subclass of the class DhbIterativeProcess.

The following code example shows how to use the class to find the first two
largest eigenvalues of a matrix.

Code example 8.8
| m finder eigenvalue eigenvector nextFinder nextEigenvalue nextEigenvector |

m := DhbMatrix rows: #((84 -79 58 55)

(-79 84 -55 -58)

(58 -55 84 79)

(55 -58 79 84)).

finder := DhbLargestEigenValueFinder matrix: m.

eigenvalue := finder evaluate.

164 CHAPTER 8. LINEAR ALGEBRA

eigenvector := finder eigenvector.

nextFinder := finder nextLargestEigenValueFinder.

nextEigenvalue := nextFinder evaluate.

nextEigenvector := nextFinder eigenvector.

First the matrix m is defined from its components. Then, an instance of the
class DhbLargestEigenValueFinder is created for this matrix. The iterative
process is started as described in section 4.1.1. Its result is the eigenvalue. The
eigenvector is retrieved using an accessor method. Then, a new instance of
DhbLargestEigenValueFinder is obtained from the first one. The next largest
eigenvalue and its eigenvector are retrieved from this new instance exactly as
before.

Listing 8.8 Smalltalk implementation of the search for the largest eigenvalue

Class DhbLargestEigenValueFinder
Subclass of DhbIterativeProcess

Instance variable names: matrix eigenvector transposeEigenvector

Class methods

defaultMaximumIterations

^ 100

matrix: aMatrix

^ self new initialize: aMatrix; yourself

matrix: aMatrix precision: aNumber

^ self new initialize: aMatrix; desiredPrecision: aNumber;

yourself

Instance methods

eigenvalue

^ result

eigenvector

^ eigenvector * (1 / eigenvector norm)

evaluateIteration

| oldEigenvalue |

oldEigenvalue := result.

transposeEigenvector := transposeEigenvector * matrix.

transposeEigenvector := transposeEigenvector

* (1 / (transposeEigenvector at: 1)).

8.7. MATRIX EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX165

eigenvector := matrix * eigenvector.

result := eigenvector at: 1.

eigenvector := eigenvector * (1 / result).

^oldEigenvalue isNil

ifTrue: [2 * desiredPrecision]

ifFalse: [(result - oldEigenvalue) abs]

initialize: aMatrix

matrix := aMatrix.

initializeIterations

eigenvector := DhbVector new: matrix numberOfRows.

eigenvector atAllPut: 1.0.

transposeEigenvector := DhbVector new: eigenvector size.

transposeEigenvector atAllPut: 1.0

nextLargestEigenValueFinder

| norm |

norm := 1 / (eigenvector * transposeEigenvector).

^self class

new: matrix * ((DhbSymmetricMatrix identity: eigenvector

size)

- (eigenvector * norm tensorProduct:

transposeEigenvector))

precision: desiredPrecision

8.7 Matrix eigenvalues and eigenvectors of a sym-
metric matrix

In the nineteen century Carl Jacobi discovered an efficient algorithm to find
the eigenvalues of a symmetric matrix. Finding the eigenvalues of a symmetric
matrix is easier since all eigenvalues are real.

In the section 8.6 we have mentioned that the eigenvectors of a matrix are
orthogonal. Let u(1), . . . ,u(n) the set of eigenvectors of the matrix M such that
u(i) · u(i) = 1 for all i. Then, the matrix

O =

u

(1)
1 u

(2)
1 . . . u

(n)
1

u
(1)
2 u

(2)
2 . . . u

(n)
2

...
...

. . .
...

u
(1)
n u

(2)
n . . . u

(n)
n

 , (8.52)

where u
(k)
i is the ith component of the kth eigenvector,is an orthogonal13 matrix.

That is, we have:
OT ·O = I. (8.53)

13An orthogonal matrix of dimension n is a rotation in the n-dimensional space.

166 CHAPTER 8. LINEAR ALGEBRA

Equation 8.53 is just another way of stating that the vectors u(1), . . . ,u(n) are
orthogonal to each other and are all normalized to 1. Combining this property
with the definition of an eigenvector (equation 8.48) yields:

OT ·M ·O =

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 , (8.54)

where λ1, . . . , λn are the eigenvalues of the matrix M.

The gist of Jacobi’s algorithm is to apply a series of orthogonal transforma-
tions such that the resulting matrix is a diagonal matrix. It uses the fact that,
for any orthogonal matrix R, the matrix RTM · R has the same eigenvalues
as the matrix M. This follows from the definition of an eigenvector (equation
8.48) and the property of an orthogonal matrix (equation 8.53).

An orthogonal matrix corresponds to a rotation of the system of reference
axes. Each step of Jacobi’s algorithm is to find an rotation, which annihilates
one of the off-diagonal elements of the matrix resulting from that orthogonal
transformation. Let R1 be such matrix and let us define

M1 = RT
1 ·M ·R1. (8.55)

Now, let us define the orthogonal transformation R2, which annihilates one of
the off-diagonal elements of the matrix M1. The hope is that, after a certain
number of steps m, the matrix

Mm = RT
m ·Mm−1 ·Rm

= RT
m · · ·RT

1 ·M ·R1 · · ·Rm

(8.56)

becomes a diagonal matrix. Then the diagonal elements of the matrix Mm are
the eigenvalues and the matrix

Om = R1 · · ·Rm (8.57)

is the matrix containing the eigenvectors.

Instead of annihilating just any diagonal element, one tries to annihiliate
the element with the largest absolute value. This ensures the fastest possible
convergence of the algorithm. Let mkl be the off-diagonal element of the matrix

8.7. MATRIX EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX167

M with the largest absolute value. We define a matrix R1 with components:

r
(1)
kk = cosϑ,

r
(1)
ll = cosϑ,

r
(1)
kl = − sinϑ,

r
(1)
lk = sinϑ,

r
(1)
ii = 1 for i 6= k, l,

r
(1)
ij = 0 for i 6= j, i and j 6= k, l.

(8.58)

The reader can verify that the matrix R1 is an orthogonal matrix. The new
matrix M1 = RT

1 ·M ·R1 has the same components as the matrix M except
for the rows and columns k and l. That is, we have

m
(1)
kk = cos2 ϑmkk + sin2 ϑmll − 2 sinϑ cosϑmkl,

m
(1)
ll = sin2 ϑmkk + cos2 ϑmll + 2 sinϑ cosϑmkl,

m
(1)
kl =

(
cos2 ϑ− sin2 ϑ

)
mkl + sinϑ cosϑ (mkk −mll) ,

m
(1)
ik = cosϑmik − sinϑmil for i 6= k, l,

m
(1)
il = cosϑmil + sinϑmik for i 6= k, l,

m
(1)
ij = mij for i 6= k, l and j 6= k, l.

(8.59)

In particular, the angle of rotation can be selected such that m
(1)
kl = 0. That

condition yields the following equation for the angle of the rotation:

cos2 ϑ− sin2 ϑ

sinϑ cosϑ
=
mll −mkk

mkl
= α, (8.60)

where the constant α is defined by equation 8.60. Introducing the variable
t = tanϑ, equation 8.60 can be rewritten as:

t2 + 2αt− 1 = 0. (8.61)

Since equation 8.61 is a second order equation, there are two solutions. To
minimize rounding errors, it is preferable to select the solution corresponding
to the smallest rotation[Press et al.]. The solution of equation 8.61 has already
been discussed in section 1.3.4 for the case where α is positive. For any α, it
can be written as:

t =
sign (α)

|α|+
√
α2 + 1

. (8.62)

168 CHAPTER 8. LINEAR ALGEBRA

In fact, the value of the angle ϑ does not need to be determined. We have: cosϑ = 1√
t2 + 1

,

sinϑ = t cosϑ.
(8.63)

Let us now introduce the quantities σ and τ defined as
σ = sinϑ,

τ = sinϑ
1 + cosϑ

.
(8.64)

Then equations 8.59 can be rewritten as

Main equation⇒

m
(1)
kk = mkk − tmkl,

m
(1)
ll = mll + tmkl,

m
(1)
kl = 0,

m
(1)
ik = mik − σ (mil + τmik) for i 6= k, l,

m
(1)
il = mil + σ (mik − τmil) for i 6= k, l,

m
(1)
ij = mij for i 6= k, l and j 6= k, l.

(8.65)

Finally, we must prove that the transformation above did not increase the
absolute values of the remaining off-diagonal elements of the matrix M1. Using
equations 8.59 the sum of the off-diagonal elements of the matrix M1 is:∑

i 6=j

(
m

(1)
ij

)2

=
∑
i 6=j

m2
ij − 2m2

kl. (8.66)

Thus, this sum is always less that the sum of the squared off-diagonal elements
of the matrix M. In other words the algorithm will always converge.

Jacobi’s algorithm
Now we have all the elements to implement Jacobi’s algorithm. The steps are

described hereafter:

1. Set the matrix M to the matrix whose eigenvalues are sought.

2. Set the matrix O to an identity matrix of the same dimension as the
matrix M.

3. Find the largest off-diagonal element, mkl, of the matrix M.

4. Build the orthogonal transformation R1 annihilating the element mkl.

8.7. MATRIX EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX169

5. Build the matrix M1 = RT
1 ·M ·R1.

6. If |mkl| is less than the desired precision go to step 8.

7. Let M = M1 and O = O ·R1; go to step 3.

8. The eigenvalues are the diagonal elements of the matrix M and the eigen-
vectors are the rows of the matrix O.

Strictly speaking, Jacobi’s algorithm should be stopped if the largest off-diagonal
element of matrix M1 is less than the desired precision. However, equation 8.66
guaranties that the largest off-diagonal element of the matrix after each step of
Jacobi’s algorithm is always smaller that the largest off-diagonal element of the
matrix before the step. Thus. the stopping criteria proposed above can safely
be used. This slight overkill prevents us from scanning the off-diagonal elements
twice per step.

As the algorithm converges, α becomes very large. As discussed in section
1.3.4, the solution of equation 8.61 can be approximated with

t ≈ 1

2α
. (8.67)

This expression is used when the computation of α2 causes an overflow while
evaluating equation 8.62.

8.7.1 Jacobi’s algorithm — General implementation
Figure 8.1 with the box
JacobiTransformation
grayed.

Jacobi’s algorithm is an iterative algorithm. The object implementing Jacobi’s
algorithm is a instance of the class JacobiTransform; it is a subclass of the
iterative process discussed in section 4.1. The instance variables of this class
are different in the two language implementations.

When an instance of the class JacobiTransform is created, the matrix whose
eigenvalues are sought is copied into the matrix M. This permits to use the same
storage over the duration of the algorithm since equations 8.65 can be evaluated
in place. Actually, only the upper half of the components needs to be stored
since the matrix is a symmetric matrix.

The method evaluateIteration finds the largest off-diagonal element and
performs the Jacobi step (equations 8.65) for that element. During the search
for the largest off-diagonal element, the precision of the iterative process is set
to the absolute value of the largest off-diagonal element. This is one example
where it does not make sense to compute a relative precision. Actually, the
precision returned by the method evaluateIteration is that of the previous
iteration, but it does not really matter to make one iteration too much.

The method finalizeIterations performs a bubble sort to place the eigen-
values in decreasing order of absolute value. Bubble sorting is used instead of
using a SortedCollection because one must also exchange the corresponding
eigenvectors.

170 CHAPTER 8. LINEAR ALGEBRA

The result of the iterative process is an array containing the sorted eigenval-
ues plus the transformation matrix O containing the eigenvectors. Extracting
these results is language dependent.

8.7.2 Jacobi’s algorithm — Smalltalk implementation

Listing 8.9 shows the Smalltalk implementation of Jacobi’s algorithm.
The following code example shows how to use the class to find the eigenvalues

and eigenvectors of a symmetric matrix.

Code example 8.9
| m jacobi eigenvalues eigenvectors |

m := DhbSymmetricMatrix rows: #((84 -79 58 55)

(-79 84 -55 -58)

(58 -55 84 79)

(55 -58 79 84)).

jacobi := DhbJacobiTransformation matrix: m.

eigenvalues := jacobi evaluate.

eigenvectors := jacobi transform columnsCollect: [:each | each].

First the matrix m is defined from its components. Then, an instance of the class
DhbJacobiTransformation is created for this matrix. The iterative process is
started as described in section 4.1.1. Its result is an array containing the eigen-
values sorted in decreasing order. The corresponding eigenvectors are retrieved
from the columns of the matrix O obtained from the method transform.

The class DhbJacobiTransformation has two instance variables

lowerRows an array of array containing the lower part of the matrix and

transform the components of the matrix O.

Since the matrix M is symmetric there is no need to keep all of its components.
This not only reduces storage but also speeds up somewhat the algorithm be-
cause one only need to transform the lower part of the matrix.

The instance variable result contains the sorted eigenvalues at the end of
the iterative process. The method transform returns the symmetric matrix O
whose columns contain the eigenvectors in the same order. The code example
shown at the beginning of this section shows how to obtain the eigenvectors
from the matrix.

Listing 8.9 Smalltalk implementation of Jacobi’s algorithm

Class DhbJacobiTransformation
Subclass of DhbIterativeProcess

Instance variable names: lowerRows transform

Class methods

matrix: aSymmetricMatrix

8.7. MATRIX EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX171

^ super new initialize: aSymmetricMatrix

new

^ self error: ’Illegal creation message for this class’

Instance methods

evaluateIteration

| indices |

indices := self largestOffDiagonalIndices.

self transformAt: (indices at: 1) and: (indices at: 2).

^ precision

exchangeAt: anInteger

| temp n |

n := anInteger + 1.

temp := result at: n.

result at: n put: (result at: anInteger).

result at: anInteger put: temp.

transform do:

[:each |

temp := each at: n.

each at: n put: (each at: anInteger).

each at: anInteger put: temp].

finalizeIterations

| n |

n := 0.

result := lowerRows collect:

[:each |

n := n + 1.

each at: n].

self sortEigenValues

initialize: aSymmetricMatrix

| n m |

n := aSymmetricMatrix numberOfRows.

lowerRows := Array new: n.

transform := Array new: n.

1 to: n do:

[:k |

lowerRows at: k put: ((aSymmetricMatrix rowAt: k)

copyFrom: 1 to: k).

transform at: k put: ((Array new: n) atAllPut: 0; at: k

put: 1; yourself)].

^ self

172 CHAPTER 8. LINEAR ALGEBRA

largestOffDiagonalIndices

| n m abs |

n := 2.

m := 1.

precision := ((lowerRows at: n) at: m) abs.

1 to: lowerRows size do:

[:i |

1 to: (i - 1) do:

[:j |

abs := ((lowerRows at: i) at: j) abs.

abs > precision

ifTrue: [n := i.

m := j.

precision := abs]]].

^ Array with: m with: n

printOn: aStream

| first |

first := true.

lowerRows do:

[:each |

first ifTrue: [first := false]

ifFalse: [aStream cr].

each printOn: aStream].

sortEigenValues

| n bound m |

n := lowerRows size.

bound := n.

[bound = 0]

whileFalse: [m := 0.

1 to: bound - 1 do:

[:j |

(result at: j) abs > (result at: j + 1) abs

ifFalse: [self exchangeAt: j.

m := j]].

bound := m].

transform

^ DhbMatrix rows: transform

transformAt: anInteger1 and: anInteger2

| d t s c tau apq app aqq arp arq |

apq := (lowerRows at: anInteger2) at: anInteger1.

8.7. MATRIX EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX173

apq = 0

ifTrue: [^ nil].

app := (lowerRows at: anInteger1) at: anInteger1.

aqq := (lowerRows at: anInteger2) at: anInteger2.

d := aqq - app.

arp := d * 0.5 / apq.

t := arp > 0

ifTrue: [1 / ((arp squared + 1) sqrt + arp)]

ifFalse:[1 / (arp - (arp squared + 1) sqrt)].

c := 1 / (t squared + 1) sqrt.

s := t * c.

tau := s / (1 + c).

1 to: (anInteger1 - 1)

do: [:r |

arp := (lowerRows at: anInteger1) at: r.

arq := (lowerRows at: anInteger2) at: r.

(lowerRows at: anInteger1) at: r put: (arp - (s *

(tau * arp + arq))).

(lowerRows at: anInteger2) at: r put: (arq + (s *

(arp - (tau * arq)))).

].

(anInteger1 + 1) to: (anInteger2 - 1)

do: [:r |

arp := (lowerRows at: r) at: anInteger1.

arq := (lowerRows at: anInteger2) at: r.

(lowerRows at: r) at: anInteger1 put: (arp - (s *

(tau * arp + arq))).

(lowerRows at: anInteger2) at: r put: (arq + (s *

(arp - (tau * arq)))).

].

(anInteger2 + 1) to: lowerRows size

do: [:r |

arp := (lowerRows at: r) at: anInteger1.

arq := (lowerRows at: r) at: anInteger2.

(lowerRows at: r) at: anInteger1 put: (arp - (s *

(tau * arp + arq))).

(lowerRows at: r) at: anInteger2 put: (arq + (s *

(arp - (tau * arq)))).

].

1 to: lowerRows size

do: [:r |

arp := (transform at: r) at: anInteger1.

arq := (transform at: r) at: anInteger2.

(transform at: r) at: anInteger1 put: (arp - (s *

(tau * arp + arq))).

(transform at: r) at: anInteger2 put: (arq + (s *

174 CHAPTER 8. LINEAR ALGEBRA

(arp - (tau * arq)))).

].

(lowerRows at: anInteger1) at: anInteger1 put: (app - (t *

apq)).

(lowerRows at: anInteger2) at: anInteger2 put: (aqq + (t *

apq)).

(lowerRows at: anInteger2) at: anInteger1 put: 0.

Chapter 9

Elements of statistics

La statistique est la première des sciences inexactes.1

Edmond et Jules de Goncourt

Statistical analysis comes into play when dealing with a large amount of data.
Obtaining information from the statistical analysis of data is the subject of
chapter 10. Some sections of chapter 12 are also using statistics. Concepts
needed by statistics are based on probability theory.

This chapter makes a quick overview of the concepts of probability theory.
It is the third (and last) chapter of this book where most of the material is not
useful per se. Figure 9.1 shows the classes described in this chapter. All these
classes, however, are used extensively in the remaining chapters of this book.
The example on how to use the code are kept to a minimum since real examples
of use can be found in the next chapters.

An in-depth description of probability theory is beyond the scope of this
book. The reader in the need for additional should consult the numerous text-
books on the subject, [Phillips & Taylor] or [Law & Kelton] for example.

9.1 Statistical moments

When one measures the values of an observable random variable, each measure-
ment gives a different magnitude. Assuming measurement errors are negligible,
the fluctuation of the measured values correspond to the distribution of the ran-
dom variable. The problem to be solved by the experimenter is to determine the
parameters of the distribution from the observed values. Statistical moments
can contribute to the characterization of the distribution2.

1Statistics is the first of the inexact sciences.
2Central moments are related to the coefficients of the Taylor expansion of the Fourier

transform of the distribution function.

175

176 CHAPTER 9. ELEMENTS OF STATISTICS

StatisticalMoments

accumulate:
average
centralMoment:
count
errorOnAverage
kurtosis
reset
skewness
standardDeviation
unnormalizedVariance
variance

sums

FastStatisticalMoments

accumulate:
average
kurtosis
skewness
variance

FixedStatisticalMoments

accumulate:

Histogram

accumulate:
average
binIndex:
binWidth
count
countAt:
countsBetween:and:
countsUpTo:
errorOnAverage
freeExtent:
isEmpty
kurtosis
lowBinLimitAt:
maximum
minimum
overflow
setDesiredNumberOfBins:
setWidth:from:bins:
skewness
standardDeviation
totalCount
underflow
variance

minimum
binWidth
overflow
underflow
moments
contents
freeExtent
cacheSize
desiredNumberOfBins

CongruentialRandom
NumberGenerator

floatValue:
integerValue:
setSeed:
value

constant
modulus
multiplicator
seed

MitchellMooreGenerator

floatValue:
integerValue:

randoms
lowIndex
highIndex

ProbabilityDensity

acceptanceBetween:and:
average
distributionValue:
inverseDistributionValue:
kurtosis
parameters
random
skewness
standardDeviation
value:
valueAndGradient:
variance

NormalDistribution

average
changeParametersBy:
distributionValue:
kurtosis
parameters
random
skewness
standardDeviation
value:
valueAndGradient:

mu
sigma
nextRandom

ProbabilityDensityWith
UnknownDistribution

acceptanceBetween:and:
distributionValue:
lowestValue

GammaDistribution

average
changeParametersBy:
distributionValue:
kurtosis
parameters
random
skewness
value:
variance

alpha
beta
norm
randomCoefficients
incompleteGammaFunction

HistogrammedDistribution

acceptanceBetween:and:
average
distributionValue:
kurtosis
skewness
standardDeviation
value:
variance

histogram

IncompleteGammaFunction

(chapter 7)

Figure 9.1: Classes related to statistics

Given a set of measurements, x1, . . . , xn, of the values measured for a random
variable one defines the moment of kth order by:

Mk =
1

n

n∑
i=1

xki . (9.1)

In particular, the moment of first order is the mean or average of the set of data:

x̄ = M1 =
1

n

n∑
i=1

xi. (9.2)

The central moments of kth order is defined by:

mk =
1

n

n∑
i=1

(xi − x̄)
k
. (9.3)

where k is larger than 1. The central moments are easily expressed in terms of
the moments. We have:

mk =

k∑
j=0

(
k

j

)
(−x̄)

k−j
Mj , (9.4)

where
(
k
j

)
are the binomial coefficients.

Some statistical parameters are defined on the central moments. The vari-
ance of a set of measurement is the central moment of second order. The

9.1. STATISTICAL MOMENTS 177

standard deviation, s, is the square root of the variance given by the following
formula:

s2 =
n

n− 1
m2 =

1

n− 1

n∑
i=1

(xi − x̄)
2
. (9.5)

The factor in front the central moment of second order is called Bessel’s correc-
tion factor. This factor removes the bias of the estimation when the standard
deviation is evaluated over a finite sample. The standard deviation measures
the spread of the data around the average.

Many people believe that the standard deviation is the error of the average.
This is not true: the standard deviation describes how much the data are spread
around the average. It thus represents the error of a single measurement. An
estimation of the standard deviation of the average value is given by the following
formula:

s2
x̄ =

s2

n
or sx̄ =

s√
n
. (9.6)

This expression must be taken as the error on the average when performing a
least square fit on averaged data, for example.

Two quantities are related to the central moments of 30.44rd and 4th order.
Each of these quantities are normalized by the adequate power of the standard
deviation needed to yield a quantity without dimension.
The skewness is defined by:

a =
n

(n− 1) (n− 2) s3m3 =
1

(n− 1) (n− 2)

n∑
i=1

(
xi − x̄
s

)3

. (9.7)

The skewness is a measure of the asymmetry of a distribution. If the skewness
is positive, the observed distribution is asymmetric toward large values and
vice-versa.
The kurtosis is defined by

k =
n (n+ 1)

(n− 1) (n− 2) (n− 3) s4m4 −
3 (n− 1)

2

(n− 2) (n− 3)

=
(n+ 1)

(n− 1) (n− 2) (n− 3)

n∑
i=1

(
xi − x̄
s

)4

− 3 (n− 1)
2

(n− 2) (n− 3)

(9.8)

The kurtosis is a measure of the peakedness or flatness of a distribution in the
region of the average. The subtracted term in equation 9.8 is a convention
defining the kurtosis of the normal distribution as 03.

As we have seen, the average, standard deviation, skewness and kurtosis are
parameters, which helps characterizing a distribution of observed values. To

3One talks about a platykurtic distribution when the kurtosis is negative, that is the peak
of the distribution is flatter than that of the normal distribution. Student (c.f. section 10.2)
and Cauchy (c.f. section C.2) distributions are platykurtic. The opposite is called leptokurtic.
The Laplace (c.f. section C.5) distribution is leptokurtic.

178 CHAPTER 9. ELEMENTS OF STATISTICS

keep track of these parameters, it is handy to define an object whose responsi-
bility is to accumulate the moments up to order 4. One can then easily compute
the parameters of the distribution. It can be used in all cases where distribution
parameters are needed.

9.1.1 Statistical moments — General implementation
Figure 9.1 with the box
FastStatisticalMoments
grayed.

To describe this implementation we must anticipated on the next section: the
class FastStatisticalMoments implementing statistical moments as described
in Section 9.1 is a subclass of the class defined in section 9.2.

Space allocation is handled by the superclass. The class FastStatisticalMoments
uses this allocation to store the moments (instead of the central moments). The
method accumulate: perform the accumulation of the moments. The methods
average, variance, skewness and kurtosis compute the respective quantities
using explicit expansion of the central moments as a function of the moments.

The computation of the standard deviation and of the error on the average
are handled by the superclass (c.f. listings 9.2 and ??).

9.1.2 Statistical moments — Smalltalk implementation

Listing 9.1 shows the Smalltalk implementation. The class DhbFastStatisticalMoments
is a subclass of class DhbStatisticalMoments presented in listing 9.2 of section
9.2.2. The reason for the split into two classes will become clear in section 9.2.

The following code shows how to use the class DhbFastStatisticalMoments
to accumulate measurements of a random variable and to extract the various
distribution parameters discussed in section 9.1.

Code example 9.1
| accumulator valueStream average stdev skewness kurtosis |

accumulator := DhbFastStatisticalMoments new.

[valueStream atEnd]

whileFalse: [accumulator accumulate: valueStream next].

average := accumulator average.

stdev := accumulator standardDeviation.

skewness := accumulator skewness.

kurtosis := accumulator kurtosis.

This example assumes that the measurement of the random variable are ob-
tained from a stream. The exact implementation of the stream is not shown
here.

After the declarative statements, the first executable statement creates a new
instance of the class DhbFastStatisticalMoments with the default dimension.
This default allocates enough storage to accumulate up to the moment of 4th

order. The next two lines are the accumulation proper using a whileFalse:

construct and the general behavior of a stream. The last four lines extract the
main parameters of the distribution.

9.1. STATISTICAL MOMENTS 179

If any of the distribution’s parameters — average, variance, skewness or
kurtosis — cannot be computed, the returned value is nil.

Listing 9.1 Smalltalk fast implementation of statistical moments

Class DhbFastStatisticalMoments
Subclass of DhbStatisticalMoments

Instance methods

accumulate: aNumber

| var |

var := 1.

1 to: moments size

do:

[:n |

moments at: n put: (moments at: n) + var.

var := var * aNumber]

average

self count = 0 ifTrue: [^nil].

^ (moments at: 2) / self count

kurtosis

| var x1 x2 x3 x4 kFact kConst n m4 xSquared |

n := self count.

n < 4 ifTrue: [^nil].

var := self variance.

var = 0 ifTrue: [^nil].

x1 := (moments at: 2) / n.

x2 := (moments at: 3) / n.

x3 := (moments at: 4) / n.

x4 := (moments at: 5) / n.

xSquared := x1 squared.

m4 := x4 - (4 * x1 * x3) + (6 * x2 * xSquared) - (xSquared

squared * 3).

kFact := n * (n + 1) / (n - 1) / (n - 2) / (n - 3).

kConst := 3 * (n - 1) * (n - 1) / (n - 2) / (n - 3).

^ kFact * (m4 * n / var squared) - kConst

skewness

| x1 x2 x3 n stdev |

n := self count.

180 CHAPTER 9. ELEMENTS OF STATISTICS

n < 3 ifTrue: [^nil].

stdev := self standardDeviation.

stdev = 0 ifTrue: [^nil].

x1 := (moments at: 2) / n.

x2 := (moments at: 3) / n.

x3 := (moments at: 4) / n.

^ (x3 - (3 * x1 * x2) + (2 * x1 * x1 * x1)) * n * n

/ (stdev squared * stdev * (n - 1) * (n - 2))

variance

| n |

n := self count.

n < 2 ifTrue: [^nil].

^ ((moments at: 3) - ((moments at: 2) squared / n)) / (n - 1)

9.2 Robust implementation of statistical moments

The methods used to implement the computation of the central moments in the
previous section is prone to rounding errors. Indeed, contribution from values
distant from the average can totally offset a result, however infrequent they are.
Such an effect is worse when the central moments are derived from the moments.
This section gives an algorithm ensuring minimal rounding errors.

The definition of statistical moments is based on the concept of expectation
value. The expectation value is a linear operator over all functions of the ran-
dom variable. If one measures the values of the random variable n times, the
expectation value of a function f (x) of a random variable x is estimated by the
following expression:

〈f (x)〉n =
1

n

n∑
i=1

f (xi) , (9.9)

where the values x1, . . . , xn are the measurements of the random variable. A
comparison of equation 9.9 with 9.2 shows that the average is simply the ex-
pectation value of the function f (x) = x. The central moment of order k is the

expectation value of the function (x− x̄)
k
:

〈
(x− x̄)

k
〉
n

=
1

n

n∑
i=1

(xi − x̄)
k
. (9.10)

To miminize rounding errors, one computes the changes occurring to the
central moments when a new value is taken into account. In other words, one
computes the value of a central moment over n + 1 values as a function of the

9.2. ROBUST IMPLEMENTATION OF STATISTICAL MOMENTS 181

central moment over n values and the (n+ 1)
th

value. For the average, we have

〈x〉n+1 =
1

n+ 1

n+1∑
i=1

xi

=
xn+1

n+ 1
+

1

n+ 1

n∑
i=1

xi

=
xn+1

n+ 1
+

n

n+ 1
〈x〉n

=
xn+1

n+ 1
+

(
1− 1

n+ 1

)
〈x〉n

= 〈x〉n −
〈x〉n − xn+1

n+ 1
.

(9.11)

Thus, the estimator of the average over n + 1 measurements can be computed
from the estimator of the average over n measurements by subtracting a small
correction, ∆n+1, given by:

⇐Main equation∆n+1 = 〈x〉n − 〈x〉n+1

=
〈x〉n − xn+1

n+ 1
.

(9.12)

The expression in the numerator of equation 9.12 subtracts two quantities of
comparable magnitude. This ensures a minimization of the rounding errors.

A similar derivation can be made for the central moments of higher orders.
A complete derivation is given in appendix D.1. The final expression is

⇐Main equation〈
(x− x̄)

k
〉
n+1

=
n

n+ 1

{[
1− (−n)

k−1
]

∆k
n+1 +

k∑
l=2

(
l

k

)〈
(x− µ)

l
〉
n

∆k−l
n+1

}
.

(9.13)
The reader can verify the validity of equation 9.13 by verifying that it gives

1 for k = 0 and 0 for k = 1. Put in this form, the computation of the central
moment estimators minimizes indeed rounding errors. For the central moment
of order 2 we have:

⇐Main equation
〈

(x− x̄)
2
〉
n+1

=
n

n+ 1

{
(1 + n) ∆2

n+1 +
〈

(x− x̄)
2
〉
n

}
. (9.14)

For the central moment of order 3 we have:

⇐Main equation
〈

(x− x̄)
3
〉
n+1

=
n

n+ 1

{(
1− n2

)
∆3
n+1 + 3

〈
(x− x̄)

2
〉
n

∆n+1 +
〈

(x− x̄)
3
〉
n

}
.

(9.15)
For the central moment of order 4 we have:

⇐Main equation
〈

(x− x̄)
4
〉
n+1

=
n

n+ 1

{(
1 + n3

)
∆4
n+1 + 6

〈
(x− x̄)

2
〉
n

∆2
n+1

+4
〈

(x− x̄)
3
〉
n

∆n+1 +
〈

(x− x̄)
4
〉
n

}
.

(9.16)

182 CHAPTER 9. ELEMENTS OF STATISTICS

9.2.1 Robust central moments — General implementation
Figure 9.1 with the boxes
StatisticalMoments and
FixedStatisticalMoments
grayed.

The class StatisticalMoments has a single instance variable moments used to
store the accumulated central moments.

The evaluation of equation 9.13 is not as hard as it seems from a program-
ming point of view. One must remember that the binomial coefficients can be
obtained by recursion (Pascal triangle). Furthermore, the terms of the sum can
be computed recursively from those of the previous order so that raising the
correction ∆n+1 to an integer power is never made explicitly. Equation 9.13 is
implemented in method accumulate. The reader will notice that the binomial
coefficients are computed inside the loop computing the sum.

Accumulating the central moments using equation 9.13 has the advantage
that the estimated value of the central moment is always available. Nevertheless,
accumulation is about 2 times slower than with the brute force method exposed
in section 9.1. The reader must decide between speed and accuracy to chose
between the two implementations.

The class FixedStatisticalMoments is a subclass of class StatisticalMoments
specialized in the accumulation of central moments up to order 4. Instead of
implementing the general equation 9.13, the central moments are accumulated
using equations 9.14, 9.15 and 9.16. The only instance method redefined by this
class is the method accumulate. All other computations are performed using
the methods of the superclass.

9.2.2 Robust central moments — Smalltalk implementa-
tion

Listing 9.2 shows the implementation of the robust statistical moments. Listing
9.3 shows a specialization to optimize the speed of accumulation for the most
frequently used case (accumulation up to the 4th order).

Using the class is identical for all classes of the hierarchy. Thus, the code
example presented in section 9.1.2 is also valid for these two classes.

The creation method new: takes as argument the highest order of the ac-
cumulated moments. The corresponding initialization method allocates the re-
quired storage. The creation method new corresponds to the most frequent
usage: the highest order is 4.

The methods computing the distribution parameters — average, variance,
skewness and kurtosis — are using the method centralMoment: retrieving the
central moment of a given order. They will return nil if not enough data as
been accumulated in the moments.

Listing 9.2 Smalltalk implementation of accurate statistical moments

Class DhbStatisticalMoments
Subclass of Object

Instance variable names: moments

9.2. ROBUST IMPLEMENTATION OF STATISTICAL MOMENTS 183

Class methods

new

^ self new: 4

new: anInteger

^ super new initialize: anInteger + 1

Instance methods

accumulate: aNumber

| correction n n1 oldSums pascal nTerm cTerm term |

n := moments at: 1.

n1 := n + 1.

correction := ((moments at: 2) - aNumber) / n1.

oldSums := moments copyFrom: 1 to: moments size.

moments

at: 1 put: n1;

at: 2 put: (moments at: 2) - correction.

pascal := Array new: moments size.

pascal atAllPut: 0.

pascal

at: 1 put: 1;

at: 2 put: 1.

nTerm := -1.

cTerm := correction.

n1 := n / n1.

n := n negated.

3 to: moments size

do:

[:k |

cTerm := cTerm * correction.

nTerm := n * nTerm.

term := cTerm * (1 + nTerm).

k to: 3

by: -1

do:

[:l |

pascal at: l put: (pascal at: l - 1) + (pascal

at: l).

term := (pascal at: l) * (oldSums at: l) + term.

oldSums at: l put: (oldSums at: l) * correction].

pascal at: 2 put: (pascal at: 1) + (pascal at: 2).

moments at: k put: term * n1]

average

184 CHAPTER 9. ELEMENTS OF STATISTICS

self count = 0 ifTrue: [^nil].

^ moments at: 2

centralMoment: anInteger

^ moments at: anInteger + 1

count

^ moments at: 1

errorOnAverage

^ (self variance / self count) sqrt

initialize: anInteger

moments := Array new: anInteger.

self reset.

^ self

kurtosis

| n n1 n23 |

n := self count.

n < 4 ifTrue: [^nil].

n23 := (n - 2) * (n - 3).

n1 := n - 1.

^ ((moments at: 5) * n squared * (n + 1) / (self variance squared

* n1)

- (n1 squared * 3)) / n23

reset

moments atAllPut: 0

skewness

| n v |

n := self count.

n < 3 ifTrue: [^nil].

v := self variance.

^ (moments at: 4) * n squared / ((n - 1) * (n - 2) * (v sqrt * v))

standardDeviation

^ self variance sqrt

unnormalizedVariance

^ (self centralMoment: 2) * self count

variance

9.2. ROBUST IMPLEMENTATION OF STATISTICAL MOMENTS 185

| n |

n := self count.

n < 2

ifTrue: [^nil].

^ self unnormalizedVariance / (n - 1)

The class DhbFixedStatisticalMoments is a specialization of the class DhbStatisticalMoments
for a fixed number of central moments going up to the 4th order.

The class creation method new: is barred from usage as the class can only
be used for a fixed number of moment orders. As a consequence the default
creation method must be redefined to delegate the parametric creation to the
method of the superclass.

Listing 9.3 Smalltalk implementation of accurate statistical moments with fixed
orders

Class DhbFixedStatisticalMoments
Subclass of DhbStatisticalMoments

Class methods

new

^ super new: 4

new: anInteger

^ self error: ’Illegal creation message for this class’

Instance methods

accumulate: aNumber

| correction n n1 c2 c3 |

n := moments at: 1.

n1 := n + 1.

correction := ((moments at: 2) - aNumber) / n1.

c2 := correction squared.

c3 := c2 * correction.

moments

at: 5

put: ((moments at: 5) + ((moments at: 4) * correction *

4)

+ ((moments at: 3) * c2 * 6) + (c2 squared * (n

squared * n + 1)))

* n / n1;

at: 4

put: ((moments at: 4) + ((moments at: 3) * correction *

186 CHAPTER 9. ELEMENTS OF STATISTICS

Figure 9.2: A typical histogram

3)

+ (c3 * (1 - n squared))) * n

/ n1;

at: 3 put: ((moments at: 3) + (c2 * (1 + n))) * n / n1;

at: 2 put: (moments at: 2) - correction;

at: 1 put: n1

9.3 Histograms

Whereas statistical moments provides a quick way of obtaining information
about the distribution of a measured random variable, the information thus
provided is rather terse and quite difficult to interpret by humans. Histograms
provide a more complete way of analyzing an experimental distribution. A his-
togram has a big advantage over statistical moments: it can easily be represented
graphically. Figure 9.2 shows a typical histogram.

A histogram is defined by three main parameters: xmin, the minimum of all
values accumulated into the histogram, w, the bin width and n, the number of
bins. A bin is defined as an interval. The ith bin of a histogram is the interval
[xmin + (i− 1)w, xmin + iw[. The customary convention is that the lower limit
is included in the interval and the higher limit excluded from the interval. The
bin contents of a histogram — or histogram contents for short — is the number
of times a value falls within each bin interval. Sometimes, a histogram is defined
by the minimum and maximum of the accumulated values and the number of

9.3. HISTOGRAMS 187

bins. The bin width is then computed as:

w =
xmax − xmin

n
, (9.17)

where xmax is the maximum of the accumulated values.
In section 10.10 we shall need the error on the contents of a histogram.

In absence of any systematic effects4 the contents of each bin are distributed
according to a Poisson distribution. The standard deviation of a Poisson distri-
bution is the square root of the average. The standard deviation is used as an
estimator of the error on the bin contents5. If ni is the content of the ith bin of
the histogram, the estimated error on the contents is

√
ni.

To obtain more information about the measured distribution, one can also
keep track of the number of values falling outside of the histogram limits. The
underflow of a histogram is defined as the number of values falling below the
minimum of the accumulated values. Similarly, the overflow of a histogram
is defined as the number of values falling on6 or above the maximum of the
accumulated values.

9.3.1 Histograms — General implementation
Figure 9.1 with the box His-
togram grayed.Our implementation of histogram also accumulates the values into statistical

moments. One can in principle compute the statistical moments of the measured
distribution from the histogram contents. This determination, however, depends
strongly on the bin width, especially if the bin width is large compared to
the standard deviation. Thus, it is preferable to use the original data when
accumulating the statistical moments. The net result is that a histogram has
the same polymorphic behavior as a statistical moment.

When defining a histogram, the histogram limits — xmin and xmax — must
be known in advance. This is not always practical since it implies a first scan
of the measurements to determine the limits and a second scan to perform the
accumulation into the defined histogram. Thus, our implementation offers the
possibility of defining a histogram without predefined limits. In this mode, the
first values are cached into an array until a sufficient number of data is available.
When this happens, the histogram limits are determined from the data and the
cached values are accumulated.

There are some cases when one would like to accumulates all the values
within the histogram limits. The proposed implementation allows this by chang-
ing the histogram limits accordingly when a new value falls outside of the current
histogram limits. When a histogram is accumulated in this mode the underflow
and overflow counts are always zero.

4A good example of systematic effect is when values are computed from measurements
made with an ADC. In this case, the integer rounding of the ADC may interfere with the bin
sorting of the histogram.

5This is not a contradiction to what was said in section 9.1: the bin content is not an
average, but a counting

6This is different from the definition of the underflow to be consistent with the fact that
the definition of a bin interval is open ended at the upper limit.

188 CHAPTER 9. ELEMENTS OF STATISTICS

When the histogram limits are computed automatically, it can happen that
these limits have odd values. For example, if the minimum value is 2.13456 and
the maximum value is 5.1245, selecting a number of bins of 50 would yield a bin
width of 0.0597988. Of course such value for the bin width is quite undesirable
in practice. A similar thing can happen if the application creating the histogram
obtains the minimum and maximum values from a computation or an automatic
measuring device. To avoid such silly parameters, our implementation computes
a reasonable limit and bin width by rounding the bin width to the nearest
reasonable scale at the order of magnitude7 of the bin with. The possible scales
are chosen to be easily computed by a human. In our example, the order of
magnitude is −2. The bin width is then selected to be 0.075 and the minimum
and maximum are adjusted to be integral multiples of the bin width enclosing
the given limits. In our example, there are 2.1 and 5.175 and the number of
bins becomes 41 instead of 50.

9.3.2 Histograms — Smalltalk implementation

Listing 9.4 shows the implementation of a histogram in Smalltalk. The following
code shows how to use the class DhbHistogram to accumulate measurements into
a histogram.

Code example 9.2
| histogram valueStream |

histogram := DhbHistogram new.

[valueStream atEnd]

whileFalse: [histogram accumulate: valueStream next].

<printing or display of the histogram>

This example assumes that the measurement of the random variable are ob-
tained from a stream. The exact implementation of the stream is not shown
here.

After the declarative statements, the first executable statement creates a
new instance of the class DhbHistogram with the default settings: automatic
determination of the limits for 50 desired bins. The next two lines are the
accumulation proper using a whileFalse: construct and the general behavior
of a stream. This code is very similar to the code example presented in section
9.1.2. Extracting the parameters of the distribution can also be performed from
the histogram.
The next example shows how to declare a histogram with given limits (2 and
7) and a desired number of bins of 50:

Code example 9.3
| histogram valueStream |

histogram := DhbHistogram new.

histogram setRangeFrom: 2.0 to: 7.0 bins: 100.

<the rest is identical to the previous example>

7Let us recall that the order of magnitude is the power of ten of a number.

9.3. HISTOGRAMS 189

The class DhbHistogram has the following instance variables:

minimum the minimum of the accumulated values, that is xmin,

binWidth the bin width, that is w,

overflow a counter to accumulate the overflow of the histogram,

underflow a counter to accumulate the underflow of the histogram,

moments an instance of the class DhbFixedStatisticalMoments to accumulate
statistical moments up to the 4th order (c.f. section 9.2.2) with minimal
rounding errors.

contents the contents of the histogram, that is an array of integers,

freeExtent a Boolean flag denoting whether the limits of the histogram can
be adjusted to include all possible values,

cacheSize the size of the cache allocated to collect values for an automatic
determination of the histogram limits,

desiredNumberOfBins the number of bins desired by the calling application.

Since there are many ways to declare a histogram, there is a single cre-
ation method new, which calls in turn a single standard initialization method
initialize. In this mode. the histogram is created with undefined limits
— that is, the first accumulated values are cached until a sufficient number
is available for an automatic determination of the limits — and a default
number of bins. The default number of bins is defined by the class method
defaultNumberOfBins.
Four methods allow to change the default initialization.

The method setRangeFrom:to:bins: allows the definition of the parame-
ters xmin, xmax and n, respectively. The method setWidth:from:bins: allows
the definition of the parameters w, xmin and n, respectively. In both cases,
the histogram limits and number of bins are adjusted to reasonable values as
explained at the end of section 9.3. These methods generate an error if the
histogram is not cached, as limits cannot be redefined while the histogram is
accumulating. The method setDesiredNumberOfBins: allows to overrule the
default number of bins. Finally, the method freeExtent: takes a Boolean
argument to define whether or not the limits must be adjusted when an accu-
mulated value falls outside of the histogram limits. This method generates an
error if any count has been accumulated in the underflow or overflow.

The method accumulate is used to accumulate the values. If the histogram
is still cached — that is when values are directly accumulated into the cache for
later determination of the limits — accumulation if delegated to the method
accumulateInCache:. In this mode, the instance variable contents is an
OrderedCollection collecting the values. When the size of the collection is
reaching the maximum size allocated to the cache, limits are computed and

190 CHAPTER 9. ELEMENTS OF STATISTICS

the cache is flushed. In direct accumulation mode, the bin index correspond-
ing to the value is computed. If the index is within the range, the value is
accumulated. Otherwise it is treated like an overflow or an underflow. The
method processOverflows:for: handles the case where the accumulated val-
ues falls outside of the histogram limits. If histogram limits cannot be ad-
justed it simply counts the overflow or the underflow. Otherwise processing
is delegated to the methods growsContents:, growsPositiveContents and
growsNegativeContents, which adjust the histogram limits according to the
accumulated value.

The adjustment of the histogram limits to reasonable values is performed
by the method adjustDimensionUpTo:. This is made when the limits are de-
termined automatically. This method is also used when the limits are specified
using one of the initialization methods.

There are many methods used to retrieve information from a histogram.
Enumerating them here would be too tedious. Method names are explicit
enough to get a rough idea of what each method is doing; looking at the code
should suffice for a detailed understanding. The reader should just note that
all methods retrieving the parameters of the distribution, as discussed in sec-
tion 9.1.2, are implemented by delegating the method to the instance variable
moments.

The iterator method pointsAndErrorsDo: is used for maximum likelihood
fit of a probability distribution. Smalltalk implementation of maximum likeli-
hood fit is discussed in section 10.10.2.

Listing 9.4 Smalltalk implementation of histograms

Class DhbHistogram
Subclass of Object

Instance variable names: minimum binWidth overflow underflow moments contents

freeExtent cacheSize desiredNumberOfBins

Class methods

defaultCacheSize

^ 100

defaultNumberOfBins

^ 50

integerScales

^ self

Instance methods

accumulate: aNumber

9.3. HISTOGRAMS 191

| bin |

self isCached

ifTrue: [^self accumulateInCache: aNumber].

bin := self binIndex: aNumber.

(bin between: 1 and: contents size)

ifTrue: [contents at: bin put: (contents at: bin) + 1.

moments accumulate: aNumber.

]

ifFalse:[self processOverflows: bin for: aNumber].

accumulateInCache: aNumber

contents add: aNumber.

contents size > cacheSize

ifTrue: [self flushCache].

adjustDimensionUpTo: aNumber

| maximum |

binWidth := self roundToScale: (aNumber - minimum) /

desiredNumberOfBins.

minimum := (minimum / binWidth) floor * binWidth.

maximum := (aNumber / binWidth) ceiling * binWidth.

contents := Array new: ((maximum - minimum) / binWidth)

ceiling.

contents atAllPut: 0.

average

^ moments average

binIndex: aNumber

^((aNumber - minimum) / binWidth) floor + 1

binWidth

self isCached

ifTrue: [self flushCache].

^binWidth

collectIntegralPoints: aBlock

| answer bin lastContents integral norm x |

self isCached

ifTrue: [self flushCache].

answer := OrderedCollection new: (contents size * 2 + 1).

bin := self minimum.

answer add: (aBlock value: bin @ 0).

integral := self underflow.

192 CHAPTER 9. ELEMENTS OF STATISTICS

norm := self totalCount.

contents do:

[:each |

integral := integral + each.

x := integral / norm.

answer add: (aBlock value: bin @ x).

bin := bin + binWidth.

answer add: (aBlock value: bin @ x).

].

answer add: (aBlock value: bin @ 0).

^ answer asArray

collectPoints: aBlock

| answer bin lastContents |

self isCached

ifTrue: [self flushCache].

answer := OrderedCollection new: (contents size * 2 + 1).

bin := self minimum.

answer add: (aBlock value: bin @ 0).

contents do:

[:each |

answer add: (aBlock value: bin @ each).

bin := bin + binWidth.

answer add: (aBlock value: bin @ each).

].

answer add: (aBlock value: bin @ 0).

^ answer asArray

count

^ moments count

countAt: aNumber

| n |

n := self binIndex: aNumber.

^ (n between: 1 and: contents size)

ifTrue: [contents at: n]

ifFalse: [0]

countOverflows: anInteger

anInteger > 0

ifTrue: [overflow := overflow + 1]

ifFalse:[underflow := underflow + 1].

countsBetween: aNumber1 and: aNumber2

9.3. HISTOGRAMS 193

| n1 n2 answer |

n1 := self binIndex: aNumber1.

n2 := self binIndex: aNumber2.

answer := (contents at: n1) * ((binWidth * n1 + minimum) -

aNumber1) / binWidth.

n2 > contents size

ifTrue: [n2 := contents size + 1]

ifFalse:[answer := answer + ((contents at: n2) * (

aNumber2 - (binWidth * (n2 - 1) + self maximum)) / binWidth)].

(n1 + 1) to: (n2 - 1) do: [:n | answer := answer + (contents

at: n)].

^ answer

countsUpTo: aNumber

| n answer |

n := self binIndex: aNumber.

n > contents size

ifTrue: [^self count].

answer := (contents at: n) * (aNumber - (binWidth * (n - 1) +

self minimum)) / binWidth.

1 to: (n - 1) do: [:m | answer := answer + (contents at: m)].

^ answer + underflow

errorOnAverage

^ moments errorOnAverage

flushCache

| maximum values |

minimum isNil

ifTrue: [minimum := contents isEmpty ifTrue: [0]

ifFalse:[contents first].

].

maximum := minimum.

contents do:

[:each |

each < minimum

ifTrue: [minimum := each]

ifFalse:[each > maximum

ifTrue: [maximum := each].

].

].

maximum = minimum

ifTrue: [maximum := minimum + desiredNumberOfBins].

values := contents.

194 CHAPTER 9. ELEMENTS OF STATISTICS

self adjustDimensionUpTo: maximum.

values do: [:each | self accumulate: each].

freeExtent: aBoolean

(underflow = 0 and: [overflow = 0])

ifFalse: [self error: ’Histogram extent cannot be

redefined’].

freeExtent := aBoolean.

growContents: anInteger

anInteger > 0

ifTrue: [self growPositiveContents: anInteger]

ifFalse: [self growNegativeContents: anInteger].

growNegativeContents: anInteger

| n newSize newContents |

n := 1 - anInteger.

newSize := contents size + n.

newContents := Array new: newSize.

newContents

at: 1 put: 1;

replaceFrom: 2 to: n withObject: 0;

replaceFrom: (n + 1) to: newSize with: contents.

contents := newContents.

minimum := (anInteger - 1) * binWidth + minimum.

growPositiveContents: anInteger

| n newContents |

n := contents size.

newContents := Array new: anInteger.

newContents

replaceFrom: 1 to: n with: contents;

replaceFrom: (n + 1) to: (anInteger - 1) withObject: 0;

at: anInteger put: 1.

contents := newContents.

initialize

freeExtent := false.

cacheSize := self class defaultCacheSize.

desiredNumberOfBins := self class defaultNumberOfBins.

contents := OrderedCollection new: cacheSize.

moments := DhbFixedStatisticalMoments new.

overflow := 0.

underflow := 0.

^ self

9.3. HISTOGRAMS 195

inverseDistributionValue: aNumber

| count x integral |

count := self count * aNumber.

x := self minimum.

integral := 0.

contents do:

[:each | | delta |

delta := count - integral.

each > delta

ifTrue: [^self binWidth * delta / each + x].

integral := integral + each.

x := self binWidth + x.

].

^ self maximum

isCached

^ binWidth isNil

isEmpty

^ false

kurtosis

^ moments kurtosis

lowBinLimitAt: anInteger

^ (anInteger - 1) * binWidth + minimum

maximum

self isCached

ifTrue: [self flushCache].

^ contents size * binWidth + minimum

maximumCount

self isCached

ifTrue: [self flushCache].

^contents inject: (contents isEmpty ifTrue: [1] ifFalse:[

contents at: 1])

into: [:max :each | max max: each]

minimum

self isCached

ifTrue: [self flushCache].

^ minimum

196 CHAPTER 9. ELEMENTS OF STATISTICS

overflow

^ overflow

processOverflows: anInteger for: aNumber

freeExtent

ifTrue: [self growContents: anInteger.

moments accumulate: aNumber

]

ifFalse:[self countOverflows: anInteger].

setDesiredNumberOfBins: anInteger

anInteger > 0

ifFalse:[self error: ’Desired number of bins must be

positive’].

desiredNumberOfBins := anInteger.

setRangeFrom: aNumber1 to: aNumber2 bins: anInteger

self isCached

ifFalse: [self error: ’Histogram limits cannot be

redefined’].

minimum := aNumber1.

self setDesiredNumberOfBins: anInteger;

adjustDimensionUpTo: aNumber2.

setWidth: aNumber1 from: aNumber2 bins: anInteger

self isCached

ifFalse: [self error: ’Histogram limits cannot be

redefined’].

minimum := aNumber2.

self setDesiredNumberOfBins: anInteger;

adjustDimensionUpTo: (aNumber1 * anInteger + aNumber2).

skewness

^ moments skewness

standardDeviation

^ moments standardDeviation

totalCount

^ moments count + underflow + overflow

underflow

^ underflow

variance

^ moments variance

9.4. RANDOM NUMBER GENERATOR 197

9.4 Random number generator

When studying statistical processes on a computer one often has to simulate
the behavior of a random variable8. As we shall see in section 9.5 it suffice
to implement a random generator for a uniform distribution, that is a random
variable whose probability density function is constant over a given interval.
Once such an implementation is available, any probability distribution can be
simulated.

Linear congruential random generators
The most widely used random number generators are linear congruential ran-

dom generators. Random numbers are obtained from the following series [Knudth 2]:

Xn+1 = (aXn + c) modm, (9.18)

where m is called the modulus, a the multiplier and c the increment. By defi-
nition, we have 0 ≤ Xn < m for all n. The numbers Xn are actually pseudo-
random numbers since, for a given modulus, multiplier and increment, the se-
quence of numbers X1, . . . , Xn is fully determined by the value X0. The value
X0 is called the seed of the series. In spite of its reproducibility the gener-
ated series behaves very close to that of random variable uniformly distributed
between 0 and m− 1. Then the following variable:

xn =
Xn

m
, (9.19)

is a random rational number uniformly distributed between 0 and 1, 1 excluded.
In practice, the modulus, multiplier and increment must be chosen quite

carefully to achieve a good randomness of the series. Don Knuth [Knudth 2]
gives a series of criteria for choosing the parameters of the random number
generator. If the parameters are correctly chosen, the seed X0 can be assigned
to any value.

Additive sequence generators
Another class of random generators are additive sequence generators [Knudth 2].
The series of pseudo-random numbers is generated as follows:

Xn = (Xn−l +Xn−k) modm, (9.20)

where m is the modulus as before and l and k are two indices such that l < k.
These indices must be selected carefully. [Knudth 2] contains a table of suitable
indices. The initial series of numbers X1, . . . , Xk can be any integers not all
even.

Generators based on additive sequences are ideal to generate floating point
numbers. If this case, the modulo operation on the modulus is not needed.

8Another wide use for random number generators are games.

198 CHAPTER 9. ELEMENTS OF STATISTICS

Instead, one simply checks whether or not the newly generated number is larger
than 1. Thus, the series becomes:

yn = xn−l + xn−k,

xn =

{
yn if yn < 1,
yn − 1 if yn ≥ 1,

(9.21)

It is clear that the evaluation above is much faster than that of equation 9.18.
In practice, the additive sequence generator is about 4 times faster. In addition,
the length of the sequence is larger than that of a congruential random generator
with the same modulus.

In our implementation we have selected the pair of numbers (24, 55) corre-
sponding to the generator initially discovered by G.J. Mitchell and D.P. Moore[Knudth 2].
The corresponding sequence has a length of 255 − 1. In our tests (c.f. below)
we have found that the randomness of this generator is at least as good as that
of the congruential random generator. The initial series x1, . . . , x55 is obtained
from the congruential random generator.

In [Knudth 2] Don Knuth describes a wealth of test to investigate the ran-
domness of random number generators. Some of these tests are also discussed
in [Law & Kelton]. To study the goodness of our proposed random generators,
we have performed two types of tests: a χ2 test and a correlation test.

The χ2 test is performed on a histogram, in which values generated accord-
ing to a probability distributions have been accumulated. Then, a χ2 confidence
level (c.f. section 10.3) is calculated against the theoretical curve computed us-
ing the histogram bin width, the number of generated values and the parameters
of the distribution. A confidence level should be larger than 60% indicates that
the probability distribution is correctly generated. When using distributions
requiring the generation of several random numbers to obtain one value — Nor-
mal distribution (2 values), gamma distribution (2 values) and beta distribution
(4 values) — one can get a good confidence that short term correlations9 are
not creating problems. The code for this test is given in the code examples
10.2. In this test the Mitchell-Moore generator gives results similar to that of
the congruential random generator.

The correlation test is performed by computing the covariance matrix (c.f.
section 12.2) of vectors of given dimension (between 5 and 10). The covariance
matrix should be a diagonal matrix with all diagonal elements equal to 1/12, the
variance of a uniform distribution. Deviation from this theoretical case should
be small. Here longer correlations can be investigated by varying the dimension
of the generated vectors. In this test too, the Mitchell-Moore generator gives
results similar to that of the congruential random generator.

Bit-pattern generators
The generators described above are suitable to the generation of random values,
but not for the generation of random bit patterns [Knudth 2], [Press et al.]. The

9Pseudo random number generators have a tendency to exhibit correlations in the series.
That is, the number Xn can be correlated to the number Xn−k for each n and a given k.

9.4. RANDOM NUMBER GENERATOR 199

generation of random bit patterns can be achieved with generator polynomials.
Such polynomials are used in error correction codes for their abilities to produce
sequences of numbers with a maximum number of different bits. For example
the following polynomial

G (x) = x16 + x12 + x5 + 1, (9.22)

is a good generator for random patterns of 16 bits10. Of course, the evaluation of
equation 9.22 does not require the computation of the polynomial. The following
algorithm can be used:

1. Set Xn+1 to Xn shifted by one position to the left and truncated to 16
bits (Xn+1 = 2Xn mod 216),

2. If bit 15 (least significant bit being 0) of Xn is set, set Xn+1 to the bit
wise exclusive OR of Xn+1 with 0x1021.

Other polynomials are given in [Press et al.].
Random bit patterns are usually used to simulate hardware behavior. They

are rarely used in statistical analysis. A concrete implementation of a random
bit pattern generator is left as an exercise to the reader.

9.4.1 Random number generator — Smalltalk implemen-
tation

Figure 9.1 with the boxes
CongruentialRandom-
NumberGenerator and
MitchellMooreGenera-
tor grayed.

Listing 9.5 shows the implementation of a congruential random generator in
Smalltalk. Listing 9.6 shows the implementation of a additive sequence random
generator in Smalltalk. Listing 9.7 shows usage of the generator for standard
use.
The class DhbCongruentialRandomNumberGenerator has three public methods:

value returns the next random number of the series, that is Xn, a number
between 0 and m,

floatValue returns the next random floating number, that is the value Xn/m,

integerValue: returns a random integer, whose values are between 0 and the
specified argument.

When calling any of the above methods, the next random number of the series
is obtained using equation 9.18.

There are several ways of using a random number generator. If there is
no specific requirement the easiest approach is to use the instance provided
by default creation method (new) returning a singleton. The next example
shows how to proceed assuming the application uses the values generated by
the random generator directly:

10c.f. O. Yamada, K. Yamazaki and D.H.Besset, An Error-Correction Scheme for an Op-
tical Memory Card System, 1990 International Symposium on Information Theory and its
Applications (ISITA’90), Hawaii, USA, November 27-30, 1990.

200 CHAPTER 9. ELEMENTS OF STATISTICS

Code example 9.4
| generator x |

generator := DhbCongruentialRandomNumberGenerator new.

<Here is where the generator is used>

x := generator value.

If one needs several series which must be separately reproducible, one can as-
sign several generators, one for each series. The application can use predefined
numbers for the seed of each series. Here is a complete example assuming that
the generated numbers must be floating numbers.

Code example 9.5 | generators seeds index x |

seeds := <an array containing the desired seeds>

generators := seeds collect:

[:each | DhbCongruentialRandomNumberGenerator seed: each].

<Here is where the various generators are used>
<index is the index of the desired series>

x := (generators at: index) floatValue.

In game applications, it is of course not desirable to have a reproducible
series. In this case, the easiest way is to use the time in milliseconds as the
seed of the series. This initial value is sufficiently hard to reproduce to give the
illusion of randomness . Furthermore the randomness of the series guarantees
that two series generated at almost the same time are quite different. Here is
how to do it.

Code example 9.6
| generator x |

generator := DhbCongruentialRandomNumberGenerator

seed: Time millisecondClockValue.

<Here is where the generator is used>

x := (generator integerValue: 20) + 1.

In this last example, the generated numbers are integers between 1 and 20.

Implementation
The class DhbCongruentialRandomNumberGenerator has the following instance
variables:

constant the increment c,

modulus the modulus m,

9.4. RANDOM NUMBER GENERATOR 201

multiplicator the multiplier a and

seed the last generated number Xn−1.

There are three instance creation methods. The method new returns a sin-
gleton instance containing parameters from [Knudth 2]. The method seed:

allows one to create an instance to generate a series of random number start-
ing at a given seed. Finally the method constant:multiplicator:modulus:

creates a congruential random number generator based on supplied parameters.
Readers tempted to use this method are strongly advised to read [Knudth 2]
and the references therein thoroughly. Then, they should perform tests to verify
that their parameters are indeed producing a series with acceptable randomness.

The modulus of the standard parameters has 32 bits. In the Smalltalk im-
plementation, however, the evaluation of equation 9.18 generates integers larger
than 32 bits. As a result, the generation of the random numbers is somewhat
slow, as it is using multiple precision integers. Using floating number11 does not
disturb the evaluation of equation 9.18 and is significantly faster since floating
point evaluation is performed on the hardware. The generation of random num-
bers using floating point parameters is about 3 times faster than with integer
parameters. This can easily be verified by the reader.

Listing 9.5 Smalltalk implementation of congruential random number genera-
tors

Class DhbCongruentialRandomNumberGenerator
Subclass of Object

Instance variable names: constant modulus multiplicator seed

Class variable names: UniqueInstance

Class methods

constant: aNumber1 multiplicator: aNumber2 modulus: aNumber3

^ super new

initialize: aNumber1

multiplicator: aNumber2

modulus: aNumber3

new

UniqueInstance isNil

ifTrue: [UniqueInstance := super new initialize.

UniqueInstance setSeed: 1].

^ UniqueInstance

11The author is grateful to Dave N. Smith of IBM for this useful tip.

202 CHAPTER 9. ELEMENTS OF STATISTICS

seed: aNumber

^ super new initialize; setSeed: aNumber; yourself

Instance methods

floatValue

^ self value asFloat / modulus

initialize

self initialize: 2718281829.0 multiplicator: 3141592653.0

modulus: 4294967296.0.

initialize: aNumber1 multiplicator: aNumber2 modulus: aNumber3

constant := aNumber1.

modulus := aNumber2.

multiplicator := aNumber3.

self setSeed: 1.

integerValue: anInteger

^ (self value \\ (anInteger * 1000)) // 1000

setSeed: aNumber

seed := aNumber.

value

seed := (seed * multiplicator + constant) \\ modulus.

^ seed

The class DhbMitchellMooreGenerator implements a random number genera-
tor with additive sequence. It has two public methods:

floatValue returns the next random floating number, that is the value xn,

integerValue: returns a random integer, whose values are between 0 and the
specified argument.

When calling any of the above methods, the next random number of the series
is obtained using equation 9.21. The series of generated numbers are all floating
points.

The creation methods new and seed: are used exactly as the corresponding
methods of the class DhbCongruentialRandomNumberGenerator. Please refer
to the code examples 9.4 and 9.5. Both methods use the congruential random
number generator to generate the initial series of numbers x1, . . . , x55. The class
method constants:lowIndex: offers a way to define the numbers k and l as
well as the initial series of numbers. The reader wishing to use this method
should consult the table of good indices k and l in [Knudth 2].

9.4. RANDOM NUMBER GENERATOR 203

Listing 9.6 Smalltalk implementation of an additive sequence random number
generator

Class DhbMitchellMooreGenerator
Subclass of Object

Instance variable names: randoms lowIndex highIndex

Class variable names: UniqueInstance

Class methods

constants: anArray lowIndex: anInteger

^super new initialize: anArray lowIndex: anInteger

default

| congruentialGenerator |

congruentialGenerator := DhbCongruentialRandomNumberGenerator

new.

^ self generateSeeds: congruentialGenerator

generateSeeds: congruentialGenerator

new

UniqueInstance isNil

ifTrue: [UniqueInstance := self default].

^ UniqueInstance

seed: anInteger

| congruentialGenerator |

congruentialGenerator := DhbCongruentialRandomNumberGenerator

seed: anInteger.

^self generateSeeds: congruentialGenerator

Instance methods

floatValue

| x |

x := (randoms at: lowIndex) + (randoms at: highIndex).

x < 1.0 ifFalse: [x := x - 1.0].

randoms at: highIndex put: x.

highIndex := highIndex + 1.

highIndex > randoms size ifTrue: [highIndex := 1].

lowIndex := lowIndex + 1.

lowIndex > randoms size ifTrue: [lowIndex := 1].

^ x

204 CHAPTER 9. ELEMENTS OF STATISTICS

initialize: anArray lowIndex: anInteger

randoms := anArray.

lowIndex := anInteger.

highIndex := randoms size.

^ self

integerValue: anInteger

^ (self floatValue * anInteger) truncated

For simple simulation, one wishes to generate a random number — floating or
integer — within certain limits. Here are convenience methods implemented for
the class Number and Integer. These methods frees the user from keeping track
of the instance of the random number generator. For example, the following
Smalltalk expression

50 random

generates an integer random number between 0 and 49 included. Similarly the
following Smalltalk expression

2.45 random

generates a floating random number between 0 and 2.45 excluded. Finally the
following Smalltalk expression

Number random

generates a floating random number between 0 and 1 excluded.

Listing 9.7 Smalltalk implementation of random number generators

Class Integer
Subclass of Number

Instance methods

random

^DhbMitchellMooreGenerator new integerValue: self

Class Number
Subclass of Magnitude

Class methods

random

^ DhbMitchellMooreGenerator new floatValue

Instance methods

random

^ self class random * self

9.5. PROBABILITY DISTRIBUTIONS 205

9.5 Probability distributions

A probability density function defines the probability of finding a continuous
random variable within an infinitesimal interval. More precisely, the probability
density function P (x) gives the probability for a random variable to take a value
lying in the interval [x, x+ dx[. A probability density function is a special case
of a one variable function described in section 2.1.

The moment of kth order for a probability density function P (x) is defined
by:

Mk =

∫
xkP (x) dx, (9.23)

where the range of the integral is taken over the range where the function P (x)
is defined. By definition probability density functions are normalized, that is,
M0 is equal to 1.

As for statistical moments, one defines the mean or average of the distribu-
tion as:

µ = M1 =

∫
xP (x) dx. (9.24)

Then the central moment of kth order is defined by:

mk =

∫
(x− µ)

k
P (x) dx. (9.25)

In particular the variance is defined as m2, the central moment of second order.
The standard deviation, σ, is the square root ofm2. The skewness and kurtosis12

of a probability density function are respectively defined as:

ω =
m3

3/2
√
m2

=
m3

σ3 and (9.26)

κ =
m4

m2
2

− 3 =
m4

σ4 − 3. (9.27)

The distribution function, also called acceptance function or repartition func-
tion, is defined as the probability for the random variable to have a value smaller
or equal to a given value. For a probability density function defined over all real
numbers we have:

F (t) = Prob (x < t) =

∫ t

−∞
P (x) dx. (9.28)

If the probability density function P (x) is defined over a restricted range, the
lower limit of the integral in equation 9.28 must be changed accordingly. For
example, if the probability density function is defined for x ≥ xmin , the distri-
bution function is given by:

F (t) = Prob (x < t) =

∫ t

xmin

P (x) dx. (9.29)

12In old references the kurtosis, as defined here, is called excess; then, the kurtosis is defined
as the square of the excess; [Abramovitz & Stegun] e.g..

206 CHAPTER 9. ELEMENTS OF STATISTICS

Instead of the distribution function, the name centile is sometimes used to refer
to the value of the distribution function expressed in percent. This kind of
terminology is frequently used in medical and natural science publications. For
example, a value x is said to be at the 10th centile if F (t) = 1/10; in other
words, there is a ten-percent chance of observing a value less than or equal to
t13.

The interval acceptance function measures the probability for the random
variable to have a value between two given values. That is

F (x1, x2) = Prob (x1 ≤ x < x2) =

∫ x2

x1

P (x) dx, (9.30)

F (x1, x2) = F (x2)− F (x1) . (9.31)

If the integral of equation 9.28 can be resolved into a closed expression or if it has
a numerical approximation, the evaluation of the interval acceptance function is
made using equation 9.31. Otherwise the interval acceptance function must be
evaluated using Romberg integration (c.f. section 6.4) applied to equation 9.30.

The inverse of the repartition function is frequently used. For example, in
order to determine an acceptance threshold in a decision process, one needs to
determine the variable t such that the repartition function is equal to a given
value p. In other words, t = F−1 (p). For example, the threshold of a coin
detection mechanism to only reject 99.9% of the good coins is F−1 (0.999). If
the distribution function is not invertible, one can solve this equation using
the Newton’s zero-finding method exposed in section ??. Newton’s zero-finding
method is especially handy since the derivative of the function is known: it is
the probability density function. Since F (x) is strictly monotonous between
0 and 1 a unique solution is guaranteed for any p within the open interval
]0, 1[. The initial value for the search can be obtained from Markov’s inequality
[Cormen et al.], which can be written in the form:

t ≤ µ

1− F (t)
(9.32)

If no closed expression exists for the distribution function (it is determined
using numerical integration e.g.) the computation of the inverse value is best
obtained by interpolating the inverse function over a set of by tabulated values
(c.f. section 3).

The inverse of the distribution function is also used to generate a random
variable distributed according to the distribution. Namely, if r is a random
variable uniformly distributed between 0 and 1, then the variable x = F−1 (r)
is a random variable distributed according to the distribution whose distribution
function is F (x). In practice this method can only be used if a closed expression
exists for the distribution function, otherwise the function must be tabulated
and Newton interpolation can be used on the inverse function (c.f. section 3.3).
For most known distributions, however, special algorithms exist to generate

13A centile can also be quoted for a value relative to a set of observed values.

9.5. PROBABILITY DISTRIBUTIONS 207

random values distributed according to a given distribution. Such algorithms
are described in [Law & Kelton]. They are not discussed here, but the code is
included in each implementation of the specific probability distribution.

In the rest of this chapter we shall present the distributions used in this
book. Other important distributions are presented in appendix C.

9.5.1 Probability distributions — General implementation
Figure 9.1 with the boxes
ProbabilityDensity and
ProbabilityDensityWith-
UnknownDistribution
grayed.

Table 9.1 shows the description of the public methods of the implementations
of both languages.

Table 9.1: Public methods for probability density functions

Description Smalltalk Java
P (x) value: value(double)

F (x) distributionValue: distributionValue(double)

F (x1, x2) acceptanceBetween:and: distributionValue(double,double)

F−1 (x) inverseDistributionValue: inverseDistributionValue(double)

x† random random()

x̄ average average()

σ2 variance variance()

σ standardDeviation standardDeviation()

skewness skewness skewness()

kurtosis kurtosis kurtosis()

† x represents the random variable itself. In other words, the method random

returns a random value distributed according to the distribution.

Depending on the distribution, closed expressions for the variance or the
standard deviation exist. Here general methods are supplied to compute one
from the other. Subclasses must implement at least one of them; otherwise a
stack overflow will result.

Methods to compute skewness and kurtosis are supplied, but return nil

in Smalltalk. A very general implementation could have used explicit integra-
tion. The integration interval, however, maybe infinite and a general integration
strategy cannot easily be supplied. Subclasses are expected to implement both
methods.

As we have quoted earlier a probability density function is a function, as
defined in section 2.1. Since the distribution function is also a function, a
Adapter must be provided to create a function (as defined in section 2.1) for
the distribution function.

9.5.2 Probability distributions — Smalltalk implementa-
tion

Listing 9.8 shows the implementation of a general probability density distri-
bution in Smalltalk. The class DhbProbabilityDensity is an abstract imple-

208 CHAPTER 9. ELEMENTS OF STATISTICS

mentation. Concrete implementation of probability density distributions are
subclass of it.

The method distributionValue: returning the value of the distribution
function must be implemented by the subclass. The method to compute the
interval acceptance functions is using equation 9.31 .

The inverse acceptance function is defined with two methods, one public and
one private. The public method verifies the range of the argument, which must
lie between 0 and 1. The private method uses the class DhbNewtonZeroFinder

discussed in section 5.3.1. The derivative needed by the Newton zero finder is
the probability density function itself since, by definition, it is the derivative of
the acceptance function (c.f. equation 9.28).

Finally the class creation method fromHistogram: creates a new instance of
a probability distribution with parameters derived using a quick approximation
from the data accumulated into the supplied histogram; the derivation assumes
that the accumulated data are distributed according to the distribution. This
method is used to compute suitable starting values for least square or maximum
likelihood fits (c.f. chapter 10). The convention is that this methods returns
nil if the parameters cannot be obtained. Thus, returning nil is the default
behavior for the superclass since this method is specific to each distribution. The
estimation of the parameters is usually made using the statistical moments of the
histogram and comparing them to the analytical expression of the distribution’s
parameter.

Listing 9.8 Smalltalk implementation of a probability distribution

Class DhbProbabilityDensity
Subclass of Object

Class methods

distributionName

^ ’Unknown distribution’

fromHistogram: aHistogram

^ nil

Instance methods

acceptanceBetween: aNumber1 and: aNumber2

^ (self distributionValue: aNumber2) - (self distributionValue:

aNumber1)

approximatedValueAndGradient: aNumber

| delta parameters dp gradient n |

parameters := self parameters.

9.5. PROBABILITY DISTRIBUTIONS 209

n := parameters size.

dp := self value: aNumber.

delta := Array new: n.

delta atAllPut: 0.

gradient := DhbVector new: n.

1 to: n do:

[:k |

delta at: k put: (parameters at: k) * 0.0001.

self changeParametersBy: delta.

gradient at: k put: (((self value: aNumber) - dp) / (

delta at: k)).

delta at: k put: (delta at: k) negated.

k > 1

ifTrue: [delta at: (k - 1) put: 0].

].

self changeParametersBy: delta.

^Array with: dp with: gradient

average

self subclassResponsibility.

distributionFunction

^ DhbProbabilityDistributionFunction density: self

distributionValue: aNumber

^ self subclassResponsibility

inverseDistributionValue: aNumber

^ (aNumber between: 0 and: 1)

ifTrue: [self privateInverseDistributionValue: aNumber]

ifFalse:[self error: ’Illegal argument for inverse

distribution value’]

kurtosis

^ nil

parameters

^ self subclassResponsibility

printOn: aStream

aStream nextPutAll: self class distributionName.

self parameters ifNotNil: [:params | | first |

first := true.

210 CHAPTER 9. ELEMENTS OF STATISTICS

aStream nextPut: $(.

params do:

[:each |

first ifTrue: [first := false]

ifFalse:[aStream nextPut: $,].

aStream space.

each printOn: aStream.

].

aStream nextPut: $).

].

privateInverseDistributionValue: aNumber

^(DhbNewtonZeroFinder function: [:x | (self distributionValue:

x) - aNumber] derivative: self)

initialValue: self average / (1 - aNumber); evaluate

random

^ self privateInverseDistributionValue: DhbMitchellMooreGenerator

new floatValue

skewness

^ nil

standardDeviation

^ self variance sqrt

value: aNumber

self subclassResponsibility.

valueAndGradient: aNumber

^ self approximatedValueAndGradient: aNumber

variance

^ self standardDeviation squared

The class DhbProbabilityDensityWithUnknownDistribution is the ab-
stract class for probability distribution having neither an analytical expression
nor a numerical approximation for the distribution function.

Therefore, methods computing the acceptance function (distributionValue:)
and interval acceptance (acceptanceBetween:and:) are using equations 9.28
and 9.30 respectively, using the class DhbRombergIntegrator discussed in sec-
tion 6.4.2. The lower limit of the integral for the distribution function — xmin

of equation 9.29 — is defined by the method lowestValue. Since the majority
of the probability density distributions are defined for non-negative numbers,
this method returns 0. If the supplied default is not appropriate, the method
lowestValue must be redefined by the subclass.

9.5. PROBABILITY DISTRIBUTIONS 211

Listing 9.9 Smalltalk implementation of a probability distribution with unknown
distribution function

Class DhbProbabilityDensityWithUnknownDistribution
Subclass of DhbProbabilityDensity

Instance methods

acceptanceBetween: aNumber1 and: aNumber2

^ (DhbRombergIntegrator new: self from: aNumber1 to: aNumber2)

evaluate

distributionValue: aNumber

^ (DhbRombergIntegrator new: self from: self lowestValue to:

aNumber) evaluate

lowestValue

^ 0

Listing 9.10 shows the implementation of the Adapter for the distribution
function. The class DhbProbabilityDistributionFunction has a single in-
stance variable containing the corresponding probability density function. The
creation method density: takes an instance of class DhbProbabilityDensity

as argument.

Listing 9.10 Smalltalk implementation of a probability distribution function

Class DhbProbabilityDistributionFunction
Subclass of Object

Instance variable names: probabilityDensity

Class methods

density: aProbabilityDensity

^ self new initialize: aProbabilityDensity

Instance methods

initialize: aProbabilityDensity

probabilityDensity := aProbabilityDensity.

^ self

value: aNumber

^ probabilityDensity distributionValue: aNumber

212 CHAPTER 9. ELEMENTS OF STATISTICS

9.6 Normal distribution

The normal distribution is the most important probability distribution. Most
other distributions tend toward it when some of their parameters become large.
Experimental data subjected only14 to measurement fluctuation usually follow
a normal distribution.
Table 9.2 shows the properties of the normal distribution. Figure 9.3 shows

Table 9.2: Properties of the Normal distribution

Range of random variable]−∞,+∞[

Probability density function P (x) =
1√

2πσ2
e−

(x−µ)2

2σ2

Parameters −∞ < µ < +∞
0 < σ < +∞

Distribution function F (x) = erf

(
x− µ
σ

)
(c.f. section 2.3)

Average µ

Variance σ2

Skewness 0

Kurtosis 0

the well-known bell shape of the normal distribution for various values of the
parameters. The reader can see that the peak of the distribution is always
located at µ and that the width of the bell curve is proportional to σ.

9.6.1 Normal distribution — Smalltalk implementation
Figure 9.1 with the box
NormalDistribution
grayed.

Listing 9.11 shows the implementation of the normal distribution in Smalltalk.
The distribution function of the normal distribution can be computed with

the error function (c.f. section 2.3). Therefore the class DhbNormalDistribution
is implemented as a subclass of DhbProbabilityDensity.

Listing 9.11 Smalltalk implementation of the normal distribution

Class DhbNormalDistribution
Subclass of DhbProbabilityDensity

14The presence of systematic errors is a notable exception to this rule.

9.6. NORMAL DISTRIBUTION 213

Figure 9.3: Normal distribution for various values of the parameters

Instance variable names: mu sigma nextRandom

Class variable names: NextRandom

Class methods

distributionName

^ ’Normal distribution’

fromHistogram: aHistogram

^ self new: aHistogram average sigma: aHistogram standardDeviation

new

^self new: 0 sigma: 1

new: aNumber1 sigma: aNumber2

^ super new initialize: aNumber1 sigma: aNumber2

random

| v1 v2 w y |

NextRandom isNil

ifTrue: [[v1 := Number random * 2 - 1.

v2 := Number random * 2 - 1.

w := v1 squared + v2 squared.

214 CHAPTER 9. ELEMENTS OF STATISTICS

w > 1] whileTrue: [].

y := ((w ln * 2 negated) / w) sqrt.

v1 := y * v1.

NextRandom := y * v2.

]

ifFalse:[v1 :=NextRandom.

NextRandom := nil.

].

^ v1

Instance methods

average

^ mu

changeParametersBy: aVector

mu := mu + (aVector at: 1).

sigma := sigma + (aVector at: 2).

distributionValue: aNumber

^ DhbErfApproximation new value: ((aNumber - mu) / sigma)

initialize: aNumber1 sigma: aNumber2

mu := aNumber1.

sigma := aNumber2.

^ self

kurtosis

^ 0

parameters

^Array with: mu with: sigma

random

^ self class random * sigma + mu

skewness

^ 0

standardDeviation

^ sigma

value: aNumber

9.6. NORMAL DISTRIBUTION 215

^ (DhbErfApproximation new normal: (aNumber - mu) / sigma) /

sigma

valueAndGradient: aNumber

| dp y |

y := (aNumber - mu) / sigma.

dp := (DhbErfApproximation new normal: y) / sigma.

^ Array with: dp

with: (DhbVector with: dp * y / sigma

with: dp * (y squared - 1) / sigma)

9.6.2 Gamma distribution — Smalltalk implementation
Figure 9.1 with the box
GammaDistribution
grayed.

Listing 9.12 shows the implementation of the gamma distribution in Smalltalk.
The distribution function of the gamma distribution can be computed with

the incomplete gamma function (c.f. section 2.4.1). Therefore the class DhbGammaDistribution
is implemented as a subclass of DhbProbabilityDensity.

Listing 9.12 Smalltalk implementation of the gamma distribution

Class DhbGammaDistribution
Subclass of DhbProbabilityDensity

Instance variable names: alpha beta norm randomCoefficients

incompleteGammaFunction

Class methods

distributionName

^ ’Gamma distribution’

fromHistogram: aHistogram

| alpha beta |

aHistogram minimum < 0

ifTrue: [^nil].

alpha := aHistogram average.

beta := aHistogram variance / alpha.

^ [self shape: alpha / beta scale: beta] when: ExAll do: [

:signal | signal exitWith: nil]

new

^ self error: ’Illegal creation message for this class’

shape: aNumber1 scale: aNumber2

^ super new initialize: aNumber1 scale: aNumber2

216 CHAPTER 9. ELEMENTS OF STATISTICS

Instance methods

average

^ alpha * beta

changeParametersBy: aVector

alpha := alpha + (aVector at: 1).

beta := beta + (aVector at: 2).

self computeNorm.

incompleteGammaFunction := nil.

randomCoefficients := nil.

computeNorm

norm := beta ln * alpha + alpha logGamma.

distributionValue: aNumber

^ self incompleteGammaFunction value: aNumber / beta

incompleteGammaFunction

incompleteGammaFunction isNil

ifTrue:

[incompleteGammaFunction := DhbIncompleteGammaFunction

shape: alpha].

^ incompleteGammaFunction

initialize: aNumber1 scale: aNumber2

(aNumber1 > 0 and: [aNumber2 > 0])

ifFalse: [self error: ’Illegal distribution parameters’].

alpha := aNumber1.

beta := aNumber2.

self computeNorm.

^ self

initializeRandomCoefficientsForLargeAlpha

| a b q d |

a := 1 / (2 * alpha - 1) sqrt.

b := alpha - (4 ln).

q := 1 / a + alpha.

d := 4.5 ln + 1.

^ Array with: a with: b with: q with: d

initializeRandomCoefficientsForSmallAlpha

| e |

e := 1 exp.

^ (e + alpha) / e

9.6. NORMAL DISTRIBUTION 217

kurtosis

^ 6 / alpha

parameters

^ Array with: alpha with: beta

random

^ (alpha > 1 ifTrue: [self randomForLargeAlpha]

ifFalse:[self randomForSmallAlpha]) * beta

randomCoefficientsForLargeAlpha

randomCoefficients isNil

ifTrue: [randomCoefficients := self initializeRandomCoefficientsForLargeAlpha].

^ randomCoefficients

randomCoefficientsForSmallAlpha

randomCoefficients isNil

ifTrue: [randomCoefficients := self

initializeRandomCoefficientsForSmallAlpha].

^ randomCoefficients

randomForLargeAlpha

[true] whileTrue: [

| u1 u2 c v y z w |

u1 := DhbMitchellMooreGenerator new floatValue.

u2 := DhbMitchellMooreGenerator new floatValue.

c := self randomCoefficientsForLargeAlpha.

v := (u1 / (1 - u1)) ln * (c at: 1).

y := v exp * alpha.

z := u1 squared * u2.

w := (c at: 3) * v + (c at: 2) - y.

(c at: 4) + w >= (4.5 * z) ifTrue: [^y].

z ln <= w ifTrue: [^y].

].

randomForSmallAlpha

[true] whileTrue: [

| p |

p := DhbMitchellMooreGenerator new floatValue * self

randomCoefficientsForSmallAlpha.

p > 1

ifTrue: [| y |

y := ((self randomCoefficientsForSmallAlpha -

p) / alpha) ln negated.

218 CHAPTER 9. ELEMENTS OF STATISTICS

DhbMitchellMooreGenerator new floatValue <= (y

raisedTo: (alpha - 1))

ifTrue: [^y].

]

ifFalse: [| y |

y := p raisedTo: (1 / alpha).

DhbMitchellMooreGenerator new floatValue <= (y

negated exp)

ifTrue: [^y].

].

].

skewness

^ 2 / alpha sqrt

value: aNumber

^ aNumber > 0

ifTrue: [(aNumber ln * (alpha - 1) - (aNumber / beta) -

norm) exp]

ifFalse:[0].

variance

^ beta squared * alpha

9.7 Experimental distribution

A histogram described in section 9.3 can be used as a probability distribution.
After all, a histogram can be considered as the representation of a distribution,
which has been measured experimentally.

If N is the total count of the histogram and ni the count in bin number i the
probability of finding a measurement within the bin number i is simply given
by:

Pi =
ni
N
. (9.33)

If w is the width of each bin, the probability density function of the distribution
measured by the histogram can be estimated by:

P (x) =
Pi
w

=
ni
wN

where i =
⌊
x− xmin

w

⌋
. (9.34)

Equation 9.34 is only valid for xmin ≤ x < xmax. Outside of the histogram’s
limits there is no information concerning the shape of the probability density
function.

9.7. EXPERIMENTAL DISTRIBUTION 219

The distribution function is computed by evaluating the sum of all bins
located below the argument and by adding a correction computed by linear
interpolation over the bin in which the value is located. Thus, we have:

F (x) =
1

N

i−1∑
j=1

nj +
x− xi
w

ni

 where i =
⌊
x− xmin

w

⌋
. (9.35)

If x < xmin, F (x) = 0 and if x ≥ xmax, F (x) = 1. A similar equation can be
derived for the acceptance interval function.

9.7.1 Experimental distribution — General implementa-
tion

Figure 9.1 with the box His-
togrammedDistribution
grayed.

Adding the responsibility of behaving like a probability density function to a
histogram is not desirable. In a good object oriented design, objects should
have only one responsibility or type of behavior.

Thus, a good object oriented implementation implements an Adapter pat-
tern. One creates an object, having the behavior of a probability density func-
tion. A single instance variable inside this object refers to the histogram, over
which the experimental distribution is defined. The Adapter object is a sub-
class of the abstract class describing all probability density functions.

The parameters of the distribution — average, variance, skewness and kur-
tosis — are obtained from the histogram itself.

The computation of the distribution and the interval acceptance function is
delegated to the histogram. The floor operation of equation 9.35 is evaluated
by the method binIndex of the histogram.

Note: In both implementation, there is no protection against illegal
arguments. Illegal arguments can occur when computing the distri-
bution value when the histogram underflow and overflow counts are
non zero. Below the minimum and above the maximum, no infor-
mation can be obtained for the distribution. Within the histogram
limits, there is no need for protection. Therefore the implemen-
tation assumes that the histogram was collected using automatic
adjustment of the limits (c.f. section 9.3).

9.7.2 Experimental distribution — Smalltalk implemen-
tation

Listing 9.13 shows the implementation of an experimental distribution in Smalltalk.
The class DhbHistogrammedDistribution is a subclass of the class DhbProbabilityDensity.

The class creation method histogram: takes as argument the histogram over
which the instance is defined. To prevent creating a instance with undefined
instance variable, the default class creation method new returns an error.

220 CHAPTER 9. ELEMENTS OF STATISTICS

Listing 9.13 Smalltalk implementation of an experimental distribution

Class DhbHistogrammedDistribution
Subclass of DhbProbabilityDensity

Instance variable names: histogram

Class methods

distributionName

^ ’Experimental distribution’

histogram: aHistogram

^ super new initialize: aHistogram

new

^ self error: ’Illegal creation message for this class’

Instance methods

acceptanceBetween: aNumber1 and: aNumber2

^ (histogram countsBetween: (aNumber1 max: histogram minimum)

and: (aNumber2 min: histogram maximum)) /

histogram totalCount

average

^ histogram average

distributionValue: aNumber

^ aNumber < histogram minimum

ifTrue: [0]

ifFalse:[aNumber < histogram maximum

ifTrue: [(histogram countsUpTo:

aNumber) / histogram totalCount]

ifFalse:[1]

]

initialize: aHistogram

aHistogram count = 0

ifTrue: [self error: ’Cannot define probability density on

an empty histogram’].

histogram := aHistogram.

^ self

9.7. EXPERIMENTAL DISTRIBUTION 221

kurtosis

^ histogram kurtosis

privateInverseDistributionValue: aNumber

^ histogram inverseDistributionValue: aNumber

skewness

^ histogram skewness

standardDeviation

^ histogram standardDeviation

value: aNumber

^ (aNumber >= histogram minimum and: [aNumber < histogram

maximum])

ifTrue: [(histogram countAt: aNumber) / (histogram

totalCount * histogram binWidth)]

ifFalse:[0]

variance

^ histogram variance

222 CHAPTER 9. ELEMENTS OF STATISTICS

Chapter 10

Statistical analysis

L’expérience instruit plus sûrement que le conseil.1

André Gide

This chapter is dedicated on how to extract information from large amount of
data using statistical analysis. One of the best book I have read on this subject
is titled How to lies with statistics2. This admittedly slanted title seems a little
pessimistic. The truth, however, is that most people in their daily job ignore
the little statistics they have learned in high school. As a result, statistical
argumentation is often used wrongly to produce the wrong conclusions.

The problems addressed in this section pertain to the interpretation of ex-
perimental measurements. For a long time such a discipline was reserved to
physicists only. Recently natural science disciplines discovered that statistics
could be used effectively to verify hypotheses or to determine parameters based
on experimental observations. Today, the best papers on statistics and esti-
mations are found primarily in natural science publications (Biometrika e.g.).
Recently, the use of statistics has been extended to financial analysis.

Statistics can be applied to experimental data in two ways. Firstly, one can
test the consistency and/or accuracy of the data. These tests are the subject of
the first 3 sections. Secondly, the values of unknown parameters can be derived
from experimental data. This very important aspect of statistical analysis is
treated in the remaining of the chapter.

Figure 10.1 shows the classes described in this chapter. The reader should
be aware that the techniques used for non-linear least square fits (section 10.9)
can also be also applied to solve systems of non-linear equations.

1Experience teaches more surely than counseling.
2D. Huff, How to lies with statistics, Norton and Co., New York 1954.

223

224 CHAPTER 10. STATISTICAL ANALYSIS

LinearRegression

floatValue:
integerValue:
setSeed:
value

constant
modulus
multiplicator
seed

PolynomialLeastSquareFit

floatValue:
integerValue:

randoms
lowIndex
highIndex

FisherSnedecorDistribution

average
changeParametersBy:
confidenceLevel:
distributionValue:
parameters
random
value:
variance

dof1
dof2
norm
chiSquareDistribution1
chiSquareDistribution2
incompleteBetaFunction

StudentDistribution

average
changeParametersBy:
confidenceLevel:
distributionValue:
kurtosis
parameters
random
skewness
value:
variance

degreeOfFreedom
norm
chiSquareDistribution
incompleteBetaFunction

IterativeProcess

(chapter 4)

ProbabilityDensity

(chapter 9)

GammaDistribution

(chapter 9)

IncompleteBetaFunction

(chapter 7)

ChiSquareDistribution

average
changeParametersBy:
confidenceLevel:
distributionValue:
kurtosis
parameters
random
skewness
value:
variance

degreeOfFreedom
norm
chiSquareDistribution
incompleteBetaFunction

ScaledProbabilityDistribution

average
changeParametersBy:
confidenceLevel:
distributionValue:
parameters
random
value:
variance

probabilityDensityFunction
count
binWidth

WeightedPoint

chi2ComparisonContribution:
chi2Contribution:
error
point
weight
xValue
yValue

xValue
yValue
weight
error

EstimatedPolynomial

error:
errorMatrix
errorMatrix:
valueAndError:

errorMatrix

Polynomial

(chapter 2)

LeastSquareFit

chiSquare
confidenceLevel
degreeOfFreedom
errorMatrix
evaluateIteration
finalizeIteration
initializeIteration
value:
valueAndError:

function (result)
dataHolder
errorMatrix
chiSquare
equations
constants
degreeOfFreedom

SymmetricMatrix

(chapter 9)

MaximumLikekihood
HistogramFit

finalizeIteration
fitType
initializeIteration
normalization
normalizationError
valueAndError:

count
countVariance

Figure 10.1: Classes related to estimation

10.1 F -test and the Fisher-Snedecor distribu-
tion

The F -test tries to answer the following question: given two series of measure-
ments, x1, . . . , xn and y1, . . . , ym, what is the probability that the two measure-
ments have the same standard deviation? The F -test is used when there are
not enough statistics to perform a detailed analysis of the data.

Let us assume that the distribution of the two random variables, x and y,
are normal distributions with respective averages µx and µy, and respective
standard deviations σx and σy. Then, s̄x, the standard deviation of x1, . . . , xn
is an estimator of σx; s̄y, the standard deviation of y1, . . . , ym is an estimator
of σy. The following statistics

F =
s̄2
x

σ2
x

·
σ2
y

s̄2
y

(10.1)

can be shown to be distributed according to a Fisher-Snedecor distribution with
degrees of freedom n and m. In particular, if one wants to test for the equality
of the two standard deviations, one construct the following statistics:

F =
s̄2
x

s̄2
y

. (10.2)

Traditionally one chooses s̄x > s̄y so that the variable F is always greater than
one.

10.1. F -TEST AND THE FISHER-SNEDECOR DISTRIBUTION 225

It is important to recall that the expression above is distributed according to
a Fisher-Snedecor distribution if and only if the two sets of data are distributed
according to a normal distribution. For experimental measurements this is often
the case unless systematic errors are present. Nevertheless this assumption must
be verified before making an F -test.

Table 10.1 shows the properties of the Fisher-Snedecor distribution. The
Fisher-Snedecor distribution is itself rarely used as a probability density func-
tion, however.

Table 10.1: Properties of the Fisher-Snedecor distribution

Range of random variable [0,+∞[

Probability density function P (x) =
n
n1
2

1 n
n2
2

2 x
n1−1

2

B
(
n1

2 ,
n2

2

)
(n1 + n2x)

n1+n2
2

Parameters n1, n2

two positive integers

Distribution function F (x) = B

(
n1

n1 + n2x
;
n1

2
,
n2

2

)
Average

n2

n2 − 2
for n > 2

undefined otherwise

Variance
2n2

2 (n1 + n2 − 2)

n1 (n2 − 2)
2

(n2 − 4)
for n > 4

undefined otherwise

Skewness

Kurtosis

The main part of figure 10.2 shows the shape of the Fisher-Snedecor dis-
tribution for some values of the degrees of freedom. For large n and m, the
Fisher-Snedecor distribution tends toward a normal distribution.

The confidence level of a Fisher-Snedecor distribution is defined as the prob-
ability expressed in percent of finding a value larger than F defined in equation
10.2 or lower than 1/F . The confidence level is thus related to the distribution
function. We have:

CLF (x, n) = 100

{
1−

[
F (x)− F

(
1

x

)]}
, (10.3)

where x is the value F defined in equation 10.2. The change of notation was
made to avoid confusion between the acceptance function and the random vari-

226 CHAPTER 10. STATISTICAL ANALYSIS

Figure 10.2: Fisher-Snedecor distribution for a few parameters

able. The confidence level corresponds to the surface of the shaded areas in the
insert in the upper right corner of figure 10.2.

Example.
Here is an example used to investigate the goodness of the two random number

generators discussed in section 9.4. The collected data are the error of the
covariance test described in section 9.4. The dimension of the covariance matrix
is 7 and the number of trials on each measurement was 1000. The table 10.2
presents the obtained results, expressed in 1

1000 . the ratio of the two variances
is 1.18 and the degrees of freedom are both 10. The F-test applied to the two
variances gives a confidence level of 20%. This means that there is only a 20%
probability that the variances of the two series of measurements are different.

10.1.1 Fisher-Snedecor distribution — Smalltalk imple-
mentation

Figure 10.1 with the box
FisherSnedecorDistribu-
tion grayed.

Listing 10.1 shows the implementation of the Fisher-Snedecor distribution in
Smalltalk. Listing 10.2 shows the implementation of the F -test in Smalltalk.
The following code example shows how to perform a F -test between two sets of
experimental measurements.

Code example 10.1
| mom1 mom2 confidenceLevel |

mom1 := DhbFixedStatisticalMoments new.

<Collecting measurements of set 1 into mom1>

10.1. F -TEST AND THE FISHER-SNEDECOR DISTRIBUTION 227

Table 10.2: Covariance test of random number generator

Congruential Mitchell-Moore
1 5.56 7.48
2 5.89 6.75
3 4.66 3.77
4 5.69 5.71
5 5.34 7.25
6 4.79 4.73
7 4.80 6.23
8 7.86 5.60
9 3.64 5.94
10 5.70 4.58

Average 5.40 5.80
Std. dev. 1.10 1.19

mom2 := DhbFixedStatisticalMoments new.

<Collecting measurements of set 2 into mom1>

confidenceLevel := mom1 fConfidenceLevel: mom2.

Two instances of statistical moments (c.f. section 9.2.2) are created. Experi-
mental data are accumulated into each set separately (c.f. code example 9.1).
The last line returns the probability in percent that the two sets of data have
the same standard deviation.

The class DhbFisherSnedecorDistribution is implemented as a subclass
of DhbProbabilityDensity because its distribution function can be computed
numerically using the incomplete beta function (c.f. section 7.5).

Listing 10.1 Smalltalk implementation of the Fisher-Snedecor distribution

Class DhbFisherSnedecorDistribution
Subclass of DhbProbabilityDensity

Instance variable names: dof1 dof2 norm chiSquareDistribution1

chiSquareDistribution2 incompleteBetaFunction

Class methods

degreeOfFreedom: anInteger1 degreeOfFreedom: anInteger2

^ super new initialize: anInteger1 and: anInteger2

distributionName

^ ’Fisher-Snedecor distribution’

228 CHAPTER 10. STATISTICAL ANALYSIS

fromHistogram: aHistogram

| n1 n2 a |

aHistogram minimum < 0 ifTrue: [^nil].

n2 := (2 / (1 - (1 / aHistogram average))) rounded.

n2 > 0 ifFalse: [^nil].

a := (n2 - 2) * (n2 - 4) * aHistogram variance / (n2 squared *

2).

n1 := (0.7 * (n2 - 2) / (1 - a)) rounded.

^n1 > 0

ifTrue: [self degreeOfFreedom: n1 degreeOfFreedom: n2]

ifFalse: [nil]

new

^ self error: ’Illegal creation message for this class’

test: aStatisticalMoment1 with: aStatisticalMoment2

^ (self class degreeOfFreedom: aStatisticalMoment1 count

degreeOfFreedom: aStatisticalMoment2 count)

distributionValue: aStatisticalMoment1 variance

/ aStatisticalMoment2 variance

Instance methods

average

^dof2 > 2

ifTrue: [dof2 / (dof2 - 2)]

ifFalse:[nil]

changeParametersBy: aVector

dof1 := (dof1 + (aVector at: 1)) max: 1.

dof2 := (dof2 + (aVector at: 2)) max: 1.

self computeNorm.

chiSquareDistribution1 := nil.

chiSquareDistribution2 := nil.

incompleteBetaFunction := nil.

computeNorm

norm := (dof1 ln * (dof1 / 2)) + (dof2 ln * (dof2 / 2))

- ((dof1 / 2) logBeta: (dof2 / 2)).

confidenceLevel: aNumber

aNumber < 0

ifTrue: [self error: ’Confidence level argument must be

positive’].

^((self distributionValue: aNumber) - (self distributionValue:

aNumber reciprocal)) * 100

10.1. F -TEST AND THE FISHER-SNEDECOR DISTRIBUTION 229

distributionValue: aNumber

^ 1 - (self incompleteBetaFunction value: (dof2 / (aNumber *

dof1 + dof2)))

incompleteBetaFunction

incompleteBetaFunction isNil

ifTrue:

[incompleteBetaFunction := DhbIncompleteBetaFunction

shape: dof2 / 2

shape: dof1 / 2].

^incompleteBetaFunction

initialize: anInteger1 and: anInteger2

dof1 := anInteger1.

dof2 := anInteger2.

self computeNorm.

^ self

parameters

^ Array with: dof1 with: dof2

random

chiSquareDistribution1 isNil

ifTrue: [chiSquareDistribution1 := DhbChiSquareDistribution

degreeOfFreedom: dof1.

chiSquareDistribution2 := DhbChiSquareDistribution

degreeOfFreedom: dof2.

].

^chiSquareDistribution1 random * dof2 / (chiSquareDistribution2

random * dof1)

value: aNumber

^aNumber > 0

ifTrue: [(norm + (aNumber ln * (dof1 / 2 - 1)) - (

(aNumber * dof1 + dof2) ln * ((dof1 + dof2) / 2))) exp]

ifFalse:[0]

variance

^ dof2 > 4 ifTrue: [dof2 squared * 2 * (dof1 + dof2 - 2) / ((

dof2 - 2) squared * dof1 * (dof2 - 4))]

ifFalse:[nil]

230 CHAPTER 10. STATISTICAL ANALYSIS

The computation of the confidence level for the F -test is implemented in the
method fConfidenceLevel: of the class DhbStatisticalMoments. It calcu-
lates the statistics F according to equation 10.2, creates an instance of a Fisher-
Snedecor distribution and passes the value of F to the method confidenceLevel:

of the distribution. The method fConfidenceLevel: is also implemented by
the class Histogram where it is simply delegated to the statistical moments ac-
cumulated by the histogram. The argument of the method can be a statistical
moment or a histogram since the messages sent by the method are polymorphic
to both classes.

Listing 10.2 Smalltalk implementation of the F -test

Class DhbStatisticalMoments
Subclass of Object

Instance variable names: moments

Instance methods

fConfidenceLevel: aStatisticalMomentsOrHistogram

| fValue |

fValue := self variance/ aStatisticalMomentsOrHistogram variance.

^ fValue < 1

ifTrue: [(DhbFisherSnedecorDistribution degreeOfFreedom:

aStatisticalMomentsOrHistogram count

degreeOfFreedom: self count)

confidenceLevel: fValue

reciprocal]

ifFalse: [(DhbFisherSnedecorDistribution degreeOfFreedom:

self count

degreeOfFreedom:

aStatisticalMomentsOrHistogram count)

confidenceLevel: fValue]

Class DhbHistogram
Subclass of Object

Instance variable names: minimum binWidth overflow underflow moments contents

freeExtent cacheSize desiredNumberOfBins

Instance methods

fConfidenceLevel: aStatisticalMomentsOrHistogram

^ moments fConfidenceLevel: aStatisticalMomentsOrHistogram

10.2. T -TEST AND THE STUDENT DISTRIBUTION 231

10.2 t-test and the Student distribution

The t-test tries to answer the following question: given two series of measure-
ments, x1, . . . , xn and y1, . . . , ym, what is the probability that the two measure-
ments have the same average? The t-test is used when there are not enough
statistics to perform a detailed analysis of the data.

Let us assume that the distribution of the two random variables, x and
y, are normal distributions with respective averages µx and µy, and the same
standard deviation σ. Then x̄, the average of x1, . . . , xn is an estimator of µx; ȳ,
the average of y1, . . . , ym is an estimator of µy. An estimation s̄ of the standard
deviation σ can be made using both measurement samples. We have:

s̄2 =

n∑
i=1

(xi − x̄)
2

+
m∑
i=1

(yi − ȳ)
2

n+m− 2
. (10.4)

One can prove that the following statistics:

t =
(x̄− ȳ)− (µx − µy)

s̄

√
1

n
+

1

m

(10.5)

is distributed according to a Student distribution with n + m − 2 degrees of
freedom. In particular, to test for the probability that the two series of mea-
surements have the same average, one uses the following statistics:

t =
x̄− ȳ

s̄

√
1

n
+

1

m

. (10.6)

It is important to recall the two fundamental hypotheses that have been made
so far.

1. The two sets of data must be distributed according to a normal distribu-
tion.

2. The two sets of data must have the same standard deviation.

Too many people use the t-test without first checking the assumptions. As-
sumption 1 is usually fulfilled with experimental measurements in the absence
of systematic errors. Assumption 2. however, must be checked, for example
using the F-test discussed in section 10.1.

Because the random variable of the distribution is traditionally labeled t, this
distribution is often called the t-distribution. Table 10.3 shows the properties
of the Student distribution. The Student distribution is itself rarely used as a
probability density function, however.

For n = 1, the Student distribution is identical to a Cauchy distribution
with µ = 0 and β = 1. For large n, the Student distribution tends toward a

232 CHAPTER 10. STATISTICAL ANALYSIS

Table 10.3: Properties of the Student distribution

Range of random variable]−∞,+∞[

Probability density function P (x) =
1

√
nB
(
n
2 ,

1
2

) (1 +
t2

n

)−n+1
2

Parameters n
a positive integer

Distribution function F (x) =

1+B

(
n

n+x2
;n2 ,

1
2

)
2 for x ≥ 0

1−B
(

n
n+x2

;n2 ,
1
2

)
2 for x < 0

Average 0

Variance n
n−2 for n > 2

undefined otherwise

Skewness 0

Kurtosis 6
n−4 for n > 4

undefined otherwise

normal distribution with average 0 and variance 1. The main part of figure 10.3
shows the shapes of the Student distribution for a few values of the degrees of
freedom. The normal distribution is also given for comparison.

The confidence level of a Student distribution is defined as the probability
to find a value whose absolute value is larger than a given value. Thus, it
estimates the level of confidence that the hypothesis — namely, that the two sets
of measurements have the same average — cannot be accepted. Traditionally
the confidence level is given in percent. The confidence level corresponds to the
surface of shaded area in the insert in the upper left corner of figure 10.3. By
definition, the confidence level is related to the interval acceptance function:

CLt (t, n) = 100 [1− F (− |t| , |t|)] , (10.7)

using the definition of the interval acceptance function (equation 9.31). The
value of t in equation 10.7 is obtained from equation 10.6.

The distribution function of the Student distribution is calculated with the
incomplete beta function (c.f. section 7.5). Using the fact that the distribution
is symmetric, one can derive the following expression

F (− |t| , |t|) = B

(
n

n+ t2
;
n

2
,

1

2

)
, (10.8)

10.2. T -TEST AND THE STUDENT DISTRIBUTION 233

Figure 10.3: Student distribution for a few degrees of freedom

from the properties of the distribution (c.f. table 10.3) and using equations 10.7
and 7.12.

Example
Now, we shall continue the analysis of the results of table 10.2. The t value

computed from the two sets of measurements is 0.112 for a degree of freedom
of 18. the corresponding confidence level is 8.76%. That is, there is only a
8.76% probability that the two generators have a different behavior. Thus,
we can conclude that the Mitchell-Moore random generator is as good as the
congruential random generator.

10.2.1 Student distribution — Smalltalk implementation
Figure 10.1 with the box
StudentDistribution
grayed.

Listing 10.3 shows the implementation of the Student distribution in Smalltalk.
Listing 10.4 shows the implementation of the t-test in Smalltalk. Performing
a t-test between two sets of experimental measurements is very similar to per-
forming a F -test. In code example 10.1 it suffices to replace the last line with
the following:

confidenceLevel := mom1 fConfidenceLevel: mom2.

This last line returns the probability in percent that the two sets of data have
the same average provided that the two sets have the same standard deviation.

The class DhbStudentDistribution is implemented as a subclass of DhbProbabilityDensity
because its distribution function can be computed numerically using the incom-
plete beta function (c.f. section 7.5).

234 CHAPTER 10. STATISTICAL ANALYSIS

The method symmetricAcceptance: computes the symmetric acceptance
function defined by equation 10.8. This method is used to compute the disribu-
tion function and the confidence level. The method confidenceLevel: gives
the confidence level in percent.

Listing 10.3 Smalltalk implementation of the Student distribution

Class DhbStudentDistribution
Subclass of DhbProbabilityDensity

Instance variable names: degreeOfFreedom norm chiSquareDistribution

incompleteBetaFunction

Class methods

asymptoticLimit

^ 30

degreeOfFreedom: anInteger

^anInteger > self asymptoticLimit

ifTrue: [DhbNormalDistribution new]

ifFalse:

[anInteger = 1

ifTrue: [DhbCauchyDistribution shape: 0 scale: 1]

ifFalse: [super new initialize: anInteger]]

distributionName

^’Student distribution’

fromHistogram: aHistogram

| dof var |

var := aHistogram variance.

var = 0

ifTrue: [^nil].

dof := (2 / (1 - (1 / aHistogram variance))) rounded max: 1.

^dof > self asymptoticLimit ifTrue: [nil]

ifFalse:[self degreeOfFreedom: dof]

new

^self error: ’Illegal creation message for this class’

test: aStatisticalMoment1 with: aStatisticalMoment2

| t |

t := (aStatisticalMoment1 average - aStatisticalMoment2 average)

abs.

^1 - ((self class degreeOfFreedom: (aStatisticalMoment1 count

+ aStatisticalMoment2 count - 2)) acceptanceBetween: t negated and:

t)

10.2. T -TEST AND THE STUDENT DISTRIBUTION 235

Instance methods

average

^ 0

changeParametersBy: aVector

degreeOfFreedom := degreeOfFreedom + (aVector at: 1).

self computeNorm.

chiSquareDistribution

chiSquareDistribution isNil

ifTrue: [chiSquareDistribution := DhbChiSquareDistribution

degreeOfFreedom: (degreeOfFreedom - 1)].

^ chiSquareDistribution

computeNorm

norm := ((degreeOfFreedom / 2 logBeta: (1 / 2)) + (

degreeOfFreedom ln / 2)) negated.

confidenceLevel: aNumber

^ (1 - (self symmetricAcceptance: aNumber abs)) * 100

distributionValue: aNumber

aNumber = 0

ifTrue: [^0.5].

^ (aNumber > 0

ifTrue: [2 - (self symmetricAcceptance: aNumber abs)]

ifFalse:[self symmetricAcceptance: aNumber abs]) / 2

incompleteBetaFunction

incompleteBetaFunction isNil

ifTrue:

[incompleteBetaFunction := DhbIncompleteBetaFunction

shape: degreeOfFreedom / 2

shape: 0.5].

^ incompleteBetaFunction

initialize: anInteger

anInteger > 0

ifFalse: [self error: ’Degree of freedom must be positive’].

degreeOfFreedom := anInteger.

self computeNorm.

^ self

236 CHAPTER 10. STATISTICAL ANALYSIS

kurtosis

^ degreeOfFreedom > 4 ifTrue: [6 / (degreeOfFreedom - 4)]

ifFalse: [nil]

parameters

^Array with: degreeOfFreedom

random

^DhbNormalDistribution random * (((degreeOfFreedom - 1) / self

chiSquareDistribution random) sqrt)

skewness

^ 0

symmetricAcceptance: aNumber

^ self incompleteBetaFunction value: (degreeOfFreedom / (

aNumber squared + degreeOfFreedom))

value: aNumber

^(norm - ((aNumber squared / degreeOfFreedom + 1) ln * ((

degreeOfFreedom + 1) / 2))) exp

variance

^ degreeOfFreedom > 2 ifTrue: [degreeOfFreedom / (

degreeOfFreedom - 2)]

ifFalse:[nil]

The computation of the confidence level for the t-test is implemented in the
method tConfidenceLevel: of the class DhbStatisticalMoments. It calcu-
lates the statistics t according to equation 10.6, creates an instance of a Student
distribution and passes the value of t to the method confidenceLevel: of the
distribution. The method tConfidenceLevel: is also implemented by the class
Histogram where it is simply delegated to the statistical moments accumulated
by the histogram. The argument of the method can be a statistical moment
or a histogram since the messages sent by the method are polymorphic to both
classes.

The method unnormalizedVariance of class DhbStatisticalMoments cor-
responds to each sums in the numerator of equation 10.4. To allow performing
a t-test also with instances of class DhbFastStatisticalMoments, it was neces-
sary to define this for that class.

10.2. T -TEST AND THE STUDENT DISTRIBUTION 237

Listing 10.4 Smalltalk implementation of the t-test

Class DhbStatisticalMoments
Subclass of Object

Instance variable names: moments

Instance methods

tConfidenceLevel: aStatisticalMomentsOrHistogram

| sbar dof |

dof := self count + aStatisticalMomentsOrHistogram count - 2.

sbar := ((self unnormalizedVariance +

aStatisticalMomentsOrHistogram unnormalizedVariance) / dof) sqrt.

^(DhbStudentDistribution degreeOfFreedom: dof)

confidenceLevel: (self average -

(aStatisticalMomentsOrHistogram average))

/ ((1 / self count + (

aStatisticalMomentsOrHistogram count)) sqrt * sbar)

Class DhbFastStatisticalMoments
Subclass of DhbStatisticalMoments

Instance methods

unnormalizedVariance

^ (moments at: 3) - ((moments at: 2) squared * self count)

Class DhbHistogram
Subclass of Object

Instance variable names: minimum binWidth overflow underflow moments contents

freeExtent cacheSize desiredNumberOfBins

Instance methods

tConfidenceLevel: aStatisticalMomentsOrHistogram

^moments tConfidenceLevel: aStatisticalMomentsOrHistogram

unnormalizedVariance

^moments unnormalizedVariance

238 CHAPTER 10. STATISTICAL ANALYSIS

10.3 χ2-test and χ2 distribution

The χ2-test tries to answer the following question: how well a theory is able
to predict observed results? Alternatively a χ2-test can also tell whether two
independent sets of observed results are compatible. This latter formulation
is less frequently used than the former. Admittedly these two questions are
somewhat vague. We shall now put them in mathematical terms for a more
precise definition.

Let us assume that the measurement of an observable quantity depends on
some parameters. These parameters cannot be adjusted by the experimenter
but can be measured exactly3. Let xp be the measured values of the observed
quantity where p is a label for the parameters; let σp be the standard deviation
of xp.

The first question assumes that one can predict the values of the observed
quantity: let µp be the predicted value of xp. Then the quantity:

yp =
xp − µp
σp

(10.9)

is distributed according to a normal distribution with average 0 and standard
deviation 1 if and only if the quantities xp are distributed according to a normal
distribution with average µp and standard deviation σp.

A χ2 distribution with n degrees of freedom describes the distribution of
the sum of the squares of n random variables distributed according to a normal
distribution with mean 0 and standard deviation 1. Thus, the following quantity

S =
∑
p

(xp − µp)2

σ2
p

(10.10)

is distributed according to a χ2 distribution with n degrees of freedom where
n is the number of available measurements (that is the number of terms in the
sum of equation 10.10).

To formulate the second question one must introduce a second set of mea-
surement of the same quantity and at the same values of the parameters. Let x′p
be the second set of measured values and σ′p the corresponding standard devia-

tions. The estimated standard deviation for the difference xp−x′p is
√
σ2
p + σ′2p .

If the two sets of measurements are compatible, the quantity

y′p =
xp − x′p√
σ2
p + σ′2p

(10.11)

is distributed according to a normal distribution with average 0 and standard

3Of course, there is no such thing as an exact measurement. The measurement of the
parameters must be far more precise than that of the observed quantity.

10.3. χ2-TEST AND χ2 DISTRIBUTION 239

deviation 1. Then the following quantity

S =
∑
p

(
xp − x′p

)2
σ2
p + σ′2p 2

(10.12)

is distributed according to a χ2 distribution with n degrees of freedom.
Table 10.4 shows the properties of the χ2 distribution. It is a special case of

Table 10.4: Properties of the χ2 distribution

Range of random variable [0,+∞[

Probability density function P (x) =
x
n
2−1e−

x
2

2
n
2 Γ
(n

2

)
Parameters n

a positive integer

Distribution function F (x) = Γ
(x

2
;
n

2

)
Average n

Variance 2n

Skewness 2

√
2
n

Kurtosis 12
n

the gamma distribution with α = n
2 and β = 2 (c.f. section ??). For n > 30 one

can prove that the variable y =
√

2x −
√

2n− 1 is approximately distributed
according to a normal distribution with average 0 and standard deviation 1.
If n is very large the χ2 distribution tends toward a normal distribution with
average n and standard deviation

√
2n.

Figure 10.4 shows the shape of the χ2 distribution for a few values of the
degree of freedom.

To perform a χ2-test, it is customary to evaluate the probability of finding
a value larger than the value obtained in equations 10.10 or 10.12. In this form,
the result of a χ2-test gives the probability that the set of measurements is
not compatible with the prediction or with another set of measurements. The
confidence level of a χ2 value is defined as the probability of finding a value larger
than χ2 expressed in percent. It is thus related to the distribution function as
follows:

CLS = 100 [1− F (S)] , (10.13)

where S is the quantity defined in equation 10.10 or 10.12. The confidence level

240 CHAPTER 10. STATISTICAL ANALYSIS

Figure 10.4: χ2 distribution for a few degrees of freedom

corresponds to the surface of the shaded area of the insert in the upper right
corner of figure 10.4.

Since the χ2 distribution is a special case of the gamma distribution the
confidence level can be expressed with the incomplete gamma function (c.f.
section 7.4):

CLS = 100

[
1− Γ

(
S

2
,
n

2

)]
. (10.14)

For large n the χ2 confidence level can be computed from the error function
(c.f. section 2.3.1):

CLS = 100
[
1− erf

(√
2S −

√
2n− 1

)]
. (10.15)

10.3.1 χ2 distribution — Smalltalk implementation
Figure 10.1 with the box
ChiSquaredDistribution
grayed.

Listing 10.5 shows the implementation of the χ2 distribution in Smalltalk. The
asymptotic limit is implemented directly in the class creation method.

Listing 10.5 Smalltalk implementation of the χ2 distribution

Class DhbChiSquareDistribution
Subclass of DhbGammaDistribution

Class methods

degreeOfFreedom: anInteger

10.3. χ2-TEST AND χ2 DISTRIBUTION 241

^anInteger > 40

ifTrue: [DhbAsymptoticChiSquareDistribution degreeOfFreedom:

anInteger]

ifFalse:[super shape: anInteger / 2 scale: 2]

distributionName

^’Chi square distribution’

fromHistogram: aHistogram

| dof |

aHistogram minimum < 0

ifTrue: [^nil].

dof := aHistogram average rounded.

^dof > 0 ifTrue: [self degreeOfFreedom: aHistogram average

rounded]

ifFalse:[nil]

shape: aNumber1 scale: aNumber2

^self error: ’Illegal creation message for this class’

Instance methods

changeParametersBy: aVector

super changeParametersBy: (Array with: aVector first / 2 with: 0).

confidenceLevel: aNumber

^ (1 - (self distributionValue: aNumber)) *100

parameters

^ Array with: alpha * 2

10.3.2 Weighted point implementation
Figure 10.1 with the box
WeightedPoint grayed.As we shall see in the rest of this chapter, the evaluation of equation 10.10 is

performed at many places. Thus, it is convenient to create a new class handling
this type of calculation. The new class is called DhbWeightedPoint in Smalltalk.
A weighted point has the following instance variables:

xValue the x value of the data point, that is xi,

yValue the y value of the data point, that is yi,

weight the weight of the point, that is 1/σ2
i and

error the error of the y value, that is σi.

242 CHAPTER 10. STATISTICAL ANALYSIS

Accessor methods for each of these instance variables are provided. The accessor
method for the error is using lazy initialization to compute the error from the
weight in case the error has not yet been defined.

The method chi2Contribution — with an added semicolon at the end of
the name for Smalltalk — implements the computation of one term of the sum
in equation 10.10. The argument of the method is any object implementing
the behavior of a one-variable function defined in section 2.1. In Java one can
use the same method name to define a similar method to compute the terms of
the sum of equation 10.12: in this case, the argument of the method is another
weighted point. This is not possible in Smalltalk, which cannot distinguish the
types of the arguments. Thus, for Smalltalk the second method must have a
different name: chi2ComparisonContribution:. Here Java marks a point over
Smalltalk.

Creating instances of the classes can be done in many ways. The fundamental
method takes as arguments xi, yi and the weight 1/σ2

i . However convenience
methods are provided for frequent cases:

1. xi, yi and the error on yi, σi;

2. xi and the content of a histogram bin; the weight is derived from the bin
contents as explained in section 10.4;

3. xi, yi without known error; the weight of the point is set to 1; points
without error should not be used together with points with errors;

4. xi and a statistical moment; in this case, the value yi is an average over
a set of measurements; the weight is determined from the error on the
average (c.f. section 9.1);

Examples of use of weighted points appear in many sections of this chapter
(10.4, 10.8, 10.9).

In the Smalltalk class DhbWeightedPoint the values xi and yi are always
supplied as an instance of the class Point. The class DhbWeightedPoint has
the following class creation methods:

point:weight: fundamental method;

point:error: convenience method 1;

point:count: convenience method 2;

point: convenience method 3

The convenience method 4 is implemented by the method asWeightedPoint

of the class DhbStatisticalMoments. This kind of technique is quite common
in Smalltalk instead of making a class creation method with an explicit name
(fromMoment: e.g.).

10.3. χ2-TEST AND χ2 DISTRIBUTION 243

Listing 10.6 Smalltalk implementation of the weighted point class

Class DhbWeightedPoint
Subclass of Object

Instance variable names: xValue yValue weight error

Class methods

point: aPoint

^ self new initialize: aPoint weight: 1

point: aNumber count: anInteger

^ self point: aNumber @ anInteger

weight: (anInteger > 0 ifTrue: [1 / anInteger]

ifFalse: [1])

point: aPoint error: aNumber

^ self new initialize: aPoint error: aNumber

point: aPoint weight: aNumber

^ self new initialize: aPoint weight: aNumber

Instance methods

chi2ComparisonContribution: aWeightedPoint

^ (aWeightedPoint yValue - yValue) squared / (1 / aWeightedPoint

weight + (1 / weight))

chi2Contribution: aFunction

^ (yValue - (aFunction value: xValue)) squared * weight

error

error isNil

ifTrue: [error := 1 / weight sqrt].

^ error

initialize: aPoint error: aNumber

error := aNumber.

^ self initialize: aPoint weight: 1 / aNumber squared

initialize: aPoint weight: aNumber

xValue := aPoint x.

yValue := aPoint y.

weight := aNumber.

^ self

244 CHAPTER 10. STATISTICAL ANALYSIS

point

^ xValue @ yValue

weight

^ weight

xValue

^ xValue

yValue

^ yValue

Class DhbStatisticalMoments
Subclass of Object

Instance variable names: moments

Instance methods

asWeightedPoint: aNumber

^DhbWeightedPoint point: aNumber @ self average error: self

errorOnAverage

10.4 χ2-test on histograms

As we have seen in section 9.3 histograms are often used to collect experimental
data. Performing a χ2-test of data accumulated into a histogram against a
function is a frequent task of data analysis.

The χ2 statistics defined by equation 10.10 requires an estimate of the stan-
dard deviation of the content of each bin. One can show that the contents of a
histogram bin is distributed according to a Poisson distribution. The Poisson
distribution is a discrete distribution4 whose average is equal to the variance.
The probability of observing the integer k is defined by:

Pµ (k) =
µk

k!
eµ, (10.16)

where µ is the average of the distribution. In the case of a histogram, the
estimated variance of the bin content is then the bin content itself. Therefore
equation 10.10 becomes:

S =

n∑
i=1

{
ni − µ

[
xmin +

(
i+ 1

2

)
w
]}2

ni
, (10.17)

4A discrete distribution is a probability distribution whose random variable is an integer.

10.4. χ2-TEST ON HISTOGRAMS 245

where n is the number of bins of the histogram, xmin its minimum and w its
bin width. The estimation of the bin content against which the χ2 statistics is
computed, µ, is now a function evaluated at the middle of each bin to average
out variations of the function over the bin interval.

In fact, the function µ is often related to a probability density function since
histograms are measuring probability distributions. In this case the evaluation
is somewhat different. Let P (x) be the probability density function against
which the χ2 statistics is computed. Then, the predicted bin content for bin i
is given by:

µi = wNP

[
xmin +

(
i+

1

2

)
w

]
, (10.18)

where N is the total number of values accumulated in the histogram. This is
a symmetric version of the definition of a probability density function: w plays
the role of dx in equation 9.23. Plugging equation 10.18 into equation 10.17
yields the expression of the χ2 statistics for a histogram computed against a
probability density function P (x):

S =

n∑
i=1

{
ni − wNP

[
xmin +

(
i+ 1

2

)
w
]}2

ni
, (10.19)

This equation cannot be applied for empty bins. If the bin is empty one can set
the weight to 1. This corresponds to a 63% probability of observing no counts
if the expected number of measurement is larger than 0.

In both implementations a single class is in charge of evaluating the predicted
bin contents. This class is called a scaled probability density function. It is
defined by a probability distribution and a histogram.

10.4.1 χ2-test on histograms — Smalltalk implementation
Figure 10.1 with the box
ScaledProbabilityDistri-
bution grayed.

Listing 10.7 shows the implementation of a scaled probability density func-
tion in Smalltalk. Listing 10.8 shows the additional methods for the class
DhbHistogram needed to perform a χ2-test. Examples of use are given in sec-
tions 10.9.2 and 10.10.2. Here is a simple example showing how to compute a
χ2-confidence level to estimate the goodness of a random number generator.

Code example 10.2
| trials probDistr histogram |

trials := 5000.

probDistr := DhbNormalDistribution new.

histogram := DhbHistogram new.

histogram freeExtent: true; setDesiredNumberOfBins: 100.

trials timesRepeat: [histogram accumulate: probDistr random].

histogram chi2ConfidenceLevelAgainst:

(DhbScaledProbabilityDensityFunction histogram: histogram

against: probDistr)

246 CHAPTER 10. STATISTICAL ANALYSIS

The first line after the declaration defines the number of data to be gener-
ated to 5000. After, an new instance of a probability distribution — in this
case a normal distribution with average 0 and variance 1 — is created. Then,
a new instance of a histogram is created and the next line defines it with a
rough number of bins of 100 and the ability to automatically adjust its limits.
After all instances have been created, random data generated by the probabil-
ity distribution are generated. The last statement — extending itself over the
last three lines — calculates the confidence level. The argument of the method
chi2ConfidenceLevelAgainst: is a scaled probability distribution constructed
over the histogram and the probability distribution used to generate the accu-
mulated data.

The class DhbScaledProbabilityDensityFunction has two class creation
methods. The class method histogram:against: takes two arguments, a his-
togram and a probability distribution. This method is used to perform a χ2-test
of the specified histogram against the given probability distribution. The class
method histogram:distributionClass: first create a probability distribution
of the given class using parameters estimated from the histogram. This method
is used to create a scaled probability density function whose parameters will be
determined with least square or maximum likelihood fits.

Listing 10.7 Smalltalk implementation of a scaled probability density function

Class DhbScaledProbabilityDensityFunction
Subclass of Object

Instance variable names: probabilityDensityFunction count binWidth

Class methods

histogram: aHistogram against: aProbabilityDensityFunction

^ self new

initialize: aProbabilityDensityFunction

binWidth: aHistogram binWidth

count: aHistogram totalCount

histogram: aHistogram distributionClass: aProbabilityDensityFunctionClass

^ (aProbabilityDensityFunctionClass fromHistogram: aHistogram)

ifNotNil: [:dp | self histogram: aHistogram against: dp]

Instance methods

changeParametersBy: aVector

count := count + aVector last.

probabilityDensityFunction changeParametersBy: aVector.

distributionFunction

10.4. χ2-TEST ON HISTOGRAMS 247

^probabilityDensityFunction distributionFunction

initialize: aProbabilityDensityFunction binWidth: aNumber count: anInteger

probabilityDensityFunction := aProbabilityDensityFunction.

binWidth := aNumber.

count := anInteger.

^ self

parameters

^ probabilityDensityFunction parameters copyWith: count

printOn: aStream

super printOn: aStream.

aStream nextPut: $[;

nextPutAll: probabilityDensityFunction class

distributionName;

nextPut: $].

setCount: aNumber

count := aNumber.

value: aNumber

^ (probabilityDensityFunction value: aNumber) * binWidth * count

valueAndGradient: aNumber

| g temp |

g := probabilityDensityFunction valueAndGradient: aNumber.

temp := binWidth * count.

^ Array with: g first * temp

with: ((g last collect: [:each | each * temp]) copyWith:

g first * binWidth)

The evaluation of equation 10.19 is performed by the method chi2Against:

of the class DhbHistogram. This method uses the iterator method pointsAndErrorsDo:.
This method iterates on all bins and performs on each of them a block using as
argument a weighted point as described in section 10.3.2. This iterator method
is also used for least square and maximum likelihood fits (c.f. sections 10.9.2
and 10.10.2).

Listing 10.8 Smalltalk implementation of χ2-test on histograms

Class DhbHistogram
Subclass of Object

248 CHAPTER 10. STATISTICAL ANALYSIS

Instance variable names: minimum binWidth overflow underflow moments contents

freeExtent cacheSize desiredNumberOfBins

Instance methods

chi2Against: aScaledDistribution

| chi2 |

chi2 := 0.

self pointsAndErrorsDo:

[:each | chi2 := (each chi2Contribution:

aScaledDistribution) + chi2].

^ chi2

chi2ConfidenceLevelAgainst: aScaledDistribution

^ (DhbChiSquareDistribution degreeOfFreedom: (contents size -

aScaledDistribution parameters size))

confidenceLevel: (self chi2Against: aScaledDistribution)

pointsAndErrorsDo: aBlock

| x |

x := self minimum - (self binWidth / 2).

contents do:

[:each |

x := x + self binWidth.

aBlock value: (DhbWeightedPoint point: x count: each).

].

10.5 Definition of estimation

Let us assume that an observable quantity y is following a probability distribu-
tion described by a set of observable quantities x1, x2 . . . - called the experimen-
tal conditions - and a set of parameters p1, p2 In other words, the probability
density function of the random variable5 corresponding to the observable quan-
tity y can be written as

P (y) = P (y; x,p) , (10.20)

where x is the vector (x1, x2 . . .) and p the vector (p1, p2 . . .).
The estimation of the values of the parameters p1, p2 . . . is the determination

of the parameters p1, p2 . . . by performing several measurements of the observ-
able y for different experimental conditions x1, x2

Let N be the number of measurements; let yi be the ith measured value of
the observable y under the experimental conditions xi.

5For simplicity we shall use the same notation for the random variable and the observable
quantity.

10.5. DEFINITION OF ESTIMATION 249

10.5.1 Maximum likelihood estimation

The maximum likelihood estimation of the parameters p is the set of values p̄
maximizing the following function:

L (p) =

N∏
i=1

P (yi; xi,p) (10.21)

By definition the likelihood function L (p) is the probability of making the N
measurements. The maximum likelihood estimation determines the estimation
p̄ of the parameters p such that the series of measurements performed is the
most probable, hence the name maximum likelihood.

One can show that the maximum likelihood estimation is robust and unbi-
ased. The robustness and the bias of an estimation are defined mathematically.
For short, robust means that the estimation converges toward the true value of
the parameters for an infinite number of measurements; unbiased means that
the deviations between the estimated parameters and their true value are sym-
metrically distributed around 0 for any finite number of measurements.

Equation 10.21 is often rewritten in logarithmic form to ease the computation
of the likelihood function.

I (p) = lnL (p) =

N∑
i=1

lnP (yi; xi,p) (10.22)

The function I (p) is related to information and is used in information theory.

10.5.2 Least square estimation

Let us assume that the random variable y is distributed according to a normal
distribution of given standard deviation σ and that the average of the normal
distribution is given by a function F (x,p) of the experimental conditions and
the parameters. In this case equation 10.20 becomes:

P (y) =
1√

2πσ2
e−

[y−F (x,p)]2

2σ2 (10.23)

Plugging equation 10.23 into equation 10.22 yields:

I (p) = −N
√

2πσ2 −
N∑
i=1

[y − F (x,p)]
2

2σ2
(10.24)

The problem of finding the maximum of I (p) is now equivalent to the problem
of finding the minimum of the function:

SML (p) =

N∑
i=1

[y − F (x,p)]
2

σ2
, (10.25)

250 CHAPTER 10. STATISTICAL ANALYSIS

where a redundant factor 2 has been removed. This kind of estimation is called
least square estimation. Written as in equation 10.25 least square estimation is
fully equivalent to maximum likelihood estimation. By definition, the quantity
SML (p) is distributed as a χ2 random variable with N −m degrees of freedom
where m is the number of parameters, that is the dimension of the vector p.

In practice, however, the standard deviation σ is not known and frequently
depends on the parameters p. In that case, one uses instead an estimation for
the standard deviation. Either the standard deviation of each measurement
is determined experimentally by making several measurements under the same
experimental conditions or it is estimated from the measurement error. Then,
equation 10.25 can be rewritten as:

S (p) =

N∑
i=1

[y − F (x,p)]
2

σ2
i

. (10.26)

The least square estimation is obtained by minimizing the quantity S (p) with
respect to the parameters p. This kind of estimation can be used to determine
the parameters of a functional dependence of the variable y from the observable
quantities x. For this reason it is also called a least square fit when it is used
to fit the parameter of a functional dependence to the measurements.

In general the distribution of the random variable y may not be a normal
distribution. One can nevertheless show that the least square estimation is
robust. However, it is biased. Depending on the nature of the distribution of
the random variable y the parameters may be over- or underestimated. This is
especially the case when working with histograms.

We have said that all measurements of the observable quantities y must be
distributed according to a normal distribution so that the quantity S (p) of
equation 10.26 is distributed as a χ2 random variable. In general this is often
the case6 when dealing with a large quantity of measurements. Thus, a least
square fit is also called a χ2 fit. In this case one can apply the χ2-test described
in section 10.3 to assess the goodness of the fitted function.

If S (p) has a minimum respective to p then all partial derivatives of the
function S (p) respective to each of the components of the vector p are zero.
Since the function is positive and quadratic in p, it is clear that the function
must have at least one minimum. Under this circumstances the minimum can
be obtained by solving the following set of equations:

∂

∂pj
F (xi; p1, . . . , pm) = 0 for j = 1, . . . ,m (10.27)

where m is the number of parameters, that is the dimension of the vector p.
When a solution is found, one should in principle verify that it is really a mini-
mum. Solving equation 10.27 gives the following system of equations:

N∑
i=1

y − F (x,p)

σ2
i

· ∂

∂pj
S (p1, . . . , pm) = 0 for j = 1, . . . ,m (10.28)

6This is a consequence of a theorem known as the law of large numbers.

10.6. LEAST SQUARE FIT WITH LINEAR DEPENDENCE 251

Once the system above has been solved, one can compute the value of S (p) using
equations 10.26 or, better, the value SML (p) using equation 10.25. Computing
the χ2 confidence level of that value (c.f. section 10.3) using a χ2 distribution
with N −m degrees of freedom gives the probability that the fit is acceptable.

10.6 Least square fit with linear dependence

If the function F (x,p) is a linear function of the vector p, it can be written in
the following form:

F (x,p) =

m∑
j=1

fj (x) · pj . (10.29)

In that case, equation 10.28 become a system of linear equations of the form:

M · p = c, (10.30)

where the coefficients of the matrix M are given by:

Mjk =

N∑
i=1

fj (xi) fk (xi)

σ2
i

for j, k = 1, . . . ,m, (10.31)

and the components of the constant vector c are given by:

cj =

N∑
i=1

yifj (xi)

σ2
i

for j = 1, . . . ,m. (10.32)

Equation 10.30 is a system of linear equation which can be solved according to
the algorithms exposed in sections 8.2 and 8.3. If one is interested only in the
solution this is all there is to do.

A proper fit, however, should give an estimation of the error in estimating
the parameters. The inverse of the matrix M is the error matrix for the fit.
The error matrix is used to compute the estimation of variance on the function
F (x,p) as follows:

var [F (x,p)] =

m∑
j=1

m∑
k=1

M−1
jk fj (x) fk (x) . (10.33)

The estimated error on the function F (x,p) is the square root of the estimated
variance.

The diagonal elements of the error matrix are the variance of the correspond-
ing parameter. That is:

var (pj) = M−1
jj for j = 1, . . . ,m. (10.34)

The off diagonal elements describe the correlation between the errors on the
parameters. One defines the correlation coefficient of parameter pj and pj by:

cor (pj , pk) =
M−1
jk√

M−1
jj M

−1
kk

for j, k = 1, . . . ,m and j 6= k. (10.35)

252 CHAPTER 10. STATISTICAL ANALYSIS

All correlation coefficients are comprised between -1 and 1. If the absolute
value of a correlation coefficient is close to 1, it means that one of the two
corresponding two parameters is redundant for the fit. In other word, one
parameter can be expressed as a function of the other.

10.7 Linear regression

A linear regression is a least square fit with a linear function of a single variable.
The dimension of the vector x is one and the dimension of the vector p is
two. The function to fit has only two parameters. The following convention is
standard: p1 = a,

p2 = b,
F (x,p) = ax+ b.

(10.36)

With these definitions, the system of equations 10.30 becomes:

N∑
i=1

x2
i

σ2 a+

N∑
i=1

xi

σ2 b =

N∑
i=1

xiyi

σ2

N∑
i=1

xi

σ2 a+

N∑
i=1

1

σ2 b =

N∑
i=1

yi

σ2 .

(10.37)

This system can easily be solved. Before giving the solution, let us introduce a
short hand notation for the weighted sums:

〈Q〉 =

N∑
i=1

Qi

σ2
i

. (10.38)

Using this notation the solution of the system of equations 10.37 can be written
as:

a =
〈xy〉 · 〈1〉 − 〈x〉 · 〈y〉
〈xx〉 · 〈1〉 − 〈x〉 · 〈x〉

b =
〈xx〉 · 〈y〉 − 〈xy〉 · 〈x〉
〈xx〉 · 〈1〉 − 〈x〉 · 〈x〉

(10.39)

where the symmetry of the expression is quite obvious. It is interesting to note
that if we had fitted x as a linear function of y, that is x = ãy + b̃, we would
have the following expression for the slope:

ã =
〈xy〉 · 〈1〉 − 〈x〉 · 〈y〉
〈yy〉 · 〈1〉 − 〈y〉 · 〈y〉

. (10.40)

If the dependence between x and y is truly a linear function, the product aã
ought to be 1. The square root of the product aã is defined as the correlation

10.7. LINEAR REGRESSION 253

coefficient of the linear regression, the sign of the square root being the sign of
the slope. The correlation coefficient r is thus given by:

r =
〈xy〉 · 〈1〉 − 〈x〉 · 〈y〉√

(〈xx〉 · 〈1〉 − 〈x〉 · 〈x〉) (〈yy〉 · 〈1〉 − 〈y〉 · 〈y〉)
. (10.41)

Since the least square fit is a biased estimator for the parameters, the square of
the correlation coefficient is less than 1 in practice. The value of the correlation
coefficient lies between -1 and 1. A good linear fit ought to have the absolute
value of r close to 1.

Finally the error matrix of a linear regression is given by:

M−1 =
1

〈xx〉 · 〈1〉 − 〈x〉 · 〈x〉

(
〈xx〉 − 〈x〉
− 〈x〉 〈1〉

)
(10.42)

when the vector representing the parameters of the fit is defined as (b, a) in this
order.

When fitting a functional dependence with one variable, x and many pa-
rameters, one can use a linear regression to reduce rounding errors when the
observed values y1, . . . , yN cover a wide numerical range. Let a and b be the
result of the linear regression of the values yi as a function of xi. One defines
the new quantity y′i = yi−(axi + b) for all i. The standard deviation of y′i is the
same as that of yi since the subtracted expression is just a change of variable.
In fact, the linear regression does not need to be a good fit at all. Then, the
functional dependence can be fitted on the quantities y′1, . . . , y

′
N . We shall give

a detailed example on this method in section 10.8

10.7.1 Linear regression — General implementation
Figure 10.1 with the box
LinearRegression grayed.Linear regression is implemented within a single class using a similar implemen-

tation as that of the statistical moments. This means that individual measure-
ments are accumulated and not stored. The drawback is that the object cannot
compute the confidence level of the fit. This is not so much a problem since the
correlation coefficient is usually sufficient to estimate the goodness of the fit.
The class has the following instance variables:

sum1 is used to accumulate the sum of weights, that is, 〈1〉,

sumX is used to accumulate the weighted sum of xi, that is, 〈x〉,

sumY is used to accumulate the weighted sum of yi, that is, 〈y〉,

sumXY is used to accumulate the weighted sum of xi × yi, that is, 〈xy〉,

sumXX is used to accumulate the weighted sum of x2
i , that is, 〈xx〉,

sumYY is used to accumulate the weighted sum of y2
i , that is, 〈yy〉,

slope the slope of the linear regression, that is, a,

254 CHAPTER 10. STATISTICAL ANALYSIS

intercept the value of the linear regression at x = 0, that is, b,

correlationCoefficient the correlation coefficient, that is, r in equation 10.41.

When either one of the instance variables slope, intercept or correlationCoefficient
is needed, the method computeResults calculating the values of the three in-
stance variables is called using lazy initialization. When new data is added to
the object, these variables are reset. It is thus possible to investigate the effect
of adding new measurements on the results.

The methods asPolynomial and asEstimatedPolynomial return an object
used to compute the predicted value for any x. The estimated polynomial
is using the error matrix of the least square fit to compute the error on the
predicted value. Estimated polynomials are explained in section 10.8

10.7.2 Linear regression — Smalltalk implementation

Listing 10.9 shows the complete implementation in Smalltalk. The following
code shows how to use the class DhbLinearRegression to perform a linear
regression over a series of measurements .

Code example 10.3
| linReg valueStream measurement slope intercept

correlationCoefficient estimation value error|

linReg := DhbLinearRegression new.

[valueStream atEnd]

whileFalse: [measurement := valueStream next.

linReg addPoint: measurement point

weight: measurement weight].

slope := linReg slope.

intercept := linReg intercept.

correlationCoefficient := linReg correlationCoefficient.

estimation := linReg asEstimatedPolynomial.

value := estimation value: 0.5.

error := estimation error: 0.5.

This example assumes that the measurement of the random variable are ob-
tained from a stream. The exact implementation of the stream is not shown here.
The first line after the declaration creates a new instance of class DhbLinearRegression.
Next comes the loop over all values found in the stream. This examples assumes
that the values are stored on the stream as a single object implementing the
following methods:

point returns a point containing the measurement, that is, the pair (xi, yi) for
all i,

weight returns the weight of the measurement, that is, 1/σ2
i .

Each point is accumulated into the linear regression object with the method
addPoint:weight:.

10.7. LINEAR REGRESSION 255

After all measurements have been read, the results of the linear regression
are fetched. The last three lines show how to obtain a polynomial object used
to compute the value predicted by the linear regression at x = 0.5 and the error
on that prediction.

The mechanism of lazy initialization is implemented by setting the three
instance variables slope, intercept and correlationCoefficient to nil in
the method reset.

Listing 10.9 Smalltalk implementation of linear regression

Class DhbLinearRegression
Subclass of Object

Instance variable names: sum1 sumX sumY sumXX sumYY sumXY slope intercept

correlationCoefficient

Class methods

new

^ super new reset; yourself

Instance methods

add: aPoint

self add: aPoint weight: 1.

add: aPoint weight: aNumber

sum1 := sum1 + aNumber.

sumX := sumX + (aPoint x * aNumber).

sumY := sumY + (aPoint y * aNumber).

sumXX := sumXX + (aPoint x squared * aNumber).

sumYY := sumYY + (aPoint y squared * aNumber).

sumXY := sumXY + (aPoint x * aPoint y * aNumber).

self resetResults

asEstimatedPolynomial

^ (DhbEstimatedPolynomial coefficients: self coefficients)

errorMatrix: self errorMatrix;

yourself

asPolynomial

^ DhbPolynomial coefficients: self coefficients

coefficients

^ Array with: self intercept with: self slope

256 CHAPTER 10. STATISTICAL ANALYSIS

computeResults

| xNorm xyNorm |

xNorm := sumXX * sum1 - (sumX * sumX).

xyNorm := sumXY * sum1 - (sumX * sumY).

slope := xyNorm / xNorm.

intercept := (sumXX * sumY - (sumXY * sumX)) / xNorm.

correlationCoefficient := xyNorm

/ (xNorm * (sumYY * sum1 - (sumY * sumY))) sqrt

correlationCoefficient

correlationCoefficient isNil

ifTrue: [self computeResults].

^ correlationCoefficient

errorMatrix

| c1 cx cxx |

c1 := 1.0 / (sumXX * sum1 - sumX squared).

cx := sumX negated * c1.

cxx := sumXX * c1.

c1 := sum1 * c1.

^ DhbSymmetricMatrix rows: (Array with: (Array with: cxx with: cx)

with: (Array with: cx with: c1))

errorOnIntercept

^ (sumXX / (sumXX * sum1 - sumX squared)) sqrt

errorOnSlope

^ (sum1 / (sumXX * sum1 - sumX squared)) sqrt

intercept

intercept isNil

ifTrue: [self computeResults].

^ intercept

remove: aPoint

sum1 := sum1 - 1.

sumX := sumX - aPoint x.

sumY := sumY - aPoint y.

sumXX := sumXX - aPoint x squared.

sumYY := sumYY - aPoint y squared.

sumXY := sumXY - (aPoint x * aPoint y).

self resetResults

reset

10.8. LEAST SQUARE FIT WITH POLYNOMIALS 257

sum1 := 0.

sumX := 0.

sumY := 0.

sumXX := 0.

sumYY := 0.

sumXY := 0.

self resetResults

resetResults

slope := nil.

intercept := nil.

correlationCoefficient := nil.

slope

slope isNil

ifTrue: [self computeResults].

^ slope

value: aNumber

^ aNumber * self slope + self intercept

10.8 Least square fit with polynomials

In a polynomial fit the fit function is a polynomial of degree m . In this case, the
parameters are usually numbered starting from 0; the number of free parameters
is m+ 1 and the number of degrees of freedom is N −m− 1. We have:

F (x; p0, p1, . . . , pm) =

n∑
k=0

pkx
k. (10.43)

The partial derivative of equation 10.27 is easily computed since a polynomial
is a linear function of its coefficients:

∂

∂pj
F (xi; p1, . . . , pm) = xji for j = 1, . . . ,m. (10.44)

Such a matrix is called a Van Der Monde matrix. The system of equations 10.28
then becomes:

m∑
k=0

pk ·
N∑
i=1

xj+ki

σ2
i

=

N∑
i=1

xjiyi

σ2
i

. (10.45)

Equation 10.45 is of the same form as equation 10.30 where the coefficients of
the matrix M are given by:

Mjk =

N∑
i=1

xj+ki

σ2
i

, (10.46)

258 CHAPTER 10. STATISTICAL ANALYSIS

Figure 10.5: Example of polynomial fit

and the vector c has for components:

cj =

N∑
i=1

xjiyi

σ2
i

. (10.47)

Polynomial least square fit provides a way to construct an ad-hoc representation
of a functional dependence defined by a set of point. Depending on the type of
data it can be more efficient than the interpolation methods discussed in chapter
3. In general the degree of the polynomial should be kept small to prevent large
fluctuations between the data points.
Let us now shows a concrete example of polynomial fit.

In order to determine whether or not a fetus is developing itself normally
within the womb, the dimension of the fetus’ bones are measured during an
ultrasound examination of the mother-to-be. The dimensions are compared
against a set of standard data measured on a control population. Such data7 are
plotted in figure 10.5: the y-axis is the length of the femur expressed in mm; the
x-axis represents the duration in weeks of the pregnancy based on the estimated
date of conception. Each measurement has been obtained by measuring the
length of different fetuses at the same gestational age. The measurement are
averaged and the error on the average is also calculated (c.f. section 9.1).

The obtained data do not follow a smooth curve since the data have been
determined experimentally. The exact date of conception cannot be exactly

7These numbers are reproduced with permission of Prof. P.J. Steer. from the department
of obstetrics and gynecology of the Chelsea & Westminster Hospital of London.

10.8. LEAST SQUARE FIT WITH POLYNOMIALS 259

determined so some fluctuation is expected, but the major limitation of the data
is to obtain an sufficient number of measurements to smooth out the natural
variations between individuals. The data from figure 10.5 have been fitted with
a second order polynomial: the result is shown with a black thin curve. As one
can see, the fit is excellent in spite of the fluctuation of the measurements. Figure
10.6 shows the fit results. This χ2 confidence level is rather good. However, the

Figure 10.6: Fit results for the fit of figure 10.5

correlation coefficients are quite high. This is usually the case with polynomial
fits as each coefficient strongly depends on the other.

The thick gray line on figure 10.5 shows the interpolation polynomial8 for
comparison (interpolation is discussed in chapter 3). As the reader can see the
interpolation polynomial gives unrealistic results because of the fluctuations of
the experimental data.

Polynomial fits have something in common with interpolation: a fitted poly-
nomial can seldom be used to extrapolate the data outside of the interval defined
by the reference points. This is illustrated on figure 10.7 showing a second order
polynomial fit made on a series of points. This series is discussed in section 3.1
(figure 3.1). The reader can see that the fitted polynomial does not reproduce
the behavior of the data in the lower part of the region. Nevertheless, the data
are well within the estimated error. Thus, the fit results are consistent. Unfor-
tunately too many fit results are presented without their estimated error. This
kind of information, however, is an essential part of a fit and should always be
deliver along with the fitted function.

This is the idea behind what we call estimated polynomials. An estimated
polynomial is a polynomial whose coefficients have been determined by a least
square fit. An estimated polynomial keeps the error matrix of the fit is along

8An attentive reader will notice that the interpolation curve dos not go through some data
points. This is an artifact of the plotting over a finite sample of points which do not coincide
with the measured data.

260 CHAPTER 10. STATISTICAL ANALYSIS

Figure 10.7: Limitation of polynomial fits

with the coefficients of the fitted polynomial.

10.8.1 Polynomial least square fits — Smalltalk imple-
mentation

Figure 10.1 with the boxes
PolynomialLeastSquare-
Fit and EstimatedPoly-
nomial grayed.

Listing 10.10 shows the complete implementation in Smalltalk. The following
code example show how to perform the fit made in figure 10.5.

Code example 10.4
| fit valueStream dataHolder estimation value error|

<Accumulation of data into dataHolder>

fit := DhbPolynomialLeastSquareFit new: 2.

dataHolder pointsAndErrorsDo: [:each | fit add: each].

estimation := fit evaluate.

value := estimation value: 20.5.

error := estimation error: 20.5.

The data are accumulated into a object called dataHolder implementing the
iterator method pointsAndErrorsDo. The argument of the block used by this
method is an instance of class DhbWeightedPoint described in section 10.3.2.
The iterator method acts on all experimental data stored in dataHolder. Next,
an instance of class DhbPolynomialLeastSquareFit is created. The argument
of the method is the degree of the polynomial; here a second order polynomial
is used. After data have been accumulated into this object, the fit is performed

10.8. LEAST SQUARE FIT WITH POLYNOMIALS 261

by sending the method evaluate to the fit object. This method returns a poly-
nomial including the error matrix. The last three lines compute the predicted
femur length and its error in the middle of the 20th week of pregnancy.

The Smalltalk implementation assumes the points are stored in an object
implementing the iterator method do:. Any instance of Collection of its sub-
classes will work. Each element of the collection must be an array containing
the values xi, yi and 1/σi. The class DhbPolynomialLeastSquareFit keeps
this collection in the instance variable pointCollection. A second instance
variable, degreePlusOne, keeps the number of coefficients to be estimated by
the fit.

The class creation method new: is used to create an instance by supplying
the degree of the fit polynomial as argument. pointCollection is set to a new
instance of an OrderedCollection. Then, new values can be added to the fit
instance with the method add:.

The other class creation method, new:on: takes two arguments: the degree
of the fit polynomial and the collection of points. The fit result can be fetched
directly after the creation.

The method evaluate solves equation 10.28 by first computing the inverse
of the matrix M to get the error matrix. The coefficients are then obtained
from the multiplication of the constant vector by the error matrix.

Listing 10.10 Smalltalk implementation of a polynomial least square fit

Class DhbPolynomialLeastSquareFit
Subclass of Object

Instance variable names: pointCollection degreePlusOne

Class methods

new: anInteger

^ super new initialize: anInteger

new: anInteger on: aCollectionOfPoints

^ super new initialize: anInteger on: aCollectionOfPoints

Instance methods

accumulate: aWeightedPoint into: aVectorOfVectors and: aVector

OfVectors and: aVector

| t p powers |

p := 1.0.

powers := aVector collect: [:each | t := p. p := p *

aWeightedPoint xValue. t].

aVector accumulate: powers * (aWeightedPoint yValue *

aWeightedPoint weight).

262 CHAPTER 10. STATISTICAL ANALYSIS

1 to: aVector size do:

[:k |

(aVectorOfVectors at: k) accumulate: powers * ((powers

at: k) * aWeightedPoint weight).

].

add: aWeightedPoint

^ pointCollection add: aWeightedPoint

computeEquations

| rows vector |

vector := (DhbVector new: degreePlusOne) atAllPut: 0 ; yourself.

rows := (1 to: degreePlusOne) collect: [:k | (DhbVector new:

degreePlusOne) atAllPut: 0 ; yourself].

pointCollection do:

[:each | self accumulate: each into: rows and: vector].

^ Array with: (DhbSymmetricMatrix rows: rows) with: vector

evaluate

| system errorMatrix |

system := self computeEquations.

errorMatrix := (system at: 1) inverse.

^ (DhbEstimatedPolynomial coefficients: errorMatrix * (system at:

2))

errorMatrix: errorMatrix;

yourself

initialize: anInteger

^ self initialize: anInteger on: OrderedCollection new

initialize: anInteger on: aCollectionOfPoints

pointCollection := aCollectionOfPoints.

degreePlusOne := anInteger + 1.

^ self

Listing 10.11 show the implementation of the class DhbEstimatedPolynomial
which is a subclass of the class DhbPolynomial containing the error matrix of
the fit performed to make a estimation of the polynomial’s coefficients. The
method error: returns the estimated error of its value based on the error ma-
trix of the fit using equation 10.33. The convenience method valueAndError:

returns an array containing the estimated value and its error in single method
call. This is suitable for plotting the resulting curve.

10.9. LEAST SQUARE FIT WITH NON-LINEAR DEPENDENCE 263

Listing 10.11 Smalltalk implementation of a polynomial with error

Class DhbEstimatedPolynomial
Subclass of DhbPolynomial

Instance variable names: errorMatrix

Instance methods

error: aNumber

| errorVector term nextTerm |

nextTerm := 1.

errorVector := (coefficients collect: [:each | term :=

nextTerm. nextTerm := aNumber * nextTerm. term]) asVector.

^ (errorVector * errorMatrix * errorVector) sqrt

errorMatrix

^ errorMatrix

errorMatrix: aMatrix

errorMatrix := aMatrix.

valueAndError: aNumber

^ Array with: (self value: aNumber) with: (self error: aNumber)

10.9 Least square fit with non-linear dependence

In the case of a non-linear function, the fit can be reduced to a linear fit and a
search by successive approximations.

Let us assume that we have an approximate estimation p0 of the parameters
p. Let us define the vector ∆p = p − p0. One redefines the function F (x,p)
as:

F (x,p) = F (x,p0) +
∂F (x,p)

∂p

∣∣∣∣
p=p0

·∆p. (10.48)

Equation 10.48 is a linear expansion9 of the function F (x,p) around the vector

p0 respective to the vector p. In equation 10.48
∂F (x,p)

∂p

∣∣∣∣
p=p0

is the gradient

of the function F (x,p)relative to the vector p evaluated for p = p0; this is
a vector with the same dimension as the vector p. Then, one minimizes the
expression in equation 10.26 respective to the vector ∆p. This is of course a
linear problem as described in section 10.6. Equation 10.30 becomes:

M ·∆p = c, (10.49)

9That is, the first couples of terms of a Taylor expansion of the function F (x,p) around
the vector p0 in an m dimensional space.

264 CHAPTER 10. STATISTICAL ANALYSIS

where the components of the matrix M are now defined by:

Mjk =

N∑
i=1

1

σ2
i

· ∂F (xi,p)

∂pj

∣∣∣∣
p=p0

· ∂F (xi,p)

∂pk

∣∣∣∣
p=p0

(10.50)

and the components of the vector c are defined by:

cj =

N∑
i=1

yi − F (xi,p0)

σ2
i

· ∂F (xi,p)

∂pj

∣∣∣∣
p=p0

. (10.51)

The vector ∆p is obtained by solving equation 10.49 using the algorithms de-
scribed in sections 8.2 and 8.3. Then, we can use the vector p0 + ∆p as the
new estimate and repeat the whole process. One can show10 that iterating this
process converges toward the vector p̄ minimizing the function S (p) introduced
in equation 10.26.

As explained in section 10.6, the inverse of the matrix M is the error matrix
containing the variance of each parameter and their correlation. The expression
for the estimated variance on the function F (x,p) becomes:

var [F (x,p)] =

m∑
j=1

m∑
k=1

M−1
jk ·

∂F (xi, p̄)

∂pj
· ∂F (xi, p̄)

∂pk
. (10.52)

A careful examination of the error matrix can tell whether or not the fit is
meaningful.

Figure 10.8 shows an example of a least square fit performed on a histogram
with a probability density function. The histogram of figure 10.8 was generated
using a random generator distributed according to a Fisher-Tippett distribution
(c.f. C.4) with parameters α = 0 and β = 1. Only 1000 events have been
accumulated into the histogram. The inset window in the upper right corner
shows the fit results. The order of the parameter are α, β and the number of
generated events. The solid curve laid onto the histogram is the prediction of
the fitted function; the two dotted lines indicate the error on the prediction.
The reader can verify that the fit is excellent. The number of needed iterations
is quite low: the convergence of the algorithm is quite good in general.

10.9.1 Non-linear fit — General implementation
Figure 10.1 with the box
LeastSquareFit grayed. As we have seen the solution of a non-linear fit can be approximated by succes-

sive approximations. Thus, non-linear fits are implemented with a subclass of
the iterative process class described in section 4.1. Data points must be kept in
a structure maintained by the object implementing linear least square fit to be
readily available at each iteration. Thus, the data point are kept in an instance
variable.

10A mathematically oriented reader can see that this is a generalization of the Newton
zero-finding algorithm (c.f. section 5.3)to m dimensions .

10.9. LEAST SQUARE FIT WITH NON-LINEAR DEPENDENCE 265

Figure 10.8: Example of a least square fit

The result of the iterative process are the parameters. Our implementation
assumes that the supplied function contains and maintains its parameter. Thus,
the instance variable corresponding to the result of the iterative process is the
fit function itself. The parameters determined by the fit — the result proper —
are kept within the object implementing the supplied function. In particular the
determination of the initial values for the iterative process are the responsibility
of the fit function. Thus, the method initializeIterations does not do
anything.

In most cases, the number of parameters in a least square fits is relatively
small. Thus, LUP decomposition — described in section 8.3 — is sufficient
to solve equation 10.49 at each iteration. Except for the last iteration, there
is no need to compute the error matrix (the inverse of the matrix M. The
components of the error matrix can be obtained from the LUP decomposition
when the algorithm converges.

Convergence is attained when the largest of the relative variation of the
components of the vector becomes smaller than a given value. In addition to
the fact that we are dealing with floating point numbers, the reason for using
relative precision is that the components of the vector p usually have different
ranges.

When the fit has been obtained, convenience methods allows to retrieve
the sum of equation 10.25 (chiSquare) and the confidence level of the fit
(confidenceLevel). Another convenience method, valueAndError computes

266 CHAPTER 10. STATISTICAL ANALYSIS

the prediction of the fit and its estimated error using equation 10.52.

10.9.2 Non-linear fit — Smalltalk implementation

Listing 10.12 shows the complete implementation in Smalltalk. The following
code example shows how the data of figure 10.8 were generated11.

Code example 10.5
| genDistr hist fit |

hist := DhbHistogram new.

hist freeExtent: true.

genDistr := DhbFisherTippettDistribution shape: 0 scale: 1.

1000 timesRepeat: [hist accumulate: genDistr random].

fit := DhbLeastSquareFit histogram: hist

distributionClass: DhbFisherTippettDistribution.

fit evaluate.

The first two lines after the declaration define an instance of class DhbHistogram
with automatic adjustment of the limits (c.f. section 9.3.2). The next line de-
fines an instance of a Fisher-Tippett distribution. Then, 1000 random numbers
generated according to this distribution are accumulated into the histogram.
Next, an instance if the class DhbLeastSquareFit is defined with the histogram
for the data points and the desired class of the probability density function.
The corresponding scaled probability is created within the method (c.f. listing
10.12). the final line performs the fit proper. After this line, the calling appli-
cation can either use the fit object or extract the fit result to make predictions
with the fitted distribution.

The class DhbLeastSquareFit is a subclass of DhbIterativeProcess de-
scribed in section 4.1.1. It has the following instance variables:

dataHolder is the object containing the experimental data; this object must im-
plement the iterator method pointsAndErrorsDo:; the block supplied to
the iterator method takes as argument an instance of the class DhbWeightedPoint
described in section 10.3.2;

equations contains the components of the matrix M;

constants contains the components of the vector c;

errorMatrix contains the LUP decomposition of the matrix M;

chiSquare contains the sum of equation 10.25;

degreeOfFreedom contains the degree of freedom of the fit.

The instance variables errorMatrix, chiSquare and degreeOfFreedom are im-
plemented using lazy initialization. The method finalizeIterations sets the

11. . .up to the plotting facilities. This could be the topic of a future book.

10.9. LEAST SQUARE FIT WITH NON-LINEAR DEPENDENCE 267

instance variables equations and constants to nil to reclaim space at the end
of the fit.

The supplied fit function — instance variable result — must implement
the method valueAndGradient: which returns an array containing the value of
the function at the supplied argument and the gradient vector. This is an op-
timization because the gradient can be computed frequently using intermediate
results coming from the computation of the function’s value.

The method valueAndError: is a good example of using the vector and
matrix operations described in chapter 8.

Listing 10.12 Smalltalk implementation of a non-linear least square fit

Class DhbLeastSquareFit
Subclass of DhbIterativeProcess

Instance variable names: dataHolder errorMatrix chiSquare equations constants

degreeOfFreedom

Class methods

histogram: aHistogram distributionClass: aProbabilityDensityFunctionClass

^ self points: aHistogram

function: (DhbScaledProbabilityDensityFunction histogram:

aHistogram

distributionClass: aProbabilityDensityFunctionClass)

points: aDataHolder function: aParametricFunction

^ aParametricFunction ifNotNil: [:dp | super new initialize:

aDataHolder data: dp]

Instance methods

accumulate: aWeightedPoint

| f g |

f := result valueAndGradient: aWeightedPoint xValue.

g := f last.

f := f first.

constants accumulate: g * ((aWeightedPoint yValue - f) *

aWeightedPoint weight).

1 to: g size do:

[:k |

(equations at: k) accumulate: g * ((g at: k) *

aWeightedPoint weight).

].

accumulateEquationSystem

268 CHAPTER 10. STATISTICAL ANALYSIS

dataHolder pointsAndErrorsDo: [:each | self accumulate: each].

chiSquare

chiSquare isNil

ifTrue: [self computeChiSquare].

^ chiSquare

computeChanges

errorMatrix := DhbLUPDecomposition direct: equations.

^ errorMatrix solve: constants

computeChiSquare

chiSquare := 0.

degreeOfFreedom := self numberOfFreeParameters negated.

dataHolder pointsAndErrorsDo:

[:each |

chiSquare := (each chi2Contribution: result) + chiSquare.

degreeOfFreedom := degreeOfFreedom + 1.

].

computeEquationSystem

constants atAllPut: 0.

equations do: [:each | each atAllPut: 0].

self accumulateEquationSystem.

confidenceLevel

^ (DhbChiSquareDistribution degreeOfFreedom: self

degreeOfFreedom) confidenceLevel: self chiSquare

degreeOfFreedom

degreeOfFreedom isNil

ifTrue: [self computeChiSquare].

^ degreeOfFreedom

errorMatrix

^ DhbSymmetricMatrix rows: errorMatrix inverseMatrixComponents

evaluateIteration

| changes maxChange |

self computeEquationSystem.

changes := self computeChanges.

result changeParametersBy: changes.

maxChange := 0.

result parameters with: changes do:

[:r :d | maxChange := (d / r) abs max: maxChange].

^maxChange

10.9. LEAST SQUARE FIT WITH NON-LINEAR DEPENDENCE 269

finalizeIterations

equations := nil.

constants := nil.

degreeOfFreedom := nil.

chiSquare := nil

fitType

^’Least square fit’

initialize: aDataHolder data: aParametricFunction

dataHolder := aDataHolder.

result := aParametricFunction.

^ self

initializeIterations

| n |

n := self numberOfParameters.

constants := (DhbVector new: n)

atAllPut: 0;

yourself.

equations := (1 to: n) collect:

[:k |

(DhbVector new: n)

atAllPut: 0;

yourself]

numberOfFreeParameters

^ self numberOfParameters

numberOfParameters

^ result parameters size

value: aNumber

^ result value: aNumber

valueAndError: aNumber

| valueGradient |

valueGradient := result valueAndGradient: aNumber.

^Array with: valueGradient first

with: (valueGradient last * (self errorMatrix *

valueGradient last)) sqrt

270 CHAPTER 10. STATISTICAL ANALYSIS

10.10 Maximum likelihood fit of a probability
density function

In section 9.3 histograms have been discussed as a way to represent a proba-
bility density function directly from experimental data. In this section we shall
show that the maximum likelihood estimation can easily be applied to the data
gathered in a histogram in order to determine the parameters of a hypothesized
probability density function.

In general the maximum likelihood fit of a probability density function to
a histogram is much faster than the corresponding least square fit because the
number of free parameters is lower, as we shall see in this section. In addi-
tion, the maximum likelihood estimation is unbiased and is therefore a better
estimation than the least square fit estimation, especially when the histogram
is sparsely populated. Thus, a maximum likelihood fit is the preferred way of
finding the parameters of a probability density function from experimental data
collected in a histogram.

Let m be the number of bins in the histogram and let ni be the content of
the ith bin. Let Pi (p) the probability of observing a value in the ith bin. The
likelihood function L (p) is the probability of observing the particular histogram.
Since the hypothesis of a probability density function does not constrain the
total number of values collected into the histogram, the total number of collected
values can be considered as constant. As a consequence, a maximum likelihood
fit has one parameter less than a least square fit using the same function. Since
the total number is unconstrained, the probability of observing the particular
histogram is given by a multinomial probability. Thus, the likelihood function
can be written as:

L (p) = N !

m∏
i=1

Pi (p)
ni

ni!
, (10.53)

where N =
∑m
i=1 ni is the total number of values collected into the histogram.

As we have seen in section 10.5.1, finding the maximum of L (p) is equivalent
of finding the maximum of the function I (p). Since N is a constant, we use a
renormalized function:

I (p) = ln
M (p)

N !
=

m∑
i=1

ni lnPi (p) . (10.54)

Finding the maximum of the function I (p) is equivalent to solving the following
system of non-linear equations:

∂I (p)

∂p
=

m∑
i=1

ni
Pi (p)

· ∂Pi (p)

∂p
= 0. (10.55)

This system can be solved with a search by successive approximations, where
a system of linear equations must be solved at each step. The technique used
is similar to the one described in section 10.9. In this case, however, it is more

10.10. MAXIMUM LIKELIHOOD FIT OF A PROBABILITY DENSITY FUNCTION271

convenient to expand the inverse of the probability density function around a
previous approximation as follows:

1

Pi (p)
=

1

Pi (p0)
− 1

Pi (p0)
2 ·

∂Pi (p)

∂p

∣∣∣∣
p=p0

·∆p. (10.56)

This expansion can only be defined over a range where the probability density
function is not equal to zero. Therefore, this expansion of the maximum likeli-
hood estimation cannot be used on a histogram where bins with non-zero count
are located on a range where the probability density function is equal to zero12.
Contrary to a least square fit, bins with zero count do not participate to the
estimation.

Now equation 10.55 becomes a system of linear equations of the type:

M ·∆p = c, (10.57)

where the components of the matrix M are now defined by:

Mjk =

m∑
i=1

ni

Pi (p0)
2 ·

∂Pi (p0)

∂pj

∣∣∣∣
p=p0

· ∂Pi (p0)

∂pk

∣∣∣∣
p=p0

, (10.58)

and those of the vector c by:

cj =

m∑
i=1

ni
Pi (p0)

· ∂Pi (p0)

∂pj

∣∣∣∣
p=p0

. (10.59)

As discussed at the beginning of this section, the maximum likelihood esti-
mation for a histogram cannot determine the total count in the histogram. The
estimated total count, N̄ , is estimated with the following hypothesis:

ni = N̄P (p̄) , (10.60)

where p̄ is the maximum likelihood estimation of the distribution parameters.
The estimation is performed using N̄ as the only variable. The maximum like-
lihood estimation cannot be solved analytically, however, the least square esti-
mation can.

As we have seen in section 10.4 the variance of the bin count is the estimated
bin content. Thus, the function to minimize becomes:

S
(
N̄
)

=

m∑
i=1

[
ni − N̄Pi (p̄)

]2
N̄Pi (p̄)

(10.61)

The value of N̄ minimizing the expression of equation 10.61 is:

N̄ =

√√√√√√√√√
m∑
i=1

n2
i /Pi (p̄)

m∑
i=1

Pi (p̄)

. (10.62)

12Equation 10.54 shows that the bins over which the probability density function is zero
give no information.

272 CHAPTER 10. STATISTICAL ANALYSIS

Figure 10.9: Example of a maximum likelihood fit

and the estimated error on N̄ is given by

σN̄ =

√√√√√√
m∑
i=1

n2
i /Pi (p̄)

2N̄
. (10.63)

After computing N̄ using equation 10.62, the goodness of the maximum
likelihood fit can be estimated by calculating the χ2 confidence level of S

(
N̄
)

given by equation 10.61.

Figure 10.9 shows an example of a maximum likelihood fit performed on the
same histogram as in figure 10.8. The inset window in the upper right corner
shows the fit resultsin the same order as figure 10.8. The correlation coefficients,
however, are not shown for the normalization since it is not determined as part
of the fit. The solid curve laid onto the histogram is the prediction of the
fitted function; the two dotted lines indicate the error on the prediction. The
reader can see that the fit is as good as the least square fit. Of course, the χ2

test is significantly higher with a correspondingly lower confidence level. This
mostly comes from the fact that a maximum likelihood fit does not use the bins
with zero count. In fact, the reader can see that the count in the histogram
(normalization) estimated by the maximum likelihood fit is higher than in the
case of the least square fit.

10.10. MAXIMUM LIKELIHOOD FIT OF A PROBABILITY DENSITY FUNCTION273

10.10.1 Maximum likelihood fit — General implementa-
tion

Figure 10.1 with the box
MaximumLikekihood-
HistogramFit grayed.

A maximum likelihood fit of a probability density function on a histogram is very
similar to a least square fit of a histogram with a scaled probability distribution.
There are two major differences: first the number of parameters is lower; second
the computation of the matrix and vectors is not the same. Otherwise, most of
the structure of a least square fit can be reused.

Instead of creating special methods to compute the gradient of the fitted
function using a new set of parameters, our implementation uses the same gra-
dient calculation than the one used by the least square fit. This is possible if the
component of the gradient relative to the normalization is placed at the end.
Since the computation of this component does not require additional calcula-
tion, the additional time required by the re-using of the gradient’s computation
is negligible. Since the fit function is a scaled probability distribution the cur-
rent normalization is kept in an instance variable and the normalization of the
fitted function is set to 1 for the duration of the iterations. When the algorithm
is completed, the estimated normalization is put back into the fit function.

The computation of the normalization (equation 10.62) and that of its error
(equation 10.63) is performed in the method finalizeIterations.

10.10.2 Maximum likelihood fit — Smalltalk implementa-
tion

Listing 10.13 shows the complete implementation in Smalltalk. The following
code example shows how figure 10.9 was generated up to the plotting facilities.

Code example 10.6
| genDistr hist fit |

hist := DhbHistogram new.

hist freeExtent: true.

genDistr := DhbFisherTippettDistribution shape: 0 scale: 1.

1000 timesRepeat: [hist accumulate: genDistr random].

fit := DhbMaximumLikekihoodHistogramFit histogram: hist

distributionClass: DhbFisherTippettDistribution.

fit evaluate.

As the reader can see the only difference with code example 10.5 is the name of
the class in the statement where the instance of the fit is created.
The class DhbMaximumLikekihoodHistogramFit is a subclass of the class DhbLeastSquareFit.
It has the following additional instance variables:

count the estimated normalization, that is N̄ ;

countVariance the estimated variance of N̄ .

The variance is kept instead of the error because the most frequent use of this
quantity is in computing the estimated error on the predicted value. In the

274 CHAPTER 10. STATISTICAL ANALYSIS

method valueAndError: this computation requires the combination of the er-
ror of the fit — that is, equation 10.33 — with the error on the normaliza-
tion. An accessor method is provided for the variable count. The method
normalizationError calculates the error on the normalization.

The method accumulate: uses the vector operations to calculate the terms
of the sums in equations 10.58 and 10.59. Because of the lower number of
parameters, the routine computeChanges: places in the vector ∆p an additional
zero element corresponding to the normalization in the case of the least square
fit.

The method finalizeIterations calculates the estimated value of the nor-
malization (equation 10.61) and its variance (square of equation 10.62). After
this, it sets the obtained normalization into the scaled probability distribution.

Listing 10.13 Smalltalk implementation of a maximum likelihood fit

Class DhbMaximumLikekihoodHistogramFit
Subclass of DhbLeastSquareFit

Instance variable names: count countVariance

Instance methods

accumulate: aWeightedPoint

| f g temp inverseProbability|

f := result valueAndGradient: aWeightedPoint xValue.

g := f last copyFrom: 1 to: (f last size - 1).

f := f first.

f = 0 ifTrue: [^nil].

inverseProbability := 1 / f.

temp := aWeightedPoint yValue * inverseProbability.

constants accumulate: g * temp.

temp := temp * inverseProbability.

1 to: g size do:

[:k |

(equations at: k) accumulate: g * ((g at: k) * temp).

].

computeChanges

^super computeChanges copyWith: 0

computeNormalization

| numerator denominator temp |

numerator := 0.

10.10. MAXIMUM LIKELIHOOD FIT OF A PROBABILITY DENSITY FUNCTION275

denominator := 0.

dataHolder pointsAndErrorsDo:

[:each |

temp := result value: each xValue.

temp = 0

ifFalse:

[numerator := numerator + (each yValue squared /

temp).

denominator := denominator + temp]].

count := (numerator / denominator) sqrt.

countVariance := numerator / (4 * count).

finalizeIterations

self computeNormalization.

result setCount: count.

super finalizeIterations

fitType

^’Maximum likelihood fit’

initializeIterations

result setCount: 1.

count := dataHolder totalCount.

super initializeIterations

normalization

^count

normalizationError

^countVariance sqrt

numberOfFreeParameters

^super numberOfParameters

numberOfParameters

^super numberOfParameters - 1

276 CHAPTER 10. STATISTICAL ANALYSIS

valueAndError: aNumber

| valueGradient gradient gVar |

valueGradient := result valueAndGradient: aNumber.

gradient := valueGradient last copyFrom: 1 to: valueGradient last

size - 1.

gVar := gradient * (self errorMatrix * gradient) / count.

^Array with: valueGradient first

with: ((valueGradient first / count) squared * countVariance

+ gVar) sqrt

Chapter 11

Optimization

Cours vite au but, mais gare à la chute.1

Alexandre Soljenitsyne

An optimization problem is a numerical problem where the solution is charac-
terized by the largest or smallest value of a numerical function depending on
several parameters. Such function is often called the goal function. Many kinds
of problems can be expressed into optimization, that is, finding the maximum
or the minimum of a goal function. This technique has been applied to a wide
variety of fields going from operation research to game playing or artificial intel-
ligence. In chapter 10 for example, the solution of maximum likelihood or least
square fits was obtained by finding the maximum, respectively the minimum of
a function.

In fact generations of high energy physicists have used the general purpose
minimization program MINUIT2 written by Fred James3 of CERN to perform
least square fits and maximum likelihood fits. To achieve generality, MINUIT
uses several strategies to reach a minimum. In this chapter we shall discuss a
few techniques and conclude with a program quite similar in spirit to MINUIT.
Our version, however, will not have all the features offered by MINUIT.

If the goal function can be expressed with an analytical form, the problem of
optimization can be reduced into calculating the derivatives of the goal function
respective to all parameters, a tedious but manageable job. In most cases,
however, the goal function cannot always be expressed analytically.

The classes described in this chapter are different in Smalltalk and in Java.
Therefore we present two class diagrams: figure 11.1 shows the Smalltalk class
diagram and figure 11.2 shows the Java class diagram. The main reason for the

1Run fast to the goal, but beware of the fall.
2F.James, M. Roos, MINUIT — a system for function minimization and analysis of the

parameter errors and corrections, Comput. Phys. Commun., 10 (1975) 343-367.
3I take this opportunity to thank Fred for the many useful discussions we have had on the

subject of minimization.

277

278 CHAPTER 11. OPTIMIZATION

FunctionalIterator

(chapter 4)
MinimizingPoint

betterThan:
position
value

position
value

FunctionOptimizer

addPointAt:
computePrecision
finalizeIterations
initialValue:

optimizingPointClass
bestPoints

OptimizingBracketFinder

computeInitialValues
evaluateIteration
finalizeIterations

Vector

(chapter 9)

MaximizingPoint

betterThan: ProjectedOneVariableFunction

argumentWith:
bumpIndex
index
initialize:
setArgument:
setIndex:
value:

index
function
argument

VectorProjectedFunction

argumentWith:
direction
direction:
origin
origin:

AbstractFunction

(chapter 2)

SimplexOptimizer

computeInitialValues
evaluateIteration

worstVector

OneVariableFunctionOptimizer

computeInitialValues
computePrecision
evaluateIteration
reset

functionBlock
(from FunctionalIterator)

HillClimbingOptimizer

computeInitialValues
evaluateIteration
finilaizeIterations

unidimensionalFinder
bestPoints
(from FunctionOptimizer)

GeneticOptimizer

chromosomeManager:
computePrecision
evaluateIteration
initializeIterations

chromosomeManager

ChromosomeManager

clone
crossover:and:
isFullyPopulated
mutate:
population
populationSize:
process:and:
randomnizePopulation
rateOfCrossover:
rateOfMutation:
reset

population
populationSize
rateOfMutation
rateOfCrossover

VectorChromosomeManager

crossover:and:
mutate:
origin:
randomChromosome
range:

origin
range

MultiVariable
GenralOptimizer

computeInitialValues
evaluateIteration
origin
origin:
range
range:

Figure 11.1: Smalltak classes used in optimization

difference is the strong typing imposed in Java preventing the reuse of instance
variables.

11.1 Introduction

Let us state the problem is general term. Let f (x) be a function of a vector x of
dimension n. The n-dimensional space is called the search space of the problem.
Depending on the problem the space can be continuous or not. In this section
we shall assume that the space is continuous.

If the function is derivable, the gradient of the function respective to the
vector x must vanish at the optimum. Finding the optimum of the function can
be replaced by the problem of finding the vector x such that:

df (x)

dx
= 0. (11.1)

Unfortunately, the above equation is not a necessary condition for an optimum.
It can be either a maximum. a minimum or a saddle point, that is a point
where the function has a minimum in one projection and a maximum in another
projection. Furthermore, the function may have several optima. Figure 11.3
shows an example of a function having two minima. Some problems require
to find the absolute optimum of the function. Thus, one must verify that the
solution of 11.1 corresponds indeed to an optimum with the expected properties.

11.1. INTRODUCTION 279

FunctionalIterator

(chapter 4)

MinimizingVector

betterThan:
position
value

position
value

MultiVariableOptimizer

getResult
setInitialValue:
sortPoints:

function
result
pointFactory

OptimizingBracketFinder

computeInitialValues
evaluateIteration
finalizeIterations

Vector

(chapter 9)

MaximizingVector

betterThan:

ProjectedOneVariableFunction

argumentWith:
bumpIndex
index
initialize:
setArgument:
setIndex:
value:

index
function
argument

VectorProjectedFunction

argumentWith:
direction
direction:
origin
origin:

AbstractFunction

(chapter 2)

SimplexOptimizer

evaluateIteration
initializeIterations

simplex

OneVariableFunctionOptimizer

computeInitialValues
computePrecision
evaluateIteration
reset

functionBlock
(from FunctionalIterator)
bestPoints
pointFactory

HillClimbingOptimizer

evaluateIteration
finilaizeIterations

unidimensionalFinder
projections

GeneticOptimizer

collectPoint:
collectPoints
evaluateIterations
individualAt:
initializeIterations
initializeIteraions:
randomIndex:
randomScale

chromosomeManager
fillIndex

ChromosomeManager

addCloneOf:
addCrossoversOf:
addMutationOf:
addRandomChromosome
getCurrentPopulationSize
individualAt:
isFullyPopulated
nextDouble
process:
randomnizePopulation
reset
setPopulationSize:
setRateOfCrossover:
setRateOfMutation:

functionBlock
(from FunctionalIterator)
bestPoints
pointFactory

MinimizingPoint

betterThan:
position
value

position
value

MaximizingPoint

betterThan:

OptizingPointFactory

createPoint(d,f)
createVector(d[],f)
createVector(v,f)

FunctionalIterator

(chapter 4)

VectorGeneticOptimizer

collectPoint:
getResult
individualAt:
initializeIteraions:
randomScale

chromosomeManager
(from GeneticOptimizer)
bestPoints

populationSize
rateOfMutation
rateOfCrossover
generator

VectorChromosomeManager

addCloneOf:
addCrossoversOf:
addMutationOf:
addRandomChromosome
getCurrentPopulationSize
individualAt:
reset
setOrigin:
setRange:

population
fillIndex
origin
range

MultiVariable
GeneralOptimizer

evaluateIteration
initializeIterations
setOrigin:
setRange:

range

ManyVariableFunction

value:

Figure 11.2: Java classes used in optimization

Absolute

minimum

Local

minimum

Figure 11.3: Local and absolute optima

280 CHAPTER 11. OPTIMIZATION

The reader can already see at this point that searching for an optimum in the
general case is a very difficult task.
All optimization algorithms can be classified in two broad categories:

• Greedy algorithms: these algorithms are characterized by a local search
in the most promising direction. They are usually efficient and quite good
at finding local optima. Among greedy algorithms, one must distinguish
those requiring the evaluation of the function’s derivatives.

• Random based algorithms: these algorithms are using a random approach.
They are not efficient; however, they are good at finding absolute optima.
Simulated annealing [Press et al.] and genetic algorithms[Berry & Linoff]
belong to this class.

The table 11.1 lists the properties of the algorithms presented in this chapter.

Table 11.1: Optimizing algorithms presented in this book

Name Category Derivatives
Extended Newton greedy yes
Powell’s hill climbing greedy no
Simplex greedy no
Genetic algorithm random based no

11.2 Extended Newton algorithms

Extended Newton algorithms are using a generalized version of Newton’s zero
finding algorithm. These algorithms assume that the function is continuous and
has only one optimum in the region where the search is initiated.

Let us expand the function f (x) around a point x(0) near the solution. We
have in components:

f (x) = f
[
x(0)

]
+
∑
j

∂f (x)

∂xj

∣∣∣∣
x=x(0)

[
xj − x(0)

j

]
. (11.2)

Using the expansion above into equation 11.1 yields:∑
j

∂2f (x)

∂xi∂xj

∣∣∣∣
x=x(0)

[
xj − x(0)

j

]
+
∂f (x)

∂xi

∣∣∣∣
x=x(0)

= 0. (11.3)

This equation can be written as a system of linear equations of the form

M∆ = c, (11.4)

where ∆j = xj − x(0)
j . The components of the matrix M — called the Hessian

matrix — are given by:

mij =
∂2f (x)

∂xi∂xj

∣∣∣∣
x=x(0)

, (11.5)

11.3. HILL CLIMBING ALGORITHMS 281

and the components of the vector c are given by:

ci = − ∂f (x)

∂xi

∣∣∣∣
x=x(0)

. (11.6)

Like in section 10.9 one can iterate this process by replacing x(0) with x(0) + ∆.
This process is actually equivalent to the Newton zero finding method (c.f.
section 5.3). The final solution is a minimum if the matrix M is positive definite;
else it is a maximum.

This technique is used by MINUIT in the vicinity of the goal function’s op-
timum. It is the region where the algorithm described above works well. Far
from the optimum, the risk of reaching a point where the matrix M cannot be
inverted is quite high in general. In addition, the extended Newton algorithm
requires that the second order derivatives of the function can be computed ana-
lytically; at least the first order derivatives must be provided, otherwise the cost
of computation at each step becomes prohibitive. A concrete implementation
of the technique is not given here. The reader can find in this book all the
necessary tools to make such an implementation. It is left as a exercise for the
reader. In the rest of this chapter, we shall present other methods which work
without an analytical knowledge of the function.

11.3 Hill climbing algorithms

Hill climbing is a generic term covering many algorithms trying to reach an
optimum by determining the optimum along successive directions. The general
algorithm is outlined below.

1. select an initial point x0 and a direction v;

2. find x1, the optimum of the function along the selected direction;

3. if convergence is attained, terminate the algorithm;

4. set x0 = x1, select a different direction and go back to step 2.

The simplest of these algorithms simply follows each axis in turn until a con-
vergence is reached. More elaborate algorithms exist[Press et al.]. One of them
is described in section 11.6.

Hill climbing algorithms can be applied to any continuous function, espe-
cially when the function’s derivatives are not easily calculated. The core of the
hill climbing algorithm is finding the optimum along one direction. Let v be
the direction, then finding the optimum of the vector function f (x) along the
direction v starting from point x0 is equivalent to finding the optimum of the
one-variable function g (λ) = f (x0 + λv).

Therefore, in order to implement a hill climbing algorithm, we first need to
implement an algorithm able to find the optimum of a one-variable function.
This is the topic of the sections 11.4 and 11.5. Before this, we need to discuss the
implementation details providing a common framework to all classes discussed
in the rest of this chapter.

282 CHAPTER 11. OPTIMIZATION

11.3.1 Optimizing — General implementation

At this point the reader may be a little puzzled by the use of optimum instead
of speaking of minimum or maximum. We shall now disclose a general imple-
mentation which works both for finding a minimum or a maximum. This should
not come to a surprise since, in mathematics, a minimum or a maximum are
both very similar — position where the derivative of a function vanishes — and
can be easily turned into each other — e.g. by negating the function.

To implement a general purpose optimizing framework, we introduce two
new classes: MinimizingPoint and MaximizingPoint, a subclass of MinimizingPoint.
These two classes are used as Strategy by the optimizing algorithms. The class
MinimizingPoint has two instance variables

value the value of the goal function, that is g (λ) or f (x);

position the position at which the function has been evaluated, that is λ or x.

The class MinimizingPoint contains most of the methods. The only method
overloaded by the class MaximizingPoint is the method betterThan, which tells
whether an optimizing point is better than another. The method betterThan

can be used in all parts of the optimizing algorithms to find out which point is
the optimum so far. In algorithms working in multiple dimensions, the method
betterThan is also used to sort the points from the best to the worst. In Java,
the architecture is a little more complex because of typing requirements, but
the basic design concept is the same.

A convenience instance creation method allows to create instances for a
given function with a given argument. The instance is then initialized with the
function’s value evaluated at the argument. Thus, all optimizing algorithms
described here do not call the goal function explicitly.

Otherwise the implementation of the one dimensional optimum search uses
the general framework of the iterative process. More specifically it uses the class
FunctionalIterator described in section 4.2.

A final remark concerns the method initializeIteration. The golden
search algorithm assume that the 3 points λ0, λ1 and λ2 have been determined.
What if they have not been? In this case, the method initializeIteration

uses the optimum bracket finder described in section 11.5

11.3.2 Common optimizing classes — Smalltalk implemen-
tation

Figure 11.1 with the boxes
FunctionOptimizer,
MinimizingPoint, Max-
imizingPoint, Projecte-
dOneVariableFunction
and VectorProjected-
Function grayed.

In Smalltalk we have two classes of optimizing points: DhbMinimizingPoint

and its subclass DhbMaximizingPoint. These classes are shown in listing 11.1.
The class DhbFunctionOptimizer is in charge of handling the management of
the optimizing points. This clas is shown in listing 11.2.
The class DhbMinimizingPoint has the following instance variables:

position contains the position at which the function is evaluated; this instance
variable is a number if the function to optimize is a one variable function

11.3. HILL CLIMBING ALGORITHMS 283

and an array or a vector if the function to evaluate is a function of many
variables;

value contains the value of the function evaluated at the point’s position;

Accessor methods corresponding to these variables are supplied. As we noted in
section 11.3.1, the only method redefined by the subclass DhbMaximizingPoint
is the method betterThan: used to decide whether a point is better than
another.

Optimizing points are created with the convenience method vector:function:

which evaluates the function supplied as second argument at the position sup-
plied as the first argument.

Listing 11.1 Smalltalk classes common to all optimizing classes

Class DhbMinimizingPoint
Subclass of Object

Instance variable names: value position

Class methods

new: aVector value: aNumber

^ self new vector: aVector; value: aNumber; yourself

vector: aVector function: aFunction

^ self new: aVector value: (aFunction value: aVector)

Instance methods

betterThan: anOptimizingPoint

^ value < anOptimizingPoint value

position

^ position

printOn: aStream

position printOn: aStream.

aStream

nextPut: $:;

space.

value printOn: aStream

value

^ value

284 CHAPTER 11. OPTIMIZATION

value: aNumber

value := aNumber.

vector: aVector

position := aVector

Class DhbMaximizingPoint
Subclass of DhbMinimizingPoint

Instance methods

betterThan: anOptimizingPoint

^ value > anOptimizingPoint value

The class DhbFunctionOptimizer is in charge of handling the optimizing
points. it has the following instance variables:

optimizingPointClass is the class of the optimizing points used as Strategy
by the optimizer; it is used to create instances of points at a given position
for a given function;

bestPoints contains a sorted collection of optimizing points; the best point is
the first and the worst point is the last; all optimizers rely on the fact that
sorting is done by this sorted collection.

The method addPointAt: creates an optimizing point at the position supplied
as argument and adds this point to the collection of best points. Since that
collection is sorted, one is always certain to find the best result in the first
position. This fact is used by the method finalizeIterations, which retrieves
the result from the collection of best points.

Instances of the function optimizer are created with the two convenience
methods minimizingFuntion: and maximizingFuntion: helping to define the
type of optimum. An additional convenience method, forOptimizer: allows
to create a new optimizer with the same strategy — that is, the same class
of optimizing points — and the same function as the optimizer supplied as
argument. This method is used to create optimizers used in intermediate steps.

Because finding an optimum cannot be determined numerically with high
precision [Press et al.] the class DhbFunctionOptimizer redefines the method
defaultPrecision to be 100 times the default numerical precision.

Listing 11.2 Smalltalk abstract class for all optimizing classes

Class DhbFunctionOptimizer
Subclass of DhbFunctionalIterator

11.3. HILL CLIMBING ALGORITHMS 285

Instance variable names: optimizingPointClass bestPoints

Class methods

defaultPrecision

^ super defaultPrecision * 100

forOptimizer: aFunctionOptimizer

^ self new initializeForOptimizer: aFunctionOptimizer

maximizingFunction: aFunction

^ super new initializeAsMaximizer; setFunction: aFunction

minimizingFunction: aFunction

^ super new initializeAsMinimizer; setFunction: aFunction

Instance methods

addPointAt: aNumber

bestPoints add: (optimizingPointClass vector: aNumber

function: functionBlock)

bestPoints

^ bestPoints

finalizeIterations

result := bestPoints first position.

functionBlock

^ functionBlock

initialize

bestPoints := SortedCollection sortBlock:

[:a :b | a betterThan: b].

^ super initialize

initializeAsMaximizer

optimizingPointClass := DhbMaximizingPoint.

^ self initialize

initializeAsMinimizer

optimizingPointClass := DhbMinimizingPoint.

^ self

286 CHAPTER 11. OPTIMIZATION

initializeForOptimizer: aFunctionOptimizer

optimizingPointClass := aFunctionOptimizer pointClass.

functionBlock := aFunctionOptimizer functionBlock.

^ self initialize

initialValue: aVector

result := aVector copy.

pointClass

^ optimizingPointClass

printOn: aStream

super printOn: aStream.

bestPoints do: [:each | aStream cr. each printOn: aStream].

In order to find an optimum along a given direction, one needs to construct an
object able to transform a vector function into a one variable function. The class
DhbProjectedOneVariableFunction and its subclass DhbVectorProjectedFunction
provide this functionality. They are shown in listing 11.3. The class DhbProjectedOneVariableFunction
has the following instance variables:

function the goal function f (x);

argument the vector argument of the goal function, that is the vector x;

index the index of the axis along which the function is projected.

The instance variables argument and index can be read and modified using
direct accessor methods. The goal function is set only at creation time: the
instance creation method function: take the goal function as argument. A
convenience method bumpIndex allows to alter the index in circular fashion4.

The class DhbVectorProjectedFunction has no additional variables. In-
stead it is reusing the instance variable index as the direction along which the
function is evaluated. For clarity, the accessor methods have been renamed
direction, direction:, origin and origin:.

For both classes, the method argumentAt: returns the argument vector for
the goal function, that is the vector x. The method value: returns the value
of the function g (λ) for the supplied argument λ.

4We do not give the implementation of the simplest of the hill climbing algorithms using
alternatively each axes of the reference system. This implementation, which uses the method
bumpIndex, is left as an exercise for the reader.

11.3. HILL CLIMBING ALGORITHMS 287

Listing 11.3 Smalltalk projected function classes

Class DhbProjectedOneVariableFunction
Subclass of Object

Instance variable names: index function argument

Class methods

function: aVectorFunction

^ super new initialize: aVectorFunction

Instance methods

argumentWith: aNumber

^ argument at: index put: aNumber; yourself

bumpIndex

index isNil

ifTrue: [index := 1]

ifFalse: [index := index + 1.

index > argument size

ifTrue: [index := 1].

].

index

index isNil

ifTrue: [index := 1].

^ index

initialize: aFunction

function := aFunction.

^ self

setArgument: anArrayOrVector

argument := anArrayOrVector copy.

setIndex: anInteger

index := anInteger.

value: aNumber

^ function value: (self argumentWith: aNumber)

288 CHAPTER 11. OPTIMIZATION

Class DhbVectorProjectedFunction
Subclass of DhbProjectedOneVariableFunction

Instance methods

argumentWith: aNumber

^ aNumber * self direction + self origin

direction

^ index

direction: aVector

index := aVector.

origin

^ argument

origin: aVector

argument := aVector.

printOn: aStream

self origin printOn: aStream.

aStream nextPutAll: ’ (’.

self direction printOn: aStream.

aStream nextPut: $).

11.4 Optimizing in one dimension

To find the optimum of a one-variable function, g (λ), whose derivative is un-
known, the most robust algorithm is an algorithm similar to the bisection algo-
rithm described in section 5.2.

Let us assume that we have found three points λ0, λ1 and λ2 such that
λ0 < λ1 < λ2 and such that g (λ1) is better than both g (λ0) and g (λ2). If the
function g is continuous over the interval [λ0, λ2], then we are certain that an
optimum of the function is located in the interval [λ0, λ2]. As for the bisection
algorithm, we shall try to find a new triplet of values with similar properties
while reducing the size of the interval. A point is picked in the largest of the
two intervals [λ0, λ1] or [λ1, λ2] and is used to reduce the initial interval.

If λ1 − λ0 ≤ λ2 − λ1 we compute λ4 = λ1 + ω (λ2 − λ1) where ω is the
golden section5 from Pythagorean lore. Choosing ω instead of 1/2 ensures that

5ω = 3−
√
5

2
≈ 0.38197

11.4. OPTIMIZING IN ONE DIMENSION 289

successive intervals have the same relative scale. A complete derivation of this
argument can be found in [Press et al.]. If λ4 yields a better function value
than λ1, the new triplet of point becomes λ1, λ4 and λ2; otherwise, the triplet
becomes λ0, λ1 and λ4.

If we have λ1 − λ0 > λ2 − λ1 we compute λ4 = λ1 + ω (λ0 − λ1). Then the
new triplets can be either λ0, λ4 and λ1, or λ4, λ1 and λ2.

The reader can verify that the interval decreases steadily although not as
fast as in the case of bisection where the interval is halved at each iteration.
Since the algorithm is using the golden section it is called golden section search.

By construction the golden section search algorithm makes sure that the
optimum is always located between the points λ0 and λ2. Thus, at each itera-
tion, the quantity λ2 − λ0 give an estimate of the error on the position of the
optimum.

11.4.1 Optimizing in one dimension — Smalltalk imple-
mentation

Figure 11.1 with the box
OneVariableFunctionOp-
timizer grayed.

Listing 11.4 shows the class DhbOneVariableFunctionOptimizer implementing
the search for an optimum of a one-variable function using the golden section
search. The following code example shows how to use this class to find the
maximum of the gamma distribution discussed in section ??.

Code example 11.1
| distr finder maximum |

distr := DhbGammaDistribution shape: 2 scale: 5.

finder := DhbOneVariableFunctionOptimizer maximizingFunction: distr.

maximum := finder evaluate.

The first line after the declarations creates a new instance of a gamma distribu-
tion with parameters α = 2 and β = 5. The next line creates an instance of the
optimum finder. The selector used to create the instance selects a search for a
maximum. The last line is the familiar statement to evaluate the iterations —
that is, performing the search for the maximum — and to retrieve the result.
Since no initial value was supplied the search begins at a random location.

The class DhbOneVariableFunctionOptimizer is a subclass of the class
FunctionOptimizer. It does not need any additional instance variables. The
golden section is kept as a class variable and is calculated at the first time it is
needed.

At each iteration the method nextXValue is used to compute the next posi-
tion at which the function is evaluated. This corresponding new optimizing point
is added to the collection of best points. Then, the method indexOfOuterPoint

is used to determine which point must be discarded: it is always the second point
on either side of the best point. The precision of the result is estimated from the
bracketing interval in the method computePrecision, using relative precision
(of course!).

The method addPoint: of the superclass can be used to supply an initial
bracketing interval. The method computeInitialValues first checks whether a

290 CHAPTER 11. OPTIMIZATION

valid bracketing interval has been supplied into the collection of best points. If
this is not the case, a search for a bracketing interval is conducted using the class
DhbOptimizingBracketFinder described in section 11.5.1. The instance of the
bracket finder is created with the method forOptimizer: so that its strategy
and goal function are taken over from the golden section optimum finder.

Listing 11.4 Smalltalk golden section optimum finder

Class DhbOneVariableFunctionOptimizer
Subclass of DhbFunctionOptimizer

Class variable names: GoldenSection

Class methods

defaultPrecision

^ DhbFloatingPointMachine new defaultNumericalPrecision * 10

goldenSection

GoldenSection isNil ifTrue: [GoldenSection := (3 - 5 sqrt) / 2].

^ GoldenSection

Instance methods

computeInitialValues

[bestPoints size > 3] whileTrue: [bestPoints removeLast].

bestPoints size = 3

ifTrue: [self hasBracketingPoints

ifFalse: [bestPoints removeLast].

].

bestPoints size < 3

ifTrue: [(DhbOptimizingBracketFinder forOptimizer: self) evaluate].

computePrecision

^ self precisionOf: ((bestPoints at: 2) position - (bestPoints

at: 3) position) abs

relativeTo: (bestPoints at: 1) position abs

evaluateIteration

self addPointAt: self nextXValue.

bestPoints removeAtIndex: self indexOfOuterPoint.

^ self computePrecision

hasBracketingPoints

11.5. BRACKETING THE OPTIMUM IN ONE DIMENSION 291

| x1 |

x1 := (bestPoints at: 1) position.

^ ((bestPoints at: 2) position - x1) * ((bestPoints at: 3)

position - x1) < 0

indexOfOuterPoint

| inferior superior x |

inferior := false.

superior := false.

x := bestPoints first position.

2 to: 4 do:

[:n |

(bestPoints at: n) position < x

ifTrue: [inferior

ifTrue: [^ n].

inferior := true.

]

ifFalse:[superior

ifTrue: [^ n].

superior := true.

].

].

nextXValue

| d3 d2 x1 |

x1 := (bestPoints at: 1) position.

d2 := (bestPoints at: 2) position - x1.

d3 := (bestPoints at: 3) position - x1.

^ (d3 abs > d2 abs ifTrue: [d3]

ifFalse:[d2]) * self class goldenSection + x1

reset

[bestPoints isEmpty] whileFalse: [bestPoints removeLast].

11.5 Bracketing the optimum in one dimension

As we have seen in section 11.4 the golden section algorithm requires the knowl-
edge of a bracketing interval. This section describes a very simple algorithm
to obtain a bracketing interval with certainty if the function is continuous and
does indeed have an optimum of the sought type.

The algorithm goes as follows. Take two points λ0 and λ1. If they do not
exist, pick up some random values (random generators are described in section
9.4). Let us assume that g (λ1) is better than g (λ0).

292 CHAPTER 11. OPTIMIZATION

1. Let λ2 = 3λ1 − 2λ0, that is, λ2 is twice as far from λ1 than λ0 and is
located on the other side, toward the optimum.

2. If g (λ1) is better than g (λ2) we have a bracketing interval; the algorithm
is stopped.

3. Otherwise, set λ0 = λ1 and λ1 = λ2 and go back to step 1.

The reader can see that the interval [λ0, λ1] is increasing at each step. Thus,
if the function has no optimum of the sought type, the algorithm will cause a
floating overflow exception quite rapidly.
The implementation in each language have too little in common. The common
section is therefore omitted.

11.5.1 Bracketing the optimum — Smalltalk implementa-
tion

Figure 11.1 with the
box OptimizingBrack-
etFinder grayed.

Listing 11.5 shows the Smalltalk code of the class implementing the search
algorithm for an optimizing bracket. The class DhbOptimizingBracketFinder

is a subclass of class DhbOneVariableFunctionOptimizer from section 11.4.
This was a convenient, but not necessary, choice to be able to reuse most of the
management and accessor methods. The methods pertaining to the algorithm
are of course quite different.

Example of use of the optimizing bracket finder can be found in method
computeInitialValues of class DhbOneVariableFunctionOptimizer (c.f. list-
ing 11.4).

The method setInitialPoints: allows to use the collection of best points
of another optimizer inside the class. This breach to the rule of hiding the imple-
mentation can be tolerated here because the class DhbOptimizingBracketFinder
is used exclusively with the class DhbOneVariableFunctionOptimizer. It al-
lows the two class to use the same sorted collection of optimizing points. If no
initial point has been supplied, it is obtained from a random generator.

The precision calculated in the method evaluateIteration is a large num-
ber, which becomes negative as soon as the condition to terminate the algorithm
is met. Having a negative precision causes an iterative process as defined in
chapter 4 to stop.

Listing 11.5 Smalltalk optimum bracket finder

Class DhbOptimizingBracketFinder
Subclass of DhbOneVariableFunctionOptimizer

Class methods

initialPoints: aSortedCollection function: aFunction

^ super new setInitialPoints: aSortedCollection; setFunction: aFunction

11.6. POWELL’S ALGORITHM 293

Instance methods

computeInitialValues

[bestPoints size < 2] whileTrue: [self addPointAt: Number random]

evaluateIteration

| x1 x2 |

x1 := (bestPoints at: 1) position.

x2 := (bestPoints at: 2) position.

self addPointAt: (x1 * 3 - (x2 * 2)).

precision := (x2 - x1) * ((bestPoints at: 3) position - x1).

self hasConverged

ifFalse:[bestPoints removeLast].

^precision

finalizeIterations

result := bestPoints.

initializeForOptimizer: aFunctionOptimizer

super initializeForOptimizer: aFunctionOptimizer.

bestPoints := aFunctionOptimizer bestPoints.

^ self

setInitialPoints: aSortedCollection

bestPoints := aSortedCollection.

11.6 Powell’s algorithm

Powell’s algorithm is one of many hill climbing algorithms [Press et al.]. The
idea underlying Powell’s algorithm is that once an optimum has been found
in one direction, the chance for the biggest improvement lies in the direction
perpendicular to that direction. A mathematical formulation of this sentence
can be found in [Press et al.] and references therein. Powell’s algorithm provides
a way to keep track of the next best direction at each iteration step.
The original steps of Powell’s algorithm are as follow:

1. Let x0 the best point so far and initialize a series of vectors v1, . . . ,vn
forming the system of reference (n is the dimension of the vector x0); in
other words the components of the vector vk are all zero except for the
kth components, which is one.

2. Set k = 1.

3. Find the optimum of the goal function along the direction vk starting from
point xk−1. Let xk be the position of that optimum.

294 CHAPTER 11. OPTIMIZATION

4. Set k = k + 1. If k ≤ n, go back to step 3.

5. For k = 1, . . . , n− 1, set vk = vk−1.

6. Set vn = xn−x0

|xn−x0| .

7. Find the optimum of the goal function along the direction vn. Let xn+1

be the position of that optimum.

8. If |xn − x0| is less than the desired precision, terminate.

9. Otherwise, set x0 = xn+1 and go back to step 1.

There is actually two hill climbing algorithms within each other. The progression
obtained by the inner loop is taken as the direction in which to continue the
search.

Powell recommends to use this algorithm on goal functions having a quadratic
behaviour near the optimum. It is clear that this algorithm cannot be used safely
on any function. If the goal function has narrow valleys, all directions v1, . . . ,vn
will become colinear when the algorithm ends up in such a valley. Thus, the
search is likely to end up in a position where no optimum is located. Press et
al. [Press et al.] mention two methods avoiding such problems: one method is
quite complex and the other slows down the convergence of the algorithm.

In spite of this caveat, we implement Powell’s algorithm in its original form.
However, we recommend its use only in the vicinity of the minimum. In sec-
tion 11.9 we show how other techniques can be utilized to read the vicinity of
the optimum, where Powell’s algorithm can safely be used to make the final
determination of the optimum’s position.

11.6.1 Powell’s algorithm — General implementation

Since the class implementing the vector projected function g (λ) described in
sections 11.3.2 and ?? keep the vector x0 and v in instance variables, there is
no need to allocate explicit storage for the vectors x1, . . . ,xn and v1, . . . ,vn.
Instead, the class implementing Powell’s algorithm keep an array of vector pro-
jected functions with the corresponding parameters. Then, the manipulation of
the vector x1, . . . ,xn and v1, . . . ,vn is made directly on the projected function.

Since the origin of the projected function is always the starting value, xk,
the initial value for the search of the optimum of the function g (λ) is always 0.

The method initializeIterations allocated a series of vector projected
functions starting with the axes of the reference system. This method also
creates an instance of a one dimensional optimum finder kept in the instance
variable, unidimensionalFinder. The goal function of the finder is alterna-
tively assigned to each of the projected functions.

We made a slight modification to Powell’s algorithm. If the norm of the
vector xn−x0 at step 6 is smaller than the desired precision, the directions are
only rotated, the assignment of step 6 is not done and the search of step 7 is
omitted.

11.6. POWELL’S ALGORITHM 295

The precision computed at the end of each iterations is the maximum of the
relative change on all components between the vectors xn and x0.

11.6.2 Powell’s algorithm — Smalltalk implementation
Figure 11.1 with the box
HillClimbingOptimizer
grayed.

Listing 11.6 shows the implementation of Powell’s algorithm in Smalltalk. The
following code example shows how to find the maximum of a vector function

Code example 11.2
| fBlock educatedGuess hillClimber result |

fBlock :=<the goal function>
educatedGuess :=<a vector not too far from the optimum>

hillClimber := DhbHillClimbingOptimizer maximizingFunction: fBlock.

hillClimber initialValue: educatedGuess.

result := hillClimber evaluate.

The class DhbHillClimbingOptimizer is a subclass of class DhbFunctionOptimizer.
It has only one additional instance variable, unidimensionalFinder, to hold
the one-dimensional optimizer used to find an optimum of the goal function
along a given direction.

The method evaluateIteration uses the method inject:into: to per-
form steps 2-4 of the algorithm. Similarly step 5 of the algorithm is performed
with a method inject:into: within the method shiftDirection. This mode
of using the iterator method inject:into: — performing an action involving
two consecutive elements of an indexed collection — is somewhat unusual, but
highly convenient[Beck]. The method minimizeDirection: implements step 3
of the algorithm.

Listing 11.6 Smalltalk implementation of Powell’s algorithm

Class DhbHillClimbingOptimizer
Subclass of DhbFunctionOptimizer

Instance variable names: unidimensionalFinder

Instance methods

computeInitialValues

unidimensionalFinder := DhbOneVariableFunctionOptimizer

forOptimizer: self.

unidimensionalFinder desiredPrecision: desiredPrecision.

bestPoints := (1 to: result size)

collect: [:n | (DhbVectorProjectedFunction

function: functionBlock)

direction: ((DhbVector

296 CHAPTER 11. OPTIMIZATION

new: result size)

atAllPut: 0;

at: n put: 1;

yourself);

yourself

].

evaluateIteration

| oldResult |

precision := 1.

bestPoints inject: result

into: [:prev :each | (self minimizeDirection: each

from: prev)].

self shiftDirections.

self minimizeDirection: bestPoints last.

oldResult := result.

result := bestPoints last origin.

precision := 0.

result with: oldResult do:

[:x0 :x1 |

precision := (self precisionOf: (x0 - x1) abs relativeTo:

x0 abs) max: precision.

].

^ precision

minimizeDirection: aVectorFunction

^ unidimensionalFinder

reset;

setFunction: aVectorFunction;

addPointAt: 0;

addPointAt: precision;

addPointAt: precision negated;

evaluate

minimizeDirection: aVectorFunction from: aVector

Function from: aVector

^aVectorFunction

origin: aVector;

argumentWith: (self minimizeDirection: aVectorFunction)

shiftDirections

| position delta firstDirection |

firstDirection := bestPoints first direction.

bestPoints inject: nil

11.7. SIMPLEX ALGORITHM 297

into: [:prev :each |

position isNil

ifTrue: [position := each origin]

ifFalse:[prev direction: each

direction].

each

].

position := bestPoints last origin - position.

delta := position norm.

delta > desiredPrecision

ifTrue: [bestPoints last direction: (position scaleBy: (1 /

delta))]

ifFalse:[bestPoints last direction: firstDirection].

11.7 Simplex algorithm

The simplex algorithm, invented by Nelder and Mead, provides an efficient way
to find a good approximation of the optimum of a function starting from any
place [Press et al.]. The only trap into which the simplex algorithm can run into
is a local optimum. On the other hand, this algorithm does not converge very
well in the vicinity of the optimum. Thus, it must not be used with the desired
precision set to a very low value. Once the optimum has been found with the
simplex algorithm, other more precise algorithms can then be used, such as the
ones describes in section 11.1 or 11.6. MINUIT uses a combination of simplex
and Newton algorithms. Our implementation of general purpose optimizer uses
a combination of simplex and Powell algorithms.

A simplex in a n-dimensional space is a figure formed with n + 1 summits.
For example, a simplex in a 2-dimensional space is a triangle; a simplex in a 3-
dimensional space is a tetrahedron. Let us now discuss the algorithm for finding
the optimum of a function with a simplex.

1. Pick up n+ 1 points in the search space and evaluate the goal function at
each of them. Let A be the summit yielding the worst function’s value.

2. if the size of the simplex is smaller than the desired precision, terminate
the algorithm.

3. Calculate G, the center of gravity of the n best points, that is all points
except A.

4. Calculate the location of the symmetric point of A relative to G: A′ =
2G−A.

5. If f (A′) is not the best value found so far go to step 9.

6. Calculate the point A′′ = 2A′−G, that is a point twice as far from G as
A′.

298 CHAPTER 11. OPTIMIZATION

A

G

A"

A'

G

B

A

Reflection

Reflection and expansion

Contraction

Central contraction

Figure 11.4: Operations of the simplex algorithm

7. If f (A′′) is a better value than f (A′) build a new simplex with the point
A replaced by the point A′′ and go to step 2.

8. Otherwise, build a new simplex with the point A replaced by the point
A′ and go to step 2.

9. Calculate the point B =
(G + A)

2 .

10. If f (B) yields the best value found so far build a new simplex with the
point A replaced by the point A′′ and go to step 2.

11. Otherwise build a new simplex obtained by dividing all edges leading to
the point yielding the best value by 2 and go back to step 2.

Figure 11.4 shows the meaning of the operations involved in the algorithm in
the 3 dimensional case. Step 6 makes the simplex grow into the direction where
the function is the best so far. Thus, the simplex becomes elongated in the
expected direction of the optimum. Because of its geometrical shape, the next
step is necessarily taken along another direction, causing an exploration of the
regions surrounding the growth obtained at the preceding step. Over the iter-
ations, the shape of the simplex adapts itself to narrow valleys where the hill
climbing algorithms notoriously get into trouble. Steps 9 and 11 ensures the
convergence of the algorithm when the optimum lies inside the simplex. In this

11.7. SIMPLEX ALGORITHM 299

mode the simplex works very much like the golden section search or the bisection
algorithms.

Finding the initial points can be done in several ways. If a good approxima-
tion of the region where the maximum might be located can be obtained one
uses that approximation as a start and generate n other points by finding the
optimum of the function along each axis. Otherwise, one can generate random
points and select n+1 points yielding the best values to build the initial simplex.
In all cases, one must make sure that the initial simplex has a non-vanishing
size in all dimensions of the space. Otherwise the algorithm will not reach the
optimum.

11.7.1 Simplex algorithm — General implementation

The class implementing the simplex algorithm belong to the hierarchy of the
iterative processes discussed in chapter 4. The method evaluateIteration

directly implements the steps of the algorithm as described above. The points
G, A′, A′′ and B are calculated using the vector operations described in section
8.1.

The routine initializeIterations assumes that an initial value has been
provided. It then finds the location of an optimum of the goal function along
each axis of the reference system starting each time from the supplied initial
value, unlike hill climbing algorithms. Restarting from the initial value is nec-
essary to avoid creating a simplex with a zero volume. Such mishaps can arise
when the initial value is located on an axis of symmetry of the goal function.
This can happen quite frequently with educated guesses.

11.7.2 Simplex algorithm — Smalltalk implementation
Figure 11.1 with the box
SimplexOptimizer grayed.Listing 11.7 shows the Smalltalk implementation of the simplex algorithm. The

following code example shows how to invoke the class to find the minimum of a
vector function.

Code example 11.3
| fBlock educatedGuess simplex result |

fBlock :=<the goal function>
educatedGuess :=<a vector in the search space>

simplex := DhbSimplexOptimizer minimizingFunction: fBlock.

simplex initialValue: educatedGuess.

result := simplex evaluate.

Except for the line creating the instance of the simplex optimizer, this code
example is identical to the example of Powell’s hill climbing algorithm (code
example 11.2).

The class DhbSimplexOptimizer is a subclass of class DhbFunctionOptimizer.
In order to be able to use the iterator methods efficiently, the worst point of the

300 CHAPTER 11. OPTIMIZATION

simplex, A, is held in a separate instance variable worstPoint. As we do not
need to know the function’s value f (A), it is kept as a vector. The remaining
points of the simplex are kept in the instance variable bestPoints of the su-
perclass. Since this collection is sorted automatically when points are inserted
to it, there is no explicit sorting step.

Listing 11.7 Smalltalk implementation of simplex algorithm

Class DhbSimplexOptimizer
Subclass of DhbFunctionOptimizer

Instance variable names: worstVector

Class methods

defaultPrecision

^DhbFloatingPointMachine new defaultNumericalPrecision * 1000

Instance methods

buildInitialSimplex

| projectedFunction finder partialResult |

projectedFunction := DhbProjectedOneVariableFunction

function: functionBlock.

finder := DhbOneVariableFunctionOptimizer forOptimizer: self.

finder setFunction: projectedFunction.

[bestPoints size < (result size + 1)] whileTrue:

[projectedFunction

setArgument: result;

bumpIndex.

partialResult := finder

reset;

evaluate.

bestPoints add: (optimizingPointClass

vector: (projectedFunction argumentWith:

partialResult)

function: functionBlock)]

computeInitialValues

bestPoints

add: (optimizingPointClass vector: result function:

functionBlock).

self buildInitialSimplex.

worstVector := bestPoints removeLast position

11.7. SIMPLEX ALGORITHM 301

computePrecision

| functionValues bestFunctionValue |

functionValues := bestPoints collect: [:each | each value].

bestFunctionValue := functionValues removeFirst.

^functionValues inject: 0

into: [:max :each | (self precisionOf: (each -

bestFunctionValue) abs relativeTo: bestFunctionValue abs) max: max]

contract

| bestVector oldVectors |

bestVector := bestPoints first position.

oldVectors := OrderedCollection with: worstVector.

[bestPoints size > 1] whileTrue: [oldVectors add: bestPoints

removeLast position].

oldVectors do: [:each | self contract: each around: bestVector].

worstVector := bestPoints removeLast position.

^self computePrecision

contract: aVector around: bestVector

bestPoints

add: (optimizingPointClass vector: bestVector * 0.5 +

(aVector * 0.5)

function: functionBlock)

evaluateIteration

| centerOfGravity newPoint nextPoint |

centerOfGravity := (bestPoints inject: ((worstVector copy)

atAllPut: 0;

yourself)

into: [:sum :each | each position + sum]) * (1 /

bestPoints size).

newPoint := optimizingPointClass vector: 2 * centerOfGravity -

worstVector

function: functionBlock.

(newPoint betterThan: bestPoints first)

ifTrue:

[nextPoint := optimizingPointClass

vector: newPoint position * 2 -

centerOfGravity

function: functionBlock.

(nextPoint betterThan: newPoint) ifTrue: [newPoint :=

302 CHAPTER 11. OPTIMIZATION

nextPoint]]

ifFalse:

[newPoint := optimizingPointClass

vector: centerOfGravity * 0.666667 +

(worstVector * 0.333333)

function: functionBlock.

(newPoint betterThan: bestPoints first) ifFalse: [^self

contract]].

worstVector := bestPoints removeLast position.

bestPoints add: newPoint.

result := bestPoints first position.

^self computePrecision

printOn: aStream

super printOn: aStream.

aStream cr.

worstVector printOn: aStream.

11.8 Genetic algorithm

All optimizing algorithm discussed so far have one common flaw: they all ter-
minate when a local optimum is encountered. In most problems, however, one
wants to find the absolute optimum of the function. This is especially true if
the goal function represents some economical merit.
One academic example is the maximization of the function

f (x) =
sin2 |x|
|x|2

. (11.7)

This function has an absolute maximum at x = 0, but all algorithms discussed
so far will end up inside a ring corresponding to |x| = nπ/2 where n is any
positive odd integer.

In 1975 John Holland introduced a new type of algorithm — dubbed genetic
algorithm — because it tries to mimic the evolutionary process identified as
the cause for the diversity of living species by Charles Darwin. In a genetic
algorithm the elements of the search space are considered as the chromosomes
of individuals; the goal function is considered as the measure of the fitness
of the individual to adapt itself to its environment[Berry & Linoff][Koza et al.].
The iterations are aping (pun intended) the Darwinian principle of survival and
reproduction. At each iteration, the fittest individuals survive and reproduce
themselves. To bring some variability to the algorithm mutation and crossover
of chromosomes are taken into account.

Mutation occurs when one gene of a chromosome is altered at reproduction
time. Crossover occurs when two chromosomes break themselves and recombine

11.8. GENETIC ALGORITHM 303

Mutation Crossover

+

Figure 11.5: Mutation and crossover reproduction of chromosomes

with the piece coming from the other chromosome. These processes are illus-
trated on figure 11.5. The point where the chromosomes are breaking is called
the crossover point. Which individual survives and reproduces itself, when and
where mutation occurs and when and where a crossover happens is determined
randomly. This is precisely the random nature of the algorithm which gives
it the ability to jump out of a local optimum to look further for the absolute
optimum.

Mapping the search space on chromosomes

To be able to implement a genetic algorithm one must establish how to represent
the genes of a chromosome. At the smallest level the genes could be the bits
of the structure representing the chromosome. If the search space of the goal
function do cover the domain generated by all possible permutations of the bits,
this is a good approach. However, this is not always a practical solution since
some bit combinations may be forbidden by the structure. For example, some
of the combinations of a 64 bit word do not correspond to a valid floating point
number.

In the case of the optimization of a vector function, the simplest choice is
to take the components of the vector as the genes. Genetic algorithms are used
quite often to adjust the parameters of a neural network [Berry & Linoff]. In this
case, the chromosomes are the coefficients of each neuron. Chromosomes can
even be computer subprograms in the case of genetic programming [Koza et al.].
In this latter case, each individual is a computer program trying to solve a given
problem.

Figure 11.6 shows a flow diagram of a general genetic algorithm. The repro-
duction of the individual is taken literally: a copy of the reproducing individual
is copied into the next generation. The important feature of a generic algorithm
is that the building of the next generation is a random process. To ensure the
survival of the fittest, the selection of the parents of the individuals of the next

304 CHAPTER 11. OPTIMIZATION

Create initial random
population

Evaluate fitness
measure for each

population member

Goal reached?
Select two population

members

Select genetic
operation

Next generation
complete?

Initialize next
generation population

Replace population
with next generation

No

Reproduce selected
members

Insert new individuals
into next generation

Perform crossover
between selected

members

Mutate selected
members

Get best
population member

End

Yes

No

Yes

Begin

Figure 11.6: General purpose genetic algorithm

generation is performed at random with uneven probability: the fittest indi-
viduals have a larger probability of being selected than the others. Mutation
enables the algorithm to create individuals having genes corresponding to un-
explored regions of the search space. Most of the times such mutants will be
discarded at the next iteration; but, in some cases, a mutation may uncover
a better candidate. In the case of the function of equation 11.7, this would
correspond to jumping from one ring to another ring closer to the function’s
maximum. Finally the crossover operation mixes good genes in the hope of
building a better individual out of the properties of good inidividuals. Like
mutation the crossover operation gives a stochastic behavior to the algorithm
enabling it to explore uncharted regions of the search space.

Note: Because of its stochastic nature a genetic algorithm is the
algorithm of choice when the goal function is expressed on integers.

11.8.1 Genetic algorithm — General implementation

The left hand side of the diagram of figure 11.6 is quite similar to the flow
diagram of an iterative process (c.f. figure 4.2 in chapter 4). Thus, the class
implementing the genetic algorithm is a subclass of the iterative process class
discussed in chapter 4.

The genetic nature of the algorithm is located in the right hand side of the
diagram of figure 11.6. As we have mentioned before the implementation of the

11.8. GENETIC ALGORITHM 305

chromosomes is highly problem dependent. All operations located in the top
portion of the mentioned area can be expressed in generic terms without any
knowledge of the chromosomic implementation. to handle the lower part of the
right hand side of the diagram of figure 11.6, we shall implement a new object,
the chromosome manager.

One should also notice that the value of the function is not needed when
the next generation is build. Thus, the chromosome manager does not need
to have any knowledge of the goal function. The goal function comes into
play when transfering the next generation to the mature population, that is,
the population used for reproduction at the next iteration . At the maturity
stage, the value of the goal function is needed to identify the fittest individuals.
In our implementation, the next generation is maintained by the chromosome
manager whereas the population of mature individuals is maintained by the
object in charge of the genetic algorithm which has the knowledge of the goal
function.
The chromosome manager has the following instance variables:

populationSize contains the size of the population; one should pick up a large
enough number to be able to cover the search space efficiently: the larger
the dimension of the space search space, the larger must be the population
size;

rateOfMutation contains the probability of having a mutation while reproduc-
ing;

rateOfCrossover contains the probability of having a crossover while repro-
ducing.

All of these variables have getter and setter accessor methods. In addition
a convenience instance creation method is supplied to create a chromosome
manager with given values for all three instance variables. The chromosome
manager implements the following methods:

isFullyPopulated to signal that a sufficient number of individuals has been
generated into the population;

process to process a pair of individuals; this method does the selection of
the genetic operation and applies it; individuals are processed by pair to
always have a possibility of crossover;

randomnizePopulation to generate a random population;

reset to create an empty population for the next generation.

Finally the chromosome manager must also implement methods performing each
of the genetic operations: reproduction, mutation and crossover. The Smalltalk
implementation supplies methods that returns a new individual; the Java imple-
mentation supplies methods that add a new individual to the population. The
reason for this difference come from the static typing requirements of Java.

306 CHAPTER 11. OPTIMIZATION

The genetic optimizer is the object implementing the genetic algorithm
proper. It is a subclass of the iterative process class described in chapter 4.2.
In addition to the handling of the iterations the genetic optimizer implements
the steps of the algorithm drawn on the top part of the right hand side of the
diagram of figure 11.6. It has one instance variable containing the chromosome
manager with which it will interact. The instance creation method take three
arguments: the function to optimize, the optimizing strategy and the chromo-
some manager.

The method initializeIteration asks the chromosome manager to supply
a random population. The method evaluateIteration performs the loop of
the right hand side of the diagram of figure 11.6. It selects a pair of parents on
which the chromosome manager performs the genetic operation.

Selecting the genetic operation is performed with a random generator. The
values of the goal function are used as weights. Let f (pi) be the value of the
goal function for individual pi and let pb and pw be respectively the fittest and
the lest fit individual found so far (b stands for best and w stands for worst).
One first computes the unnormalized probability:

P̃i =
f (pi)− f (pw)

f (pb)− f (pw)
. (11.8)

This definition ensures that P̃i is always comprised between 0 and 1 for any goal
function. Then we can use the discrete probability

Pi =
1∑
P̃i
P̃i. (11.9)

The sum in equation 11.9 is taken over the entire population. An attentive
reader will notice than this definition assigns a zero probability of selecting the
worst individuals. This gives a slight bias to our implementation compared to
the original algorithm. This is can be easily compensated by taking a sufficiently
large population. The method randomScale calculates the Pi of equation 11.9
and returns an array containing the integrated sums:

Ri =

i∑
k=0

Pi. (11.10)

The array Ri is used to generate a random index to select individuals for repro-
duction.
The transfer between the next generation and the mature population is per-
formed by the method collectPoints.

In the general case, there is no possibility to decide when the terminate the
algorithm. In practice, it is possible that the population stays stable for quite
a while until suddenly a new individual is found to be better than the rest.
Therefore a criteria based on the stability of the first best points is likely to
be beat the purpose of the algorithm, namely to jump out of a local optimum.

11.8. GENETIC ALGORITHM 307

Some problems can define a threshold at which the goal function is considered
sufficiently good. In this case, the algorithm can be stopped as soon as the value
of the goal function for the fittest individual becomes better than that threshold.
In the general case, however, the implementation of the genetic algorithm simply
returns a constant pseudo precision — set to one — and runs until the maximum
number of iterations becomes exhausted.

11.8.2 Genetic algorithm — Smalltalk implementation
Figure 11.1 with the boxes
GeneticOptimizer, Chro-
mosomeManager and
VectorChromosomeM-
anager grayed.

Listing 11.8 shows the code of an abstract chromosome manager in Smalltalk and
of a concrete implementation for vector chromosomes. The class DhbChromosomeManager
has one instance variable in addition to the variables listed in section 11.8.1:
population. This variable is an instance of an OrderedCollection containing
the individuals of the next generation being prepared.

The class DhbVectorChromosomeManager is a sublcass of class DhbChromosomeManager
implementing vector chromosomes. It has two instance variables

origin a vector containing the minimum possible values of the generated vec-
tors;

range a vector containing the range of the generated vectors.

In other words origin and range are delimiting an hypercube defining the
search space.

Listing 11.8 Smalltalk chromosome: abstract and concrete

Class DhbChromosomeManager
Subclass of Object

Instance variable names: population populationSize rateOfMutation

rateOfCrossover

Class methods

new: anInteger mutation: aNumber1 crossover: aNumber2

^ self new populationSize: anInteger; rateOfMutation: aNumber1;

rateOfCrossover: aNumber2; yourself

Instance methods

clone: aChromosome

^ aChromosome copy

crossover: aChromosome1 and: aChromosome2

^ self subclassResponsibility

isFullyPopulated

308 CHAPTER 11. OPTIMIZATION

^ population size >= populationSize

mutate: aChromosome

^ self subclassResponsibility

population

^ population

populationSize: anInteger

populationSize := anInteger.

process: aChromosome1 and: aChromosome2

| roll |

roll := Number random.

roll < rateOfCrossover

ifTrue: [population addAll: (self crossover: aChromosome1

and: aChromosome2)]

ifFalse:

[roll < (rateOfCrossover + rateOfMutation)

ifTrue:

[population

add: (self mutate: aChromosome1);

add: (self mutate: aChromosome2)]

ifFalse:

[population

add: (self clone: aChromosome1);

add: (self clone: aChromosome2)]]

randomnizePopulation

self reset.

[self isFullyPopulated] whileFalse: [population add: self

randomChromosome].

rateOfCrossover: aNumber

(aNumber between: 0 and: 1)

ifFalse: [self error: ’Illegal rate of cross-over’].

rateOfCrossover := aNumber

rateOfMutation: aNumber

(aNumber between: 0 and: 1)

ifFalse: [self error: ’Illegal rate of mutation’].

rateOfMutation := aNumber

reset

11.8. GENETIC ALGORITHM 309

population := OrderedCollection new: populationSize.

Class DhbVectorChromosomeManager
Subclass of DhbChromosomeManager

Instance variable names: origin range

Instance methods

crossover: aChromosome1 and: aChromosome2

| index new1 new2|

index := (aChromosome1 size - 1) random + 2.

new1 := self clone: aChromosome1.

new1 replaceFrom: index to: new1 size with: aChromosome2

startingAt: index.

new2 := self clone: aChromosome2.

new2 replaceFrom: index to: new2 size with: aChromosome1

startingAt: index.

^ Array with: new1 with: new2

mutate: aVector

| index |

index := aVector size random + 1.

^ aVector copy

at: index put: (self randomComponent: index);

yourself

origin: aVector

origin := aVector.

randomChromosome

^ ((1 to: origin size) collect: [:n | self randomComponent: n])

asVector

randomComponent: anInteger

^ (range at: anInteger) random + (origin at: anInteger)

range: aVector

range := aVector.

Listing 11.9 shows how the genetic optimizer is implemented in Smalltalk. The
following code example shows how to use a genetic optimizer to find the maxi-
mum of a vector function.

310 CHAPTER 11. OPTIMIZATION

Code example 11.4
| fBlock optimizer manager origin range result |

fBlock :=<the goal function>
origin :=<a vector containing the minimum expected value of the
component>
range :=<a vector containing the expected range of the component>

optimizer := DhbGeneticOptimizer maximizingFunction: fBlock.

manager := DhbVectorChromosomeManager new: 100 mutation: 0.1 crossover: 0.1.

manager origin: origin; range: range.

optimizer chromosomeManager: manager.

result := optimizer evaluate.

After establishing the goal function and the search space, an instance of the
genetic optimizer is created. The next line creates an instance of a vector
chromosome manager for a population of 100 individuals (sufficient for a 2-3
dimensional space) and rates of mutation and crossover equal to 10%. The
next line defines the search space into the chromosome manager. The final line
performs the genetic search and returns the result.

In Smalltalk the population of the next generation is maintained in the in-
stance variable population. Each time a next generation has been established,
it is transferred into a collection of best points by the method collectPoints.
Each element of the collection bestPoints is an instance of an subclass of
OptimizingPoint. The exact type of the class is determined by the search
strategy. Since best points are sorted automatically, the result is always the
position of the first element of bestPoints.

Listing 11.9 Smalltalk implementation of genetic algorithm

Class DhbGeneticOptimizer
Subclass of DhbFunctionOptimizer

Instance variable names: chromosomeManager

Class methods

defaultMaximumIterations

^ 500

defaultPrecision

^ 0

Instance methods

chromosomeManager: aChromosomeManager

11.8. GENETIC ALGORITHM 311

chromosomeManager := aChromosomeManager.

^ self

collectPoints

| bestPoint |

bestPoints notEmpty

ifTrue: [bestPoint := bestPoints removeFirst].

bestPoints removeAll: bestPoints asArray.

chromosomeManager population do: [:each | self addPointAt: each].

bestPoint notNil

ifTrue: [bestPoints add: bestPoint].

result := bestPoints first position.

computePrecision

^ 1

evaluateIteration

| randomScale |

randomScale := self randomScale.

chromosomeManager reset.

[chromosomeManager isFullyPopulated]

whileFalse: [self processRandomParents: randomScale].

self collectPoints.

^ self computePrecision

initializeIterations

chromosomeManager randomnizePopulation.

self collectPoints

processRandomParents: aNumberArray

chromosomeManager process: (bestPoints at: (self randomIndex:

aNumberArray)) position

and: (bestPoints at: (self randomIndex:

aNumberArray)) position.

randomIndex: aNumberArray

| x n |

x := Number random.

n := 1.

aNumberArray do:

[:each |

x < each

ifTrue: [^n].

n := n + 1.

].

^ aNumberArray size

312 CHAPTER 11. OPTIMIZATION

randomScale

| norm fBest fWorst answer|

fBest := bestPoints first value.

fWorst := bestPoints last value.

norm := 1 / (fBest - fWorst).

answer := bestPoints collect: [:each | (each value - fWorst) *

norm].

norm := 1 / (answer inject: 0 into: [:sum :each | each + sum]).

fBest := 0.

^ answer collect: [:each | fBest := each * norm + fBest. fBest]

11.9 Multiple strategy approach

As we have seen most of the optimizing algorithms described so far have some
limitation:

• Hill climbing algorithms may get into trouble far from the optimum and
may get caught into a local optimum. This is exemplified in figure 11.7.

• The simplex algorithm may get caught into a local optimum and does not
converge well near the optimum.

• Genetic algorithms do not have a clear convergence criteria.

After reading the above summary of the pro and cons of each algorithm, the
reader may have already come to the conclusion that mixing the three algorithms
together can make a very efficient strategy to find the optimum of a wide variety
of functions.

One can start with a genetic optimizer for a sufficient number of iterations.
This should ensure that the best points found at the end of the search does not
lie too far from the absolute optimum. Then, one can use the simplex algorithm
to get rapidly near the optimum. The final location of the optimum is obtained
using a hill climbing optimizer.

11.9.1 Multiple strategy approach — General implemen-
tation

This multiple strategy approach, inspired from the program MINUIT, has been
adapted to the use of the algorithms discussed here. The class MultiVariableGeneralOptimizer
combines the three algorithms: genetic, simplex and hill climbing, in this or-
der. We could have make it a subclass of Object, but we decided to reuse all
the management provided by the abstract optimizer class discussed in section
11.3.1. Therefore, our general purpose optimizer is a subclass of the abstract
optimizer class although it does not really uses the framework of an iterative

11.9. MULTIPLE STRATEGY APPROACH 313

Hill climbing algorithm

Random based algorithm

Figure 11.7: Compared behavior of hill climbing and random based algorithms.

process. We only need one additional instance variable: the range used to con-
struct the hypercube search space for the vector genetic chromosome manager.
A corresponding setting method is provided: setRange.

The method initializeIterations performs search using the genetic algo-
rithm as an option and, then, the simplex algorithm. Since the genetic algorithm
require a great deal of function evaluate — due to its stochastic nature — it
is a good idea to give the user the choice of by-passing the use of the genetic
algorithm. If no range has been defined, only the simplex algorithm is used
from the supplied initial value. Otherwise a search is made with the genetic
algorithm using the initial value and the range to define the search space. Then
the simplex algorithm is started from the best point found by the genetic al-
gorithm. The precision for the simplex search is set to the square root of the
precision for the final search. Less precision is required for this step because the
final search will give a better precision.

The method evaluateIteration performs the hill climbing algorithm and
returns it precision. As the desired precision of the hill climbing algorithm is
set to that of the general purpose optimizer. As a consequence, there will only
be a single iteration.

Listing 11.10 shows the implementation in Smalltalk. Listing ?? gives the
code for the Java implementation. At this point we shall abstain from com-
menting the code as the reader should have no more need for such thing. . .
Hopefully! Figure 11.1 with the box

MultiVariableGener-
alOptimizer grayed.

314 CHAPTER 11. OPTIMIZATION

Listing 11.10 Smalltalk implementation of a general optimizer

Class DhbMultiVariableGeneralOptimizer
Subclass of DhbFunctionOptimizer

Instance methods

computeInitialValues

self range notNil

ifTrue: [self performGeneticOptimization].

self performSimplexOptimization.

evaluateIteration

| optimizer |

optimizer := DhbHillClimbingOptimizer forOptimizer: self.

optimizer desiredPrecision: desiredPrecision;

maximumIterations: maximumIterations.

result := optimizer evaluate.

^ optimizer precision

origin

^ result

origin: anArrayOrVector

result := anArrayOrVector.

performGeneticOptimization

| optimizer manager |

optimizer := DhbGeneticOptimizer forOptimizer: functionBlock.

manager := DhbVectorChromosomeManager new: 100 mutation: 0.1

crossover: 0.1.

manager origin: self origin asVector; range: self range asVector.

optimizer chromosomeManager: manager.

result := optimizer evaluate.

performSimplexOptimization

| optimizer manager |

optimizer := DhbSimplexOptimizer forOptimizer: self.

optimizer desiredPrecision: desiredPrecision sqrt;

maximumIterations: maximumIterations;

initialValue: result asVector.

result := optimizer evaluate.

range

11.9. MULTIPLE STRATEGY APPROACH 315

^ self bestPoints

range: anArrayOrVector

bestPoints := anArrayOrVector.

316 CHAPTER 11. OPTIMIZATION

Chapter 12

Data mining

Creusez, fouillez, bêchez, ne laissez nulle place
Où la main ne passe et repasse,1

Jean de La Fontaine

Data mining is a catchy buzz-word of recent introduction covering activities
formerly known as data analysis. The problem is akin to what we already have
seen in chapter 10. In the case of data mining, however, the emphasis is put
on large data sets. Large must be understood in to ways: first, each data point
is actually made of a large number of measurements; second, the number of
data points is large, even huge. The expression data mining was coined when
large corporate databases become common place. The original reason for the
presence of these databases was the day to day dealing with the business events.
A few people started realizing that these databases are containing huge amount
of information, mostly of statistical nature, about the type of business. That
information was just waiting to be mined just like the Mother Lode waited for
the coming of the 49ers. Hence the term data mining.

Figure 12.1 shows the classes described in this chapter. There are two aspects
to the data mining activity: one is preparing the data in order to render them
suitable for the processing; the second consists of extracting the information,
that is, the processing of the data. Depending on the problems and on the
technique used during the second step , the first step is not always needed. In
any case, the preparation of the data is usually very specific to the type of data
to be analyzed. Therefore one can only make very general statements about
this problem: one must watch for rounding errors; one must adjust the scale
of data having widely different ranges; one must check the statistical validity
of the data sample; etc. We shall say no more about this first aspect of data
mining, but we wanted to warn the reader about this important issue.

Finally, data mining differs from estimation in that, in many cases the type of
information to be extracted is not really known in advance. Data mining tries to

1Dig, search, excavate, do not leave a place where your hands did not go once or more.

317

318 CHAPTER 12. DATA MINING

Cluster

distanceTo

accumulate

isInsignificant

isUndefined

previousSampleSize
accumulator

CovarianceCluster

centerOn:
distanceTo:
isUndefined

center

AbstractDataServer

atEnd

close

next

open

reset

MemoryBasedDataServer

atEnd
close
next
open
reset

data
position

VectorAccumulator

accumulate
average
count
reset

average
count

Vector

(chapter 9)

CovarianceAccumulator

accumulate
covarianceMatrix
reset

covariance

SymmetricMatrix

(chapter 9)

MahalanobisCenter

accumulate
computeParameters
count
distanceTo:
reset

accumulator
center
inverseCovariance

ClusterFinder

clusters:
dataServer:
evaluateIteration
finalizeIteration
minimumClusterSize
minimumRelativeClusterSize

clusters (result)
dataServer
dataSetSize
minimumRelativeClusterSize

EuclideanCluster

centerOn:
distanceTo:
isUndefined

center

IterativeProcess

(chapter 4)

Figure 12.1: Classes used in data mining

identify trends, common properties and correlation between the data. The goal
of data mining is usually to reduce large sample to much smaller manageable
sets, which can be efficiently targeted. One example, is the selection of a sample
of customers suitable to respond to a new product offered by a bank or an
insurance company. Mailing operations are costly; thus, any reduction of the
mailing target set with a significant improvement of the probability of response
can bring a significant saving. Another example in the medical domain is the
scanning for certain type of cancer, which are expensive2. If one can identify a
population with high risk of cancer, the scanning only needs to done for that
population, thus keeping the cost low.

A good collection of articles about the techniques exposed in this chapter
can be found in [Achtley & Bryant].

12.1 Data server
Figure 12.1 with the boxes
AbstractDataServer
and MemoryBased-
DataServer grayed.

As we have said in the introduction, data mining means handling large amounts
of data, most likely more than the computer memory can hold. Thus, we need an
object to handle these data for all objects implementing data mining techniques.
The data server object needs to implement five functionalities:

2In medical domain, expensive is not necessarily a matter of money. It can mean high risk
for the patient or the examination is regarded as too intrusive by the patient.

12.1. DATA SERVER 319

1. opening the physical support of the data,

2. getting the next data item,

3. checking whether more data items are available,

4. repositioning the data stream at its beginning and

5. closing the physical support of the data.

Depending on the problem at hand, the responsibility of a data server can
extend beyond the simple task of handling data. In particular, it could be
charged of performing the data preparation step mentioned in the introduction.
In our implementation, we give two classes. One is an abstract class from which
all data servers used by the data mining objects described in this chapter must
derive. The data item returned by the method returning the nest item is a vector
object whose components are the data corresponding to one measurement. The
second class of data server is a concrete class implementing the data server on
a collection or array kept in the computer’s memory. Such server is handy for
making tests.

Note: Examples of use of data server are given in the other sections;
no code example are given here.

12.1.1 Data server — Smalltalk implementation

Listing 12.1 shows the implementation of the abstract data server in Smalltalk.
The implementation of the concrete class is shown in listing 12.2.
Our implementation uses the same methods used by the hierarchy of the class
Stream.

Listing 12.1 Smalltalk abstract data server

Class DhbAbstractDataServer
Subclass of Object

Instance methods

atEnd

self subclassResponsibility

close

^ self

next

self subclassResponsibility

320 CHAPTER 12. DATA MINING

open

self subclassResponsibility

reset

self subclassResponsibility

Listing 12.2 Smalltalk memory based data server

Class DhbMemoryBasedDataServer
Subclass of DhbAbstractDataServer

Instance variable names: data position

Instance methods

atEnd

^ data size < position

data: anOrderedCollection

data := anOrderedCollection.

self reset.

dimension

^ data first size

next

| answer |

answer := data at: position.

position := position + 1.

^ answer

open

self reset

reset

position := 1.

12.2. COVARIANCE AND COVARIANCE MATRIX 321

12.2 Covariance and covariance matrix

When one deals with two or more random variables an important question to
ask is whether or not the two variables are dependent from each other.

For example, if one collects the prices of homes and the incomes of the home
owners,one will find that inexpensive homes are mostly owned by low income
families, mostly but not always. It is said that the price of a home is correlated
with the income of the home owner. As soon as one deals with more than
two variables things stop being clear cut. Correlations become hard to identify
especially because of these mostly but not always cases. Therefore, one must
find a way to expressed mathematically how much two random variables are
correlated.

Let x1, . . . , xm be several random variable. They can be considered as the
components of a m-dimensional(random) vector x. The probability density
function of the vector x is denoted P (x); it measures the probability of observing
a vector within the differential volume element located at x. The average of the
vector x is defined in a way similar to the case of a single random variable. The
ith component of the average is defined by

µi =

∫
. . .

∫
xiP (x) dx1 . . . dxm. (12.1)

The covariance matrix of the random vector x gives a measure of the correlations
between the components of the vector x. The components of the covariance
matrix are defined by

%ij =

∫
. . .

∫
(xi − µi) (xj − µj)P (x) dx1 . . . dxm. (12.2)

As one can see the covariance matrix is a symmetric matrix. It is also positive
definite. Furthermore %ii is the variance of the ith component of the random
vector.

Note: The error matrix of a least square or maximum likelihood
fit — discussed in chapter 10 — is the covariance matrix of the fit
parameters.

If two components are independent, their covariance — that is, the corre-
sponding element of the covariance matrix — is zero. The inverse is not true,
however. For example, consider a 2-dimensional vector with components

(
zz2
)

where z is a random variable. If z is distributed according to a symmetric dis-
tribution, the covariance between the two components of the vector is zero. Yet,
the components are 100% dependent from each other by construction.

The correlation coefficient between components i and j of the vector x is
then defined by

ρij =
%ij
σiσj

, (12.3)

322 CHAPTER 12. DATA MINING

where σi =
√
%ii is the standard deviation of the ith component of the vector x.

By definition, the correlation coefficient is comprised between −1 and 1. If the
absolute value of a correlation coefficient is close to 1 then one can assert that
the two corresponding components are indeed correlated.

If the random vector is determined experimentally, one calculates the esti-
mated covariance with the following statistics

cov (xi, xj) =
1

n

n∑
k=1

(xi,k − µi) (xj,k − µj) , (12.4)

where xi,k is the ith component of the kth measurement of the vector x. Similarly
the estimated correlation coefficient of the corresponding components is defined
as

cor (xi, xj) =
cov (xi, xj)

sisj
, (12.5)

where si is the estimated standard deviation of the ith component.
Like for the central moment, there is a way to compute the components of

the covariance matrix while they are accumulated. If covn (xi, xj) denotes the
estimated covariance over n measurements, one has:

covn+1 (xi, xj) =
n

n+ 1
covn (xi, xj) + n∆i,n+1∆j,n+1, (12.6)

where ∆x,n+1 and ∆y,n+1 are the corrections to the averages of each variable
defined in equation 9.12 of section 9.2. The derivation of equation 12.6 is given
in appendix D.2.

Using covariance information
A covariance matrix contains statistical information about the set of measure-

ments over which is has been determined. There are several ways of using this
information.

The first approach uses the covariance matrix directly. The best example is
the analysis known as the shopping cart analysis [Berry & Linoff]. For example,
one can observe that consumers buying cereals are buying low fat milk. This
can give useful information on how to target special sales efficiently. Application
working in this mode can use the code of sections 12.2.2 or ?? as is.

Another approach is to use the statistical information contained in a covari-
ance matrix to process data coming from measurements which were not used
to determine the covariance matrix. In the rest of this chapter we shall call
the set of measurements, which is used to determine the covariance matrix, the
calibrating set. In this second mode of using a covariance matrix, measurements
are compared or evaluated against those of the calibrating set. It is clear that
the quality of the information contained in the covariance matrix depends on
the quality of the calibrating set. We shall assume that this is always the case.
Techniques working according to this second mode are described in sections
12.4, 12.5 and 12.7.

12.2. COVARIANCE AND COVARIANCE MATRIX 323

12.2.1 Covariance matrix — General implementation
Figure 12.1 with the boxes
VectorAccumulator and
CovarianceAccumulator
grayed.

The object in charge of computing the covariance matrix of a series of measure-
ments is implemented as for central moments. Because we shall need to only
compute the average of a vector, the implementation is spread over two classes,
one being the subclass of the other for efficient reuse.
The class VectorAccumulator has two instance variables:

count counts the number of vectors accumulated in the object so far;

average keeps the average of the accumulated vector;

The class CovarianceAccumulator is a subclass of the class VectorAccumulator.
It has one additional instance variable:

covariance accumulates the components of the covariance matrix; for effi-
ciency reason, only the lower half of the matrix is computed since it is
symmetric.

The topmost class implements equation 9.12 in the method accumulate.
The subclass overloads this method to implement equation 12.6.

12.2.2 Covariance matrix — Smalltalk implementation

Listing 12.3 shows the implementation of the accumulation of a vector in Smalltalk.
Listing 12.4 shows the implementation of the accumulation of the covariance
matrix. The following code example shows how to accumulate the average of a
series of vectors read from a data stream.

Code example 12.1
| accumulator valueStream average |

accumulator := DhbVectorAccumulator new.

valueStream open.

[valueStream atEnd]

whileFalse: [accumulator accumulate: valueStream next].

valueStream close.

average := accumulator average.

The reader can see that this example is totally equivalent to the code example
9.1. Here the method next of the data stream must return a vector instead of
a number; all vectors must have the same dimension. The returned average is
a vector of the same dimension.

The next code example shows how to accumulate the both average and
covariance matrix. The little differences with the preceding example should be
self explanatory to the reader.

Code example 12.2
| accumulator valueStream average covarianceMatrix |

accumulator := DhbCovarianceAccumulator new.

324 CHAPTER 12. DATA MINING

valueStream open.

[valueStream atEnd]

whileFalse:[accumulator accumulate: valueStream next].

valueStream close.

average := accumulator average.

covarianceMatrix := accumulator covarianceMatrix.

The method accumulate of class DhbVectorAccumulator answers the cor-
rections to each component of the average vector. This allows the class DhbCovarianceAccumulator
to reuse the results of this method. In class DhbVectorAccumulator, vector op-
erations are used. The method accumulate of class DhbCovarianceAccumulator
works with indices because one only computes the lower half of the matrix.

Listing 12.3 Smalltalk implementation of vector average

Class DhbVectorAccumulator
Subclass of Object

Instance variable names: count average

Class methods

new: anInteger

^ self new initialize: anInteger

Instance methods

accumulate: aVectorOrArray

| delta |

count := count + 1.

delta := average - aVectorOrArray asVector scaleBy: 1 / count.

average accumulateNegated: delta.

^ delta

average

^ average

count

^ count

initialize: anInteger

average := DhbVector new: anInteger.

self reset.

^ self

printOn: aStream

12.2. COVARIANCE AND COVARIANCE MATRIX 325

super printOn: aStream.

aStream space.

count printOn: aStream.

aStream space.

average printOn: aStream.

reset

count := 0.

average atAllPut: 0.

Listing 12.4 Smalltalk implementation of covariance matrix

Class DhbCovarianceAccumulator
Subclass of DhbVectorAccumulator

Instance variable names: covariance

Instance methods

accumulate: anArray

| delta count1 r |

count1 := count.

delta := super accumulate: anArray.

r := count1 / count.

1 to: delta size

do: [:n |

1 to: n do:

[:m |

(covariance at: n) at: m put: (count1 * (delta

at: n) * (delta at: m) + (r * ((covariance at: n) at: m))).

].

].

covarianceMatrix

| rows n |

n := 0.

rows := covariance collect:

[:row | n := n + 1. row, (((n + 1) to: covariance

size) collect: [:m | (covariance at: m) at: n])].

^ DhbSymmetricMatrix rows: rows

initialize: anInteger

covariance := ((1 to: anInteger) collect: [:n | DhbVector new: n]) asVector.

^ super initialize: anInteger

326 CHAPTER 12. DATA MINING

reset

super reset.

covariance do: [:each | each atAllPut: 0].

12.3 Multidimensional probability distribution

To get a feeling of what the covariance matrix represents, let us now consider
a vector y whose components are independent random variables distributed
according to a normal distribution. The probability density function is given by

P (y) =

m∏
i=1

1√
2πσ2

i

e
− (yi−µi)

2

2σ2
i . (12.7)

In this case, the covariance matrix of the vector y is a diagonal matrix Ṽ,
whose diagonal elements are the variance of the vector’s components. If C̃ is
the inverse of the matrix Ṽ, equation 12.7 can be rewritten as

P (y) =

√
det C̃

(2π)
m e
− 1

2 (y−ȳ)TC̃(y−ȳ), (12.8)

where ȳ is the vector whose components are µ1, . . . , µm. Let us now consider
a change of coordinates x = Oy, where O is an orthogonal matrix. We have
already met such transformations in section 8.7. Because the matrix is orthogo-
nal, the differential volume element is invariant under the change of coordinates.
Thus, the probability density function of the vector x is

P (x) =

√
det C

(2π)
m e
− 1

2 (x−x̄)TC(x−x̄), (12.9)

where the matrix C is equal to OTC̃O. The vector x̄ is simply3 equal to Oȳ.
The covariance matrix, V, of the vector x is then equal to OTṼO. It is also
the inverse of the matrix C. Thus, equation 12.9 can be rewritten as

P (x) =
1√

(2π)
m

det V
e−

1
2 (x−x̄)TV−1(x−x̄). (12.10)

In the case of a normal distribution in a multi-dimensional space, the covariance
matrix plays the same role as the variance in one dimension.

12.4 Covariance data reduction

Reversing the derivation of the preceding section one can see that the eigenvalues
of the covariance matrix of the vector x correspond to the variances of a series

3All this is a consequence of the linear property of the expectation value operator.

12.5. MAHALANOBIS DISTANCE 327

of independent4 random variables y1, . . . , ym. Since the covariance matrix is
symmetric these eigenvalues as well as the matrix O describing the change of
coordinates can be obtained using Jacobi’s algorithm described in section 8.7.

If some eigenvalues are much larger than the others, one can state that the
information brought by the corresponding variables brings little information to
the problem. Thus, one can omit the corresponding variable from the rest of
the analysis.

Let σ2
1 , . . . , σ

2
m be the eigenvalues of the covariance matrix such that σ2

i < σ2
j

for i < j. Let us assume that there exist an index k such that σ2
k � σ2

k−1.
Then, The rest of the data analysis can be made with a vector with components
yk, . . . , ym where the vector y is defined by y = OTx.

This reduction technique has been used successfully in high energy physics5

under the name principal component analysis. The data reduction allows to
extract the relevant parameters of a complex particle detector to facilitate the
quick extraction of the physical data — momentum and energy of the particle
— from the observed data.

This kind of data reduction can be implemented within the framework of
the data server described in section 12.1. The concrete implementation of such
a server is straight forward. All needed objects — covariance accumulation,
eigenvalues of a symmetric matrix, vector manipulation — have been discussed
in different chapters. The rest of the implementation is specific to the problem
at hand and can therefore not be treated on a general basis.

12.5 Mahalanobis distance

Mahalanobis, an Indian statistician, introduced this distance in the 30’s when
working on anthropometric statistics. A paper by Mahalanobis himself can be
found in [Achtley & Bryant]. Readers interested by the historical dimension of
the Mahalanobis distance can consult the paper by Das Gupta6.

By definition, the exponent of equation 12.7 is distributed according to a
χ2 distribution with m degrees of freedom. This exponent remains invariant
under the change of coordinates discussed in section 12.3. Thus, the exponent
of equation 12.10 is also distributed according to a χ2 distribution with m
degrees of freedom, where m is the dimension of the vector x. The Mahalanobis
distance, dM , is defined as the square root of the exponent, up to a factor

√
2.

We have

d2
M = (x− x̄)T V−1 (x− x̄) . (12.11)

The Mahalanobis distance is a distance using the inverse of the covariance matrix
as the metric. It is a distance in the geometrical sense because the covariance

4Not necessarily normally distributed!
5H.Wind, Pattern recognition by principal component analysis of border regions, Proceed-

ings 3th topical meeting on multi-dimensional analysis of high energy data, Nijmegen, 8-11
March 1978, W. Kittel, University of Nijmegen, 1978, pp. 99-106.

6Somesh Das Gupta, The evolution of the D2-statistics of Mahalanobis, Indian J. Pure
Appl. Math., 26(1995), no. 6, 485-501.

328 CHAPTER 12. DATA MINING

matrix as well as its inverse are positive definite matrices. The metric defined
by the covariance matrix provides a normalization of the data relative to their
spread.

The Mahalanobis distance — or its square — can be used to measure how
close an object is from another when these objects can be characterized by a
series of numerical measurements. Using the Mahalanobis distance is done as
follows

1. the covariance matrix of the measured quantities, V, is determined over
a calibrating set;

2. one compute the inverse of the covariance matrix, V−1;

3. the distance of a new object to the calibrating set is estimated using
equation 12.11; if the distance is smaller than a given threshold value, the
new object is considered as belonging to the same

One interesting property of the Mahalanobis distance is that it is normalized.
Thus, it is not necessary to normalize the data provided rounding errors in in-
verting the covariance matrix are kept under control. If the data are roughly dis-
tributed according to a normal distribution the threshold for accepting whether
or not an object belongs to the calibrating set can be determined from the χ2

distribution.

Examples of use
The Mahalanobis distance can be applied in all problems where measurements

must be classified.
A good example is the detection of coins in a vending machine. When a

coin is inserted into the machine, a series of sensors gives several measurements,
between a handful and a dozen. The detector can be calibrated using a set
of good coins forming a calibration set. The coin detector can differentiate
good coins from the fake coins using the Mahalanobis distance computed on
the covariance matrix of the calibration set. Figure 12.2 shows an example of
such data7. The light gray histogram is the distribution of the Mahalanobis
distance of the good coins; the dark gray histogram that of the fake coins. The
dotted line is the χ2-distribution corresponding to the degrees of freedom of the
problem; in other words, the distribution was not fitted. The reader can see that
the curve of the χ2-distribution reproduces the distribution of the experimental
data. Figure 12.2 also shows the power of separation achieved between good
and fake coins.

Another field of application is the determination of cancer cells from a biopsy.
Parameters of cells — size and darkness of nucleus, granulation of the membrane
— can be measured automatically and expressed in numbers. The covariance
matrix can be determined either using measurements of healthy cells or us-
ing measurements of malignant cells. Identification of cancerous cells can be
automatized using the Mahalanobis distance.

7Data are reproduced with permission; the owner of the data wants to remain anonymous,
however.

12.5. MAHALANOBIS DISTANCE 329

Figure 12.2: Using the Mahalanobis distance to differentiate between good and
fake coins.

12.5.1 Mahalanobis distance — General implementation
Figure 12.1 with the box
MahalanobisCenter
grayed.

The final goal of the object implementing the Mahalanobis distance is to com-
pute the square Mahalanobis distance as defined in equation 12.11. This is
achieved with the method distanceTo. The inverse of the covariance matrix
as well as the average vector x̄ are contained within the object. We have called
the object a Mahalanobis center since it describes the center of the calibrating
set.

To have a self-contained object, the Mahalanobis center is acting as a fa-
cade to the covariance accumulator of section 12.2 for the accumulation of
measurements. The methods accumulate and reset are delegated to an in-
stance variable holding a covariance accumulator.
The Mahalanobis center has the following variables

accumulator a covariance accumulator as described in section 12.2;

center the vector x̄ and

inverseCovariance the inverse of the covariance matrix, that is V−1.

Our implementation is dictated by its future reuse in cluster analysis (c.f. sec-
tion 12.7). There, we need to be able to accumulate measurements while us-
ing the result of a preceding accumulation. Thus, computation of the center
and the inverse covariance matrix must be done explicitly with the method
computeParameters.

There are two ways of creating a new instance. One is to specify the di-
mension of the vectors which will be accumulated into the object. The second

330 CHAPTER 12. DATA MINING

supplies a vector as the tentative center. This mode is explained in section 12.7.

12.5.2 Mahalanobis distance — Smalltalk implementation

Listing 12.5 shows the implementation of a Mahalanobis center in Smalltalk.
The following code example shows how to sort measurements using the Maha-
lanobis distance.

Code example 12.3
| center calibrationServer dataServer data threshold|

center := DhbMahalanobisCenter new: 5.

<The variable calibrationServer is setup to read measurements
from the calibrating set¿

calibrationServer open.

[calibrationServer atEnd]

whileFalse: [center accumulate: calibrationServer next].

calibrationServer close.

center computeParameters.

<The variable dataServer is setup to read the measurements to be
sorted between accepted and rejected; the variable threshold must
also be determined or given>

dataServer open.

[dataServer atEnd]

whileFalse: [data := dataServer next.

(center distanceTo: data) > threshold

ifTrue: [self reject: data]

ifFalse:[self accept: data].

].

dataServer close.

The first line after the declaration creates a new instance of a Mahalanobis
center for vectors of dimension 5. After setting up the server for the calibrating
set data from the calibrating set are accumulated into the Mahalanobis center.
At the end the parameters of the Mahalanobis center are computed. Then, the
server for the other measurements is set up. The loop calculates the distance to
the Mahalanobis center for each measurements. Our example supposes that the
object executing this code has implemented two methods accept and reject

to process accepted and rejected data.

Listing 12.5 Smalltalk Mahalanobis center

Class DhbMahalanobisCenter
Subclass of Object

12.5. MAHALANOBIS DISTANCE 331

Instance variable names: center inverseCovariance accumulator

Class methods

new: anInteger

^ self new initialize: anInteger

onVector: aVector

^ self new center: aVector

Instance methods

accumulate: aVector

accumulator accumulate: aVector.

center: aVector

accumulator := DhbCovarianceAccumulator new: aVector size.

center := aVector.

inverseCovariance := DhbSymmetricMatrix identity: aVector size.

^ self

computeParameters

center := accumulator average copy.

inverseCovariance := accumulator covarianceMatrix inverse.

count

^ accumulator count

distanceTo: aVector

| delta |

delta := aVector - center.

^ delta * inverseCovariance * delta

initialize: anInteger

accumulator := DhbCovarianceAccumulator new: anInteger.

^ self

printOn: aStream

accumulator count printOn: aStream.

aStream nextPutAll: ’: ’.

center printOn: aStream.

reset

accumulator reset.

332 CHAPTER 12. DATA MINING

12.6 Cluster analysis

Cluster analysis — also known asK-cluster — is a method to identify similarities
between data. If the dimension of the data is less than or equal than 3, graphical
data representation provides an easy way to identify data points having some
similarity. For more than 3 measurements, the human brain is unable to clearly
identify clustering.

Cluster analysis have been used successfully by the US army to define a new
classification of uniform sizes and in banks [Berry & Linoff]. British Telecom has
used cluster analysis to detect a phone fraud of large scale in the early 90’s8.

The K-cluster algorithm goes as follows [Berry & Linoff]:

1. Pick up a set of centers where possible clusters may exist;

2. place each data point into a cluster corresponding to the nearest center;

3. when all data points have been processed, compute the center of each
cluster;

4. if the centers have changed, go back to point 2.

This algorithm nicely maps itself to the framework of successive approximations
discussed in section 4.1. We now will investigate the steps of the algorithm in
details.

Algorithm details

Picking up a set of centers corresponds to the box labeled Compute or choose
initial object of figure 4.3. Since one is looking for unknown structure in the
data there is little chance to make a good guess on the starting values. The
most general approach is to pick up a few points at random from the existing
data points to be the initial cluster’s centers.

The next two steps correspond to the box labeled Compute next object of
figure 4.3. Here lies the gist of the K-cluster algorithm. For each data point
one first finds the cluster whose center is the nearest to the data point. What
is the meaning of near? It depends on the problem. Let us just say at this
point that one needs to have a way of expressing the distance between two data
points. For the algorithm to converge the distance must be a distance in the
geometrical sense of the term. In geometry, a distance is a numerical function
of two vectors, d (x,y). For all vectors x, y and z the following conditions must
be met by the function

d (x,y) ≥ 0,
d (x,y) = d (y,x) ,
d (x,y) ≤ d (x, z) + d (z,y) .

(12.12)

8Private communication to the author.

12.6. CLUSTER ANALYSIS 333

Figure 12.3: Example of cluster algorithm

Furthermore, d (x,y) = 0 if and only if x = y. The simplest known distance
function is the Euclidean distance expressed as

dE (x,y) =
√

(x− y) · (x− y). (12.13)

The square root in equation 12.13 is required for the distance function to behave
linearly on a one dimensional subspace. The Euclidean distance corresponds to
the notion of distance in everyday life. In assessing the proximity of two points,
the square root is not needed.

After all points have been processed and assigned to a cluster, the center of
each cluster is obtained by taking the vector average of all data points belonging
to that cluster.

Then, one needs to determine whether the clusters have changed since the
last iteration. In the case of the K-cluster algorithm it is sufficient to count the
number of data points changing clusters at each iteration. When the same data
point are assigned to the same clusters at the end of an iteration, the algorithm
is completed. The precision used to stop the iterative process is an integer in
this case.

Figure 12.3 shows how the algorithm works for a 2-dimensional case. Data
points were generated randomly centered around 3 separated clusters. Three
random points were selected as starting points: in this example the random
choice was particularly unlucky since the three starting points all belong to the
same cluster. Nevertheless, convergence was attained after 5 iterations9.

Fine points

9The last iteration is not visible since the centers did not change.

334 CHAPTER 12. DATA MINING

This simple example is admittedly not representative. However, this is not
because of the small dimension nor because of the well separated clusters. It is
because we knew in advance the number of clusters, 3 in this case. If we had
started with 5 initial clusters, we would have ended up with 5 clusters, according
to the expression, garbage in, garbage out, well-known among programmers.

One can modify the original algorithm to prune insignificant clusters from
the search. This additional step must be added between steps 2 and 3. How
to characterize an insignificant cluster? This often depends on the problem at
hand. One thing for sure is that clusters with 0 elements should be left out.
Thus, one easy method to prune insignificant clusters is to place a limit of the
number of data points contained in each cluster. That limit should not be too
high, however, otherwise most clusters will never get a chance of accumulating
a significant amount of data points during the first few iterations.

12.6.1 Cluster analysis — General implementation
Figure 12.1 with the boxes
ClusterFinder and Clus-
ter grayed.

Our implementation of theK-cluster algorithm uses two classes: ClusterFinder
and Cluster.

The class Cluster describes the behavior of a cluster. It is an abstract class.
Subclasses implements the various strategies needed by the algorithm: distance
calculation and pruning of insignificant clusters. The abstract class has only
one instance variable, previousSampleSize, keeping the count of data points
accumulated in the previous iteration. A cluster must be able to return the
number of data points contained in the cluster. The method changes gives
the number of data points which have changed cluster since the last iteration.
The method isInsignificantIn determines whether a cluster must be pruned
from the process. The method isUndefined allows the identification of clusters
whose centers have not yet been defined. This method is used by the cluster
finder to initialize undefined clusters with the data points before starting the
iterative process.

An instance of a subclass of cluster must implement the following methods
to interact with the class ClusterFinder:

distanceTo the argument of this method is a vector representing the data
point; the returned value is the distance between the supplied vector and
the center of the cluster; any subclass of Cluster can implement a suitable
distance function as well as its own representation of the center;

accumulate the argument of this method is a vector representing the data
point; this method is called when the cluster finder has determined that
the data point must be placed within this cluster;

changes this method returns the number of data points which have been added
to and removed from the cluster since the last iteration; the default imple-
mentation only calculates the difference between the number currently in

12.6. CLUSTER ANALYSIS 335

the cluster and the number in the previous iteration; this simple approach
works in practice10;

sampleSize this method returns the number of data points actually accumu-
lated into the cluster;

reset this method calculates the position of the new center at the end of an
iteration; the default implementation stores the size of the previous sam-
ple.

Note: A reader knowledgeable in patterns will think of using a
Strategy pattern to implement the distance. I have tried this
approach, but the resulting classes were much more complex for
little gain. It is easier to implement subclasses of Cluster. Each
subclass can not only implement the distance function, but can also
choose how to accumulate data points: accumulation or storage.

The concrete class EuclideanCluster calculates the square of the Euclidean
distance as defined in equation 12.13. Using Euclidean distance requires that
the components of the data vector have comparable scales. Cluster analysis
with Euclidean clusters requires data preparation in general.

The class ClusterFinder implements the algorithm itself. This class is a
subclass of the class for iterative processes described in section 4.1. The result
of the iterative process is an array of clusters. The class ClusterFinder needs
the following instance variables:

dataServer a data server object as described in section 12.1; this object is used
to iterate on the data points;

dataSetSize a counter to keep track of the number of data points; this instance
variable is combined with the next to provide a first order pruning strategy;

minimumRelativeClusterSize the minimum relative size of a significant clus-
ter; the minimum cluster size is computed at each iteration by taking the
product of this variable with the variable dataSetSize.

The class ClusterFinder uses an instance of the data server to iterate over
the data points. before starting the search the client application can assign the
list of initial clusters (step 1 of the algorithm . By default, the minimum relative
size of the cluster is set to 0. A convenience method allows creating instances
for a given data server and an initial set of clusters.

The method initializeIterations scans all clusters and looks for unde-
fined clusters. The center of each undefined cluster is assigned to a data point
read from the data server. This assumes that the data points have been collected
randomly.

10Of course, one can construct cases where this simple approach fails. Such cases, however,
correspond to situations where data points are oscillating between clusters and, therefore, do
not converge. I have never met such cases in practice.

336 CHAPTER 12. DATA MINING

The method evaluateIteration processes each data point: first, it finds the
index of the cluster nearest to the data point; then, the data point is accu-
mulated into that cluster. After processing the data points, the clusters are
processed to compute the new position of their centers and insignificant clusters
are removed from the search. These tasks are performed within a method named
collectChangesAndResetClusters. This method returns the number of data
points which have changed cluster. The determination whether or not a cluster
is significant is delegated to each cluster with the method isInsignificant.
Thus, any subclass of cluster can implement its own strategy. The argument of
the method isInsignificant is the cluster finder to provide each cluster with
global information if needed.
The method finalizeIterations just closes the data server.

12.6.2 Cluster analysis — Smalltalk implementation

Listing 12.6 shows the implementation of the K-cluster algorithm in Smalltalk.
The following code example shows how to implement a search for clusters.

Code example 12.4
| dataServer finder clusters |

<The variable dataServer is setup to read measurements from the
calibrating set¿

finder := DhbClusterFinder new: 5 server: dataServer

type: <a concrete subclass of Cluster>.

finder minimumRelativeClusterSize: 0.1.

clusters := finder evaluate.

After setting up a data server to read the data point, an instance of class
DhbClusterFinder is created. the number of desired clusters is set to 5. The
class of the clusters is specified. The next line sets the minimum relative size of
each cluster to be kept during the iteration. Finally, the K-cluster algorithm is
performed and clusters are retrieved from the finder object.

The abstract class DhbCluster is implemented with an instance variable
accumulator. The cluster delegates the responsibility of accumulating the data
points to this variable. It is assumed that the object in accumulator implements
the interface defined by the vector accumulators described in section 12.2.2.

The class DhbClusterFinder can be created in two ways. An applica-
tion can set the list of initial clusters and the data server using the methods
cluster and dataServer respectively. The convenience class creation method
new:server:type: allows to specify the initial number of clusters, the data
server and the class of the clusters. When this method is used, the collection of
clusters is created when the instance of DhbClusterFinder is initialized; each
cluster is created in an undefined state.

12.6. CLUSTER ANALYSIS 337

Listing 12.6 Smalltalk K-cluster algorithm

Class DhbCluster
Subclass of Object

Instance variable names: accumulator previousSampleSize

Instance methods

accumulate: aVector

accumulator accumulate: aVector.

centerOn: aVector

self subclassResponsibility

changes

^ (self sampleSize - previousSampleSize) abs

distanceTo: aVector

^ self subclassResponsibility

initialize

previousSampleSize := 0.

^ self

isInsignificantIn: aClusterFinder

^ self sampleSize <= aClusterFinder minimumClusterSize

isUndefined

^ self subclassResponsibility

reset

previousSampleSize := self sampleSize.

self collectAccumulatorResults.

accumulator reset

sampleSize

^ accumulator count

Class DhbClusterFinder
Subclass of DhbIterativeProcess

Instance variable names: dataServer dataSetSize minimumRelativeClusterSize

Class methods

new: anInteger server: aClusterDataServer type: aClusterClass

338 CHAPTER 12. DATA MINING

^ super new initialize: anInteger server: aClusterDataServer type:

aClusterClass

Instance methods

accumulate: aVector

(result at: (self indexOfNearestCluster: aVector)) accumulate:

aVector.

clusters: aCollectionOfClusters

result := aCollectionOfClusters.

collectChangesAndResetClusters

| hasEmptyClusters changes |

changes := 0.

hasEmptyClusters := false.

result do:

[:each |

changes := each changes + changes.

(each isInsignificantIn: self)

ifTrue:

[each centerOn: nil.

hasEmptyClusters := true]

ifFalse: [each reset].

].

hasEmptyClusters

ifTrue: [result := result reject: [:each | each

isUndefined]].

^ changes / 2

dataServer: aClusterDataServer

dataServer := aClusterDataServer.

evaluateIteration

dataServer reset.

dataSetSize := 0.

[dataServer atEnd]

whileFalse:[self accumulate: dataServer next.

dataSetSize := dataSetSize + 1.

].

^ self collectChangesAndResetClusters

finalizeIterations

dataServer close

indexOfNearestCluster: aVector

12.6. CLUSTER ANALYSIS 339

| distance index |

index := 1.

distance := (result at: 1) distanceTo: aVector.

2 to: result size do:

[:n | | x |

x := (result at: n) distanceTo: aVector.

x < distance

ifTrue: [distance := x.

index := n.

].

].

^ index

initialize: anInteger server: aClusterDataServer type: aClusterClass

self dataServer: aClusterDataServer.

self clusters: ((1 to: anInteger) collect: [:n | aClusterClass

new]).

minimumRelativeClusterSize := 0.

^ self

initializeIterations

dataServer open.

result

do: [:each | each isUndefined ifTrue: [each centerOn:

dataServer next]]

minimumClusterSize

^ (minimumRelativeClusterSize * dataSetSize) rounded

minimumRelativeClusterSize: aNumber

minimumRelativeClusterSize := aNumber max: 0.

printOn: aStream

aStream nextPutAll: ’Iterations: ’.

iterations printOn: aStream.

result do: [:each | aStream cr. each printOn: aStream].

Listing 12.7 shows the implementation of the concrete cluster class DhbEuclideanCluster.
The corresponding accumulator is an instance of class DhbVectorAccumulator.
Data points are directly accumulated into the accumulaotr; individual data
points are not kept.

340 CHAPTER 12. DATA MINING

Listing 12.7 Smalltalk implementation of an Euclidean cluster

Class DhbEuclideanCluster
Subclass of DhbCluster

Instance variable names: center

Instance methods

centerOn: aVector

center := aVector.

accumulator := DhbVectorAccumulator new: aVector size.

collectAccumulatorResults

center := accumulator average copy.

distanceTo: aVector

^ (aVector - center) norm

isUndefined

^ center isNil

printOn: aStream

accumulator count printOn: aStream.

aStream nextPutAll: ’: ’.

center printOn: aStream.

12.7 Covariance clusters

As we have seen in section 12.5 the Mahalanobis distance is a distance in the
geometrical sense. Thus, this distance can be used by the K-cluster algorithm.
We call clusters using the Mahalanobis distance covariance clusters since the
metric for the distance is based on the covariance matrix.

The normalizing properties of the Mahalanobis distance makes it ideal for
this task. When Euclidean distance is used, the metric remains the same in all
directions. Thus, the extent of each cluster has more or less circular shapes.
With the Mahalanobis distance the covariance metric is unique for each cluster.
Thus, covariance clusters can have different shapes since the metric adapts itself
to the shape of each cluster. As the algorithm progresses the metric changes
dynamically.

12.7. COVARIANCE CLUSTERS 341

12.7.1 Covariance clusters — General implementation
Figure 12.1 with the
boxes CovarianceClus-
ter grayed.

Covariance clusters need little implementation. All tasks are delegated to a
Mahalanobis center described in section 12.5. Listing 12.8 shows the Smalltalk
implementation and the Java implementation is shown in listing ??.

Listing 12.8 Smalltalk covariance cluster

Class DhbCovarianceCluster
Subclass of DhbCluster

Instance variable names: center

Instance methods

centerOn: aVector

accumulator := aVector ifNotNil: [:v | DhbMahalanobisCenter onVector: v].

collectAccumulatorResults

accumulator computeParameters.

distanceTo: aVector

^ accumulator distanceTo: aVector

isUndefined

^ accumulator isNil

printOn: aStream

accumulator printOn: aStream.

342 CHAPTER 12. DATA MINING

Appendix A

Decimal floating-point
simulation

The class DhbDecimalFloatingNumber is intended to demonstrate rounding
problems with floating-point number representation. It models the floating-
point number representation. The radix of the floating-point representation is
decimal to ease the reading of the results. It also allows people to carry some of
the operations by hand. This model is almost equivalent to what is done inside
a computer. One notable difference is the absence of exponent offset. Another
difference is that there is no limit on the size of the exponent. Simple as it is
this model can be used to illustrate rounding problems to beginners. This class
is only intended for didactical purposes.

Only the Smalltalk implementation is given here, as Java does not lend itself
to operator overloading. Moreover, fraction arithmetic is not available in Java.
Thus, making an equivalent class would require much more code.

Instances of the class are created with the method new: supplying any
number as argument. For example,

DhbDecimalFloatingNumbernew : 3.141592653589793238462643

Arithmetic operations are performed as usual. For example, the first expression
of section 1.3.2 can be coded as:

Code example A.1
| a b |

a := DhbDecimalFloatingNumber new: (2 raisedToInteger: 64).

b := DhbDecimalFloatingNumber new: 300.

a + b

The class has two instance variables:

mantissa contains the mantissa of the number normalized to a finite number
of digits,

343

344 APPENDIX A. DECIMAL FLOATING-POINT SIMULATION

exponent contains the negative of the decimal exponent of the number.

The class has one class variable:

Digits contains the maximum number of digits kept in the mantissa of all
instances.

The method normalize: computes the mantissa and exponent of the argument
and stores it into the corresponding instance variables. The method value

allows retrieving the value of the number in numerical form. The method
printOn: allows to visualize the representation of the number.

The number of decimal digits kept in the mantissa can be changed by the
user using the method setDigits:. By default it is set to 15, which corresponds
roughly to the precision of a 64-bit IEEE standard floating-point number.

The four arithmetic operations and the square root have been defined. The
mechanism of each operation is the same. First each operand is converted to a
fraction. Then, the operation is carried using normal numbers. In the case of
arithmetic operation the result is exact since the use of Smalltalk fractions guar-
anties absolute precision. Then, a new instance of the class DhbDecimalFloatingNumber
is created from the result and is returned. Rounding errors will occur during
this step.

Listing A.1 Smalltalk code simulating decimal floating number arithmetic

Class DhbDecimalFloatingNumber
Subclass of Object

Instance variable names: mantissa exponent

Class variable names: Digits

Class methods

defaultDigits

^15

defaultDigits: anInteger

Digits := anInteger.

digits

Digits isNil

ifTrue: [Digits := self defaultDigits].

^Digits

new: aNumber

345

^self new normalize: aNumber

resetDigits

Digits := nil.

Instance methods

* aNumber

^self class new: (self value * aNumber value)

+ aNumber

^self class new: (self value + aNumber value)

- aNumber

^self class new: (self value - aNumber value)

/ aNumber

^self class new: (self value / aNumber value)

normalize: aNumber

exponent := (self class digits - (aNumber log: 10)) floor.

mantissa := (aNumber * (10 raisedToInteger: exponent))

truncated.

^self

printOn: aStream

mantissa printOn: aStream.

aStream nextPutAll: ’xE’.

exponent negated printOn: aStream.

sqrt

^self class new: self value sqrt

value

^mantissa / (10 raisedToInteger: exponent)

346 APPENDIX A. DECIMAL FLOATING-POINT SIMULATION

Appendix B

Smalltalk primer for Java
programmers

This appendix is meant as a quick introduction to the Smalltalk language for
Java programmers. The goal of the explanations is not to expose all features of
Smalltalk, but to give enough background so that the reader is able to read the
Smalltalk code presented in this book.

There are a few Smalltalk books on the market. The most recent is the
book by David Smith [Smith]. The book of Kent Beck [Beck] is a good choice
to deepen Smalltalk knowledge and Smalltalk specific object-oriented approach.

B.1 Syntax in a nutshell

In Smalltalk there is no primitive type. Everything is an object. Objects are
represented in the code by a symbol. Objects communicate together by sending
messages to each other. As in Java, a symbol may contain any alphanumerical
characters and must begin with a lower case letter.

B.1.1 Smalltalk expressions

A Smalltalk expression is composed of an identifier representing the object re-
ceiving the message followed by the message. The message is placed after the
name of the object to which it is directed, separated by at least a blank separator
(space, tabulation or carriage return).

Objects are represented by variables in the conventional way. There are
three kinds of messages:

1. unary messages,

2. binary messages and

3. keyword messages.

347

348 APPENDIX B. SMALLTALK PRIMER FOR JAVA PROGRAMMERS

Unary messages correspond to a Java method without argument. There are
represented by symbols containing any alphanumerical characters and beginning
with a lower case letter.

Binary messages correspond to conventional operators in other languages,
Java included. Examples are the arithmetic operators (+, -, * and /) or the
relational operators (=, >, <, >= and <=). In Smalltalk, the inequality operator
is noted ∼=. Other non-alphabetical operator symbols can be used as binary
messages.

Keyword messages correspond to a Java method with one or more arguments.
In a Smalltalk keyword message each argument is placed after a keyword. Each
keyword is written as a symbol containing any alphanumerical characters, be-
ginning with a lower case letter and ending with a semi colon (:).

Table B.1 shows a few examples of Smalltalk messages together with their
Java equivalent. To make the examples easy to follow, the objects used are either
constants or objects from the single class String. These objects are denoted by
the symbols s1 and s2. The class String has the advantage of being the same
in both Smalltalk and Java.

Table B.1: Sample Smalltalk messages with their Java equivalent

Message type Smalltalk Java
Unary s1 size s1.length()

s1 hash s1.hashCode()

Binary s1 = s2 s1.equals(s2)

s1 < s2 s1.compare(s2)

Keyword s1 at: 3 s1.charAt(3)

s1 indexOfSubCollection: s2 s1.indexOf(s2,5)

startingAt: 5

s1 copyFrom: 3 to: 5 s1.substring(3,5)

B.1.2 Precedence

Arguments of binary and keyword messages may be other Smalltalk expres-
sions. In case of combined expressions, the precedence goes as follows: unary
messages are evaluated first, then binary messages and finally keyword mes-
sages. Messages of same type are evaluated from left to right. This gives a
somewhat unconventional precedence rule for arithmetic expressions. As in any
other computer language expressions enclosed within parentheses are always
evaluated first, starting with the innermost pair of parentheses.

As a consequence, keyword messages used as arguments to other messages
must always be enclosed within parentheses.

B.2. CLASS AND METHODS 349

B.1.3 Assignment, equality and identity

In Smalltalk, the assignment operator is composed of an equal sign followed by
a colon (:=). This corresponds to the equal sign in Java.

Like Java, Smalltalk differentiates between equality and identity. The equal-
ity operator is an equal sign, corresponding to the method equals of Java. The
inequality operator is written ∼= corresponding to the Java !equals. The iden-
tity operator is a double equal sign (==) like in Java. The negation of the identity
is written as ∼∼. Table

Table B.2: Smalltalk assignment and equalities

Operator Smalltalk Java
Assignment := =

Equality = equals()

Inequality ∼= !equals()

Identity == ==

Non-identity ∼∼ !=

B.2 Class and methods

A Smalltalk class is quite similar to a Java class. The main difference is that
Smalltalk is not file-oriented. Classes are not assigned to a file like in Java.
Instead they reside in the Smalltalk image, that is a copy of the memory used
by

As a consequence, any class can be extended by anyone. If an application
designer is missing a method from the base classes, the method is simply added
by the designer. This book contains numerous example of methods added to
the base classes Number and Integer.

A class is declared by stating its superclass and the instance variables. There
are other parameters defining a class, but we do not mention them as they are
not used in this book. As in Java, the class Object is the topmost class.

Smalltalk instance variable are listed as symbols without types. Smalltalk
is a dynamically typed language. In principle an instance variable can hold any
object. At run time, however, the type of the instance is known. This is how the
virtual machine knows how to retrieve the methods supported by the object.

B.2.1 Instance methods

An instance method is very similar to a Java instance method. Of course, the
syntax is quite different. At best, we shall discuss an example, taken from listing
8.9. The lines are numbered for easier references.

1 evaluateIteration

2 | indices |

350 APPENDIX B. SMALLTALK PRIMER FOR JAVA PROGRAMMERS

3 indices := self largestOffDiagonalIndices.

4 self transformAt:(indices at: 1) and:(indices at: 2).

5 ∧precision

The first line is the method declaration, that is the declaration of the message
sent when this method is executed. In this example, this is an unary message
named evaluateIteration.

Line 2 is the declaration of the variables local to the method. Since Smalltalk is
not typed, only the names of the variable are enumerated between two vertical
bars. If a method does not have local variables, this line is omitted. Here the
only declared variable is indices.

Line 3 is an assignment statement: the local variable indices is assigned to
the result of sending the message largestOffDiagonalIndices to the variable
self. self is the instance, which is executing the method. In other words, it is
equivalent to the Java variable this. The statement is terminated with a dot
(.) corresponding to the semicolon used in Java.

Line 4 is a simple statement. The message transformAt:and: is sent to the
instance executing the method. The arguments are the results of two keyword
messages (at:) sent to the variable indices. In this case, the variable indices

was set to an array with two elements. These elements are used as arguments
for the message transformAt:and:. Here again the statement is terminated by
a dot.

Line 5 is the last statement of the method. The wedge (∧) indicates that the
expression that follows is the result of the method. In this case, the result of
the method is the value of the instance variable precision. A return statement
is not terminated.

The next example is taken from listing 8.5. It is far from being simple, but it
covers more advance features. Together with the first example we have covered
the entire syntax of Smalltalk.

1 decompose

2 | n |

3 n := rows size.

4 permutation := (1 to: n) asArray.

5 1 to: (n - 1) do:

6 [:k |

7 self swapRow: k withRow: (self largestPivotFrom: k);

8 pivotAt: k.

9].

The first line is the method declaration for the unary message named decompose.

Line 2 is the declaration of the local variable n.

Line 3 is an assignment statement: the local variable n is set to the number
of rows. The variable rows is an instance variable of the class and is set to an

B.2. CLASS AND METHODS 351

array ; the message size returns the number of elements located in the array.
The statement is terminated with a dot (.).

Line 4 is another assignment statement. It assigns the instance variable permutation
to an array containing the series of integers 1 to n. The message to: sent to an
integer answers an interval. It must be converted to an array with the message
asArray. Here again the statement is terminated by a dot.

Line 5 is the beginning of an iterator message ending at line 9. Iterator methods
are described in section B.3. The object to which the iterator message is sent
is an interval from 1 to n− 1. This line is equivalent to the Java statement for
(int k = 1; k < n; k++). The reader should notice that indices in Smalltalk
begin at 1 instead of 0.

Line 6 is the beginning of the block, argument of the do: message. This line is
declarative and states that the variable used to evaluate the block is named k.

Line 7 contains two messages sent to the variable self. The first message to be
executed is a keyword message — largestPivotFrom: — with one argument
k. The second message is a keyword message swapRow:withRow: with two
arguments: the first argument is k and the second argument is the result of the
message largestPivotFrom:.

Unlike the preceding statements, this statement is terminated by a semicolumn
(;). In Smalltalk a semicolon is not a statement terminator. The semicolon
indicates that the message on line 8 — written without explicit target — is
directed to the same target as the preceding message. In this case, the target of
the message pivotAt: — a keyword message with one argument k — is self.

Line 9 is the end of the statement beginning on line 5. It is the terminating
bracket of the block beginning on line 6. This statement is terminator with a
dot. Because this method does not return an explicit result, the result of the
method is self, that is the instance which was executing the method.

B.2.2 Class methods

The biggest difference between Smalltalk and Java lies in the class methods.
As a first approximation, a Java programmer can think that class methods are
equivalent to static methods. Class methods, however, are methods like any
other methods. In particular class methods are fully inherited.

Here the Java programmer must be in mind that everything is an object in
Smalltalk. This is also true for classes. A class is an object and, as such, has
methods. Thus, class methods are exactly like instance methods, but they are
defined on the class as opposed to the instance. In particular, the variable self

in a class method now refers to the class itself.

Class methods are also used as class constructor methods. Unlike Java,
Smalltalk allows class constructor methods with any name. The default creation
method new is provided by the superclass of all classes. It creates a new instance
of the class with all instance variables set to nil. An application designer can
chose to redefine the method new for a given subclass. This book shows several
example of this.

352 APPENDIX B. SMALLTALK PRIMER FOR JAVA PROGRAMMERS

B.2.3 Block

In Smalltalk everything is an object. And yes! This is the third times this
important statement is made. This is true for Smalltalk code itself. A Smalltalk
code object is specified with a special syntax: the block. Here is an example of
a block computing polar coordinates from supplied Cartesian coordinates:

[:x :y |

| radius angle |

radius := (x squared + y squared) sqrt.

angle := y arctan: x.

Array with: radius with: angle]

The block is delimited by a pair of brackets ([]). The first line contains the
declaration of the block variables. These variables are supplied to the block at
execution time. The next line contains the declaration of the local variables,
that is variables used within the block. The next two lines perform computation
needed to obtain the final result. The last expression of the block is the value
returned by the block at execution time.

Here is an example on how the block of the previous example is used.

| block |

block := [:x :y |

| radius angle |

radius := (x squared + y squared) sqrt.

angle := y arctan: x.

Array with: radius with: angle].

block value: 2 value: 3.

Of course, this is a contrived example. Usually block are much simpler. They are
also seldom used to perform computation for the sake of computation, although
functions described in chapter 2 are a good example of using blocks.

B.3 Iterator methods

The most important use of blocks is within so-called iterator methods. Quickly
said, iterators method provide the functionality of the Enumeration interface.
Smalltalk iterator methods, however, provide far most flexibility that the Enumeration
interface.

Iterator methods can be applied to any instance of any subclass of the class
Collection. A Smalltalk collection is simply a container of objects, not neces-
sarily of the same class. Depending on the particular subclass, a collection has
some specific structure. They cover many type including the Java arrays and
the Java classes Vector or HashTable.

There are many iterator methods. This section only describes the one used
in this book.

B.4. DOUBLE DISPATCHING 353

B.3.1 do:

The do: iterator corresponds to the Java for loop. In Smalltalk, however,
there is no need to supply an index. The block supplied as argument of the do:

message is evaluated for each element of the collection. For example, to perform
the message sample on each element of a collection one simply writes:

aCollection do: [:each | each sample].

It is customary to use the variable name each as the argument of the block used
with an iterator method.

B.3.2 collect:

The iterator method collect: has no equivalent in Java. Its results is a col-
lection of the same type1 as the collection to which the message was sent. The
elements of the new collection are the result of the block supplied as argument
to the method. For example, here is how one can construct an array containing
the sum of the squares of the integers 1 to 9:

#(1 2 3 4 5 6 7 8 9) collect: [:each | each squared].

The result of the code above is the array #(1 4 9 16 25 36 49 64 81).

B.3.3 inject:into:

The iterator method inject:into: is a great tool for mathematical evaluation.
As it is rather complex, we shall start with an example. Here is how to compute
the sum of the elements of an array:

anArray inject: 0 into: [:sum :each | sum + each].

The iterator method inject:into: is a keyword message. The first argument
is the initial value used in the summation. The second argument is a block with
two arguments: the first argument is the result of the evaluation of the block
with the preceding element or the initial value if this is the first evaluation;
the second is the element of the collection over which the iterator method is
iterating. The result of the message is the value of evaluating the block on the
last element of the collection.

B.4 Double dispatching

Since the arguments of Smalltalk methods are not typed, a method is able to
accept arguments of different classes as long as all possible argument types have
the same behavior. However, a problem arises when the method must behave
differently depending on the type of the argument.

1There are some special collections for which the type of the result is different.

354 APPENDIX B. SMALLTALK PRIMER FOR JAVA PROGRAMMERS

Polynomial

* aNumberOrPolynomial

Number

timesPolynomial: aPolynomial

Polynomial

timesPolynomial: aPolynomial

Figure B.1: Triple dispatching

For example, the multiplication operator defined for polynomials (c.f. sec-
tion ??) can accept a number or another polynomial. The implementation of
the method strongly differ depending on the type of argument. One possible
implementation could be to test for the type of the argument and switch to the
proper method accordingly. In this case the code would look as follows:

Code example B.1
* aNumberOrPolynomial

^aNumberOrPolynomial class = DhbPolynomial

ifTrue: [self productWithNumber: aNumberOrPolynomial]

ifFalse:[self productWithPolynomial: aNumberOrPolynomial]

The code above is a bad example. This is usually what beginners do, especially
those who still think with a strong legacy coming from other languages.

The elegant solution is called double dispatching and is illustrated on figure
B.1. It merely uses the fact that testing which class an object belongs to is
exactly what the virtual machine is doing when looking for the code of the
method corresponding to a message received by an object. Thus, it is not
necessary to repeat such test. Instead, one delegates the execution of the method
to the argument object. as follows:

Code example B.2
* aNumberOrPolynomial

^ aNumberOrPolynomial timesPolynomial: self

In fact, the sending of the message timesPolynomial: self to the method’s
argument ensures that the types of both operands are now completely known.
One must now implement two versions of the method timesPolynomial:, one
for instances of the class DhbPolynomial and one for the class Number. Within
both versions of the method, the programmer can be sure that the type of the
argument is indeed an instance of class DhbPolynomial.

Figure B.1 shows this processus schematically. Each box shows the class
executing the method on the top and the method with the type of the argument
explicited at the bottom. The arrows represent the sequence of execution.

One caveat with double dispatching is that the order of the arguments is in-
verted. Thus, implementing double dispatching for non commutative operators
— such as subtract, divide, or matrix multiplication — requires some thinking.

B.5. MULTIPLE DISPATCHING 355

Matrix

* aMatrix

Matrix

addWithRegularMatrix:
aRegularMatrix

SymmetrixMatrix

addWithRegularMatrix:
aRegularMatrix

SymmetricMatrix

* aMatrix

Matrix

addWithSymmetricMatrix:
aSymmetricMatrix

SymmetrixMatrix

addWithMatrix: aSymmetricMatrix
class:SymmetricMatrix

SymmetrixMatrix

addWithSymmetricMatrix:
aSymmetricMatrix

Matrix

addWithMatrix: aRegularMatrix
class:Matrix

Matrix

addWithMatrix: aSymmetricMatrix
class:Matrix

SymmetrixMatrix

addWithMatrix: Matrix
class:Matrix

Figure B.2: Triple dispatching

It is easy to understand that double dispatching is much faster that test-
ing the type of the argument. It only requires the invocation of the operation
message, whereas testing requires evaluating the test itself plus a message invo-
cation2.

B.5 Multiple dispatching

The technique of double dispatching can be extended to multiple levels. This is
required when an operation is implemented by a class having several subclasses,
each subclasses requiring a different behavior.

A good example of multiple dispatching is given by the addition between
matrices (c.f. section 8.1.1). The product of two symmetric matrices is a sym-
metric matrix. In all other cases, the result is a non-symmetric matrix. Thus,
the addition operation is delegated a first time to the proper subclass of the
argument and a second time to the class of the first operand. Here we have
triple dispatching. This is shown schematically in figure B.2.

In the case of matrix multiplication, the situation is more complex since
the product is already being dispatched to distinguish between three possible
arguments. Here quadruple dispatching is necessary.

2ifTrue:ifFalse: is a message sent to the result of the testing.

356 APPENDIX B. SMALLTALK PRIMER FOR JAVA PROGRAMMERS

Appendix C

Additional probability
distributions

C.1 Beta distribution

Table C.1 shows the properties of the beta distribution. If the parameters α1 and
α2 are equal to 1 the beta distribution is identical to the uniform distribution
over the interval [0, 1].

The beta distribution is an ad-hoc distribution, which can take many shapes.
Figure C.1 shows a few characteristic shapes for several values of the parameters.
The random variable is limited to the interval [0, 1]. However, any distribution
of a random variable varying over a finite interval can be mapped to a beta
distribution with a suitable variable transformation.

C.1.1 Beta distribution — Smalltalk implementation

Listing C.1 shows the implementation of the beta distribution in Smalltalk.

Listing C.1 Smalltalk implementation of the beta distribution

Class DhbBetaDistribution
Subclass of DhbProbabilityDensity

Instance variable names: alpha1 alpha2 gamma1 gamma2 logNorm

incompleteBetaFunction

Class methods

distributionName

^’Beta distribution’

357

358 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

Table C.1: Properties of the beta distribution

Range of random variable [0, 1]

Probability density function P (x) =
1

B (α1, α2)
xα1−1 (1− x)

α2−1

Parameters 0 < α1 < +∞
0 < α2 < +∞

Distribution function F (x) = B (x;α1, α2)
(c.f. section 7.5)

Average
α1

α1 + α2

Variance
α1α2

(α1 + α2)
2

(α1 + α2 + 1)

Skewness 2
α1 − α2

(α1 + α2 + 2)

Kurtosis

3

√
α1 + α2 + 2

α1α2

{
(α1 + α2 + 1)

α1α2 (α1 + α2 + 2) (α1 + α2 + 3)

×
[
2 (α1 + α2)

2
+ α1α2 (α1 + α2 − 6)

]
− 1
}

fromHistogram: aHistogram

| average variance a b c discr |

(aHistogram minimum < 0 or: [aHistogram maximum > 1])

ifTrue: [^nil].

average := aHistogram average.

variance := aHistogram variance.

a := ((1 - average) / variance - 1) * average.

a > 0

ifFalse:[^nil].

b := (1 / average - 1) * a.

b > 0

ifFalse:[^nil].

^self shape: a shape: b

new

^self error: ’Illegal creation message for this class’

C.1. BETA DISTRIBUTION 359

Figure C.1: Many shapes of the beta distribution

shape: aNumber1 shape: aNumber2

^super new initialize: aNumber1 shape: aNumber2

Instance methods

average

^alpha1 / (alpha1 + alpha2)

changeParametersBy: aVector

alpha1 := alpha1 + (aVector at: 1).

alpha2 := alpha2 + (aVector at: 2).

self computeNorm.

gamma1 := nil.

gamma2 := nil.

incompleteBetaFunction := nil.

computeNorm

logNorm := (alpha1 + alpha2) logGamma - alpha1 logGamma - alpha2

logGamma.

360 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

distributionValue: aNumber

incompleteBetaFunction isNil

ifTrue: [incompleteBetaFunction := DhbIncompleteBetaFunction

shape: alpha1 shape: alpha2].

^incompleteBetaFunction value: aNumber

firstGammaDistribution

gamma1 isNil

ifTrue: [gamma1 := DhbGammaDistribution shape: alpha1 scale:

1].

^gamma1

initialize: aNumber1 shape: aNumber2

(aNumber1 > 0 and: [aNumber2 > 0])

ifFalse: [self error: ’Illegal distribution parameters’].

alpha1 := aNumber1.

alpha2 := aNumber2.

self computeNorm.

^self

kurtosis

^3 * (alpha1 + alpha2 + 1) * ((alpha1 + alpha2) squared * 2 + (

(alpha1 + alpha2 - 6) * alpha1 * alpha2)

/ ((alpha1 + alpha2 + 2) * (alpha1 + alpha2 + 3) *

alpha1 * alpha2)) - 3

parameters

^Array with: alpha1 with: alpha2

random

| r |

r := self firstGammaDistribution random.

^r / (self secondGammaDistribution random + r)

secondGammaDistribution

gamma2 isNil

ifTrue: [gamma2 := DhbGammaDistribution shape: alpha2 scale:

1].

^gamma2

C.2. CAUCHY DISTRIBUTION 361

skewness

^(alpha1 + alpha2 + 1) sqrt * 2 * (alpha2 - alpha1) / ((

alpha1 * alpha2) sqrt * (alpha1 + alpha2 + 2))

value: aNumber

^(aNumber > 0 and: [aNumber < 1])

ifTrue:

[((aNumber ln * (alpha1 - 1)) + ((1 - aNumber) ln *

(alpha2 - 1)) + logNorm) exp]

ifFalse: [0]

variance

^alpha1 * alpha2 / ((alpha1 + alpha2) squared * (alpha1 +

alpha2 + 1))

C.2 Cauchy distribution

Table C.2 shows the properties of the Cauchy distribution. Physicists use the
Cauchy distribution under the name Breit-Wigner or resonnance curve. All
moments of order greater than 0 are not defined as the corresponding integrals
diverge.

Table C.2: Properties of the Cauchy distribution

Range of random variable]−∞,+∞[

Probability density function P (x) =
β

π
[
(x− µ)

2
+ β2

]
Parameters −∞ < µ < +∞

0 < β < +∞

Distribution function F (x) =
1

2
+

1

π
arctan

(
x− µ
β

)
Average (undefined)

Variance (undefined)

Skewness (undefined)

Kurtosis (undefined)

362 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

Figure C.2: Cauchy distribution for a few parameters

Figure C.2 shows the shapes taken by the Cauchy distribution for a few
values of the parameters. These parameter are identical to the parameters of
the normal distributions shown in figure 9.3 so that the reader can compare
them.

C.2.1 Cauchy distribution — Smalltalk implementation

Listing C.2 shows the implementation of the Cauchy distribution in Smalltalk.
This implementation returns µ for the average although the average is not

defined mathematically. Other moment related quantities are returning nil.

Listing C.2 Smalltalk implementation of the Cauchy distribution

Class DhbCauchyDistribution
Subclass of DhbProbabilityDensity

Instance variable names: mu beta

Class methods

distributionName

^’Cauchy distribution’

fromHistogram: aHistogram

C.2. CAUCHY DISTRIBUTION 363

^self shape: aHistogram average

scale: 4 * aHistogram variance

/ (Float pi * (aHistogram maximum squared +

aHistogram minimum squared))

sqrt

new

^self shape: 0 scale: 1

shape: aNumber1 scale: aNumber2

^super new initialize: aNumber1 scale: aNumber2

Instance methods

acceptanceBetween: aNumber1 and: aNumber2

^self privateAcceptanceBetween: aNumber1 and: aNumber2

average

^mu

changeParametersBy: aVector

mu := mu + (aVector at: 1).

beta := beta + (aVector at: 2).

distributionValue: aNumber

^((aNumber - mu) / beta) arcTan / Float pi + (1 / 2)

initialize: aNumber1 scale: aNumber2

mu := aNumber1.

beta := aNumber2.

^self

parameters

^Array with: mu with: beta

privateInverseDistributionValue: aNumber

364 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

^((aNumber - (1 / 2)) * Float pi) tan * beta + mu

standardDeviation

^nil

value: aNumber

^beta / (Float pi * (beta squared + (aNumber - mu) squared))

valueAndGradient: aNumber

| dp denominator |

dp := self value: aNumber.

denominator := 1 / ((aNumber - mu) squared + beta squared).

^Array with: dp

with: (DhbVector with: 2 * dp * (aNumber - mu) *

denominator

with: dp * (1 / beta - (2 * beta *

denominator)))

variance

^nil

C.3 Exponential distribution

Table C.3 shows the properties of the exponential distribution.
The exponential distribution describes the distribution of the time of oc-

currence between independent random events with a constant probability of
occurrence. It is used in queuing theory and in nuclear physics. Figure C.3
shows the shapes taken by the exponential distribution for a few values of the
parameters.

C.3.1 Exponential distribution — Smalltalk implementa-
tion

Listing C.3 shows the implementation of the exponential distribution in Smalltalk.

Listing C.3 Smalltalk implementation of the exponential distribution

Class DhbExponentialDistribution
Subclass of DhbProbabilityDensity

C.3. EXPONENTIAL DISTRIBUTION 365

Table C.3: Properties of the exponential distribution

Range of random variable [0,+∞[

Probability density function P (x) =
1

β
e−

x
β

Parameters 0 < β < +∞

Distribution function F (x) = 1− e−
x
β

Average β

Variance β2

Skewness 2

Kurtosis 6

Instance variable names: beta

Class methods

distributionName

^’Exponential distribution’

fromHistogram: aHistogram

| mu |

aHistogram minimum < 0

ifTrue: [^nil].

mu := aHistogram average.

^mu > 0 ifTrue: [self scale: aHistogram average]

ifFalse:[nil]

new

^super new initialize: 1

scale: aNumber

^super new initialize: aNumber

Instance methods

acceptanceBetween: aNumber1 and: aNumber2

366 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

Figure C.3: Exponential distribution for a few parameters

^self privateAcceptanceBetween: aNumber1 and: aNumber2

average

^beta

changeParametersBy: aVector

beta := beta + (aVector at: 1).

distributionValue: aNumber

^[1 - ((aNumber / beta negated) exp)]

when: ExAll do: [:signal | signal exitWith: 0]

initialize: aNumber

aNumber > 0

ifFalse: [self error: ’Illegal distribution parameters’].

beta := aNumber.

^self

kurtosis

C.4. FISHER-TIPPETT DISTRIBUTION 367

^6

parameters

^Array with: beta

privateInverseDistributionValue: aNumber

^(1 - aNumber) ln negated * beta

random

^DhbMitchellMooreGenerator new floatValue ln * beta negated

skewness

^2

standardDeviation

^beta

value: aNumber

^[(aNumber / beta) negated exp / beta]

when: ExAll do: [:signal | signal exitWith: 0]

valueAndGradient: aNumber

| dp |

dp := self value: aNumber.

^Array with: dp

with: (DhbVector with: (aNumber / beta - 1) * dp / beta)

C.4 Fisher-Tippett distribution

Table C.4 shows the properties of the fishertippett distribution. In this table
γ = 0.5772156649 . . . is the Euler constant.

The Fisher-Tippett distribution describes the distribution of extreme values.
Figure C.4 shows the shapes taken by the Fisher-Tippett distribution for a few
values of the parameters. These parameter are identical to the parameters of
the normal distributions shown in figure 9.3 so that the reader can compare
them.

368 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

Table C.4: Properties of the Fisher-Tippett distribution

Range of random variable]−∞,+∞[

Probability density function P (x) =
1

β
e−

x−α
β −e

− x−α
β

Parameters −∞ < α < +∞
0 < β < +∞

Distribution function F (x) = e−e
− x−α

β

Average α+ γβ

Variance
πβ√

6

Skewness 1.3

Kurtosis 2.4

C.4.1 Fisher-Tippett distribution — Smalltalk implemen-
tation

Listing C.4 shows the implementation of the Fisher-Tippett distribution in
Smalltalk.

Listing C.4 Smalltalk implementation of the Fisher-Tippett distribution

Class DhbFisherTippettDistribution
Subclass of DhbProbabilityDensity

Instance variable names: alpha beta

Class methods

distributionName

^’Fisher-Tippett distribution’

fromHistogram: aHistogram

| beta |

beta := aHistogram standardDeviation.

beta = 0 ifTrue: [^nil].

beta := beta * (6 sqrt / Float pi).

^self shape: aHistogram average - (0.5772156649 * beta) scale:

beta

C.4. FISHER-TIPPETT DISTRIBUTION 369

Figure C.4: Fisher-Tippett distribution for a few parameters

new

^self shape: 0 scale: 1

shape: aNumber1 scale: aNumber2

^super new initialize: aNumber1 scale: aNumber2

Instance methods

average

^0.577256649 * beta + alpha

changeParametersBy: aVector

alpha := alpha + (aVector at: 1).

beta := beta + (aVector at: 2).

distributionValue: aNumber

| arg |

arg := (aNumber - alpha) / beta.

arg := arg < DhbFloatingPointMachine new largestExponentArgument

negated

370 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

ifTrue: [^0]

ifFalse:[arg negated exp].

^arg > DhbFloatingPointMachine new largestExponentArgument

ifTrue: [1]

ifFalse:[arg negated exp]

initialize: aNumber1 scale: aNumber2

aNumber2 > 0

ifFalse: [self error: ’Illegal distribution parameters’].

alpha := aNumber1.

beta := aNumber2.

^self

integralFrom: aNumber1 to: aNumber2

^(DhbRombergIntegrator new: self from: aNumber1 to: aNumber2)

evaluate

integralUpTo: aNumber

^(DhbRombergIntegrator new:

[:x | x = 0 ifTrue: [0] ifFalse: [(self value: 1 / x)

/ x squared]]

from: 1 / aNumber to: 0) evaluate

kurtosis

^2.4

parameters

^Array with: alpha with: beta

random

| t |

[t := DhbMitchellMooreGenerator new floatValue ln negated.

t > 0] whileFalse: [].

^t ln negated * beta + alpha

skewness

^1.3

C.5. LAPLACE DISTRIBUTION 371

standardDeviation

^Float pi * beta / (6 sqrt)

value: aNumber

| arg |

arg := (aNumber - alpha) / beta.

arg := arg > DhbFloatingPointMachine new largestExponentArgument

ifTrue: [^0]

ifFalse:[arg negated exp + arg].

^arg > DhbFloatingPointMachine new largestExponentArgument

ifTrue: [0]

ifFalse:[arg negated exp / beta]

valueAndGradient: aNumber

| dp dy y|

dp := self value: aNumber.

y := (aNumber - alpha) / beta.

dy := (y negated exp - 1).

^Array with: dp

with: (DhbVector with: dy * dp / beta negated

with: dp * (y * dy + 1) / beta negated)

C.5 Laplace distribution

Table C.5 shows the properties of the Laplace distribution. The Laplace dis-
tribution is an ad-hoc distribution made of two exponential distributions, one
on each side of the peak. Figure C.5 shows the shapes taken by the Laplace
distribution for a few values of the parameters. These parameter are identical
to the parameters of the normal distributions shown in figure 9.3 so that the
reader can compare them.

C.5.1 Laplace distribution — Smalltalk implementation

Listing C.5 shows the implementation of the Laplace distribution in Smalltalk.

Listing C.5 Smalltalk implementation of the Laplace distribution

Class DhbLaplaceDistribution
Subclass of DhbProbabilityDensity

Instance variable names: mu beta

372 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

Table C.5: Properties of the Laplace distribution

Range of random variable]−∞,+∞[

Probability density function P (x) =
1

2β
e−
|x−α|
β

Parameters −∞ < α < +∞
0 < β < +∞

Distribution function F (x) =

1
2e
−α−xβ for x < α

1− 1
2e
− x−αβ for x ≥ α

Average α+ β

Variance 2β2

Skewness 0

Kurtosis 3

Class methods

distributionName

^’Laplace distribution’

fromHistogram: aHistogram

^self shape: aHistogram average scale: (aHistogram variance / 2)

sqrt

new

^self shape: 0 scale: 1

shape: aNumber1 scale: aNumber2

^super new initialize: aNumber1 scale: aNumber2

Instance methods

average

^mu

C.5. LAPLACE DISTRIBUTION 373

Figure C.5: Laplace distribution for a few parameters

changeParametersBy: aVector

mu := mu + (aVector at: 1).

beta := beta + (aVector at: 2).

distributionValue: aNumber

^aNumber > mu

ifTrue: [1 - (((aNumber - mu) / beta) negated exp / 2)]

ifFalse:[(((aNumber - mu) / beta) exp / 2)]

initialize: aNumber1 scale: aNumber2

mu := aNumber1.

beta := aNumber2.

^self

kurtosis

^3

parameters

^Array with: mu with: beta

374 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

random

| r |

r := DhbMitchellMooreGenerator new floatValue ln * beta negated.

^DhbMitchellMooreGenerator new floatValue > 0.5

ifTrue: [mu + r]

ifFalse:[mu - r]

skewness

^0

standardDeviation

^beta * (2 sqrt)

value: aNumber

^((aNumber - mu) / beta) abs negated exp / (2 * beta)

valueAndGradient: aNumber

| dp |

dp := self value: aNumber.

^Array with: dp

with: (DhbVector with: (aNumber - mu) sign * dp / beta

with: (((aNumber - mu) abs / beta -

1) * dp / beta))

C.6 Log normal distribution

Table C.6 shows the properties of the log normal distribution. The log normal
distribution is used to describe quantities that are the product of a large number
of other quantities. It is an ad-hoc distribution whose shape is similar to that
of gamma distributions with α > 1. Figure C.6 shows the shapes taken by the
log normal distribution for a few values of the parameters.

C.6.1 Log normal distribution — Smalltalk implementa-
tion

Listing C.6 shows the implementation of the log normal distribution in Smalltalk.

C.6. LOG NORMAL DISTRIBUTION 375

Table C.6: Properties of the log normal distribution

Range of random variable [0,+∞[

Probability density function P (x) =
1

x
√

2πσ2
e−

(ln x−µ)2

2σ2

Parameters −∞ < µ < +∞
0 < σ < +∞

Distribution function (no closed expression)

Average eµ+σ2

2

Variance e2µ+σ2
(
eσ

2 − 1
)

Skewness
√
eσ2 − 1

(
eσ

2

+ 2
)

Kurtosis e4σ2

+ 2e3σ2

+ 3e2σ2 − 6

Listing C.6 Smalltalk implementation of the log normal distribution

Class DhbLogNormalDistribution
Subclass of DhbProbabilityDensityWithUnknownDistribution

Instance variable names: normalDistribution

Class methods

distributionName

^’Log normal distribution’

fromHistogram: aHistogram

| average variance sigma2 |

aHistogram minimum < 0

ifTrue: [^nil].

average := aHistogram average.

average > 0

ifFalse: [^nil].

variance := aHistogram variance.

sigma2 := (variance / average squared + 1) ln.

sigma2 > 0

ifFalse: [^nil].

^self new: (average ln - (sigma2 * 0.5)) sigma: sigma2 sqrt

376 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

Figure C.6: Log normal distribution for a few parameters

new

^self new: 0 sigma: 1

new: aNumber1 sigma: aNumber2

^super new initialize: aNumber1 sigma: aNumber2

Instance methods

average

^(normalDistribution variance * 0.5 + normalDistribution

average) exp

changeParametersBy: aVector

normalDistribution changeParametersBy: aVector.

fourthCentralMoment

| y x |

y := normalDistribution average exp.

x := normalDistribution variance exp.

^(y squared squared) * (x squared)

* (((x squared * x - 4) * (x squared) + 6) * x - 3)

C.6. LOG NORMAL DISTRIBUTION 377

initialize: aNumber1 sigma: aNumber2

normalDistribution := DhbNormalDistribution new: aNumber1 sigma:

aNumber2.

^self

kurtosis

| x |

x := normalDistribution variance exp.

^((x + 2) * x + 3) * (x squared) - 6

parameters

^normalDistribution parameters

random

^normalDistribution random exp

skewness

| x |

x := normalDistribution variance exp.

^(x - 1) sqrt * (x + 2)

thirdCentralMoment

| y x |

y := normalDistribution average exp.

x := normalDistribution variance exp.

^(y squared * y) * (x raisedTo: (3/2))

* ((x squared negated + 3) * x - 2)

value: aNumber

^aNumber > 0

ifTrue: [(normalDistribution value: aNumber ln) / aNumber]

ifFalse:[0]

variance

^(normalDistribution average * 2 + normalDistribution variance)

exp * (normalDistribution variance exp - 1)

378 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

C.7 Triangular distribution

Table C.7 shows the properties of the triangular distribution. The triangular

Table C.7: Properties of the triangular distribution

Range of random variable [a, b]

Probability density function P (x) =

2(x−a)

(b−a)(c−a) if a ≤ x ≤ c,

2(b−x)
(b−a)(b−c) if c ≤ x ≤ b.

Parameters −∞ < a ≤ c ≤ b < +∞
a < b

Distribution function F (x) =

(x−a)2

(b−a)(c−a) if a ≤ x ≤ c,

1− (b−x)2

(b−a)(b−c) if c ≤ x ≤ b.

Average
a+ b+ c

3

Variance
a2 + b2 + c2 − ab− ac− bc

18

Skewness
a3 + b3 + c3

135
+ . . .

Kurtosis . . .

distribution is ad-hoc distribution used when a variable is limited to an interval.

C.7.1 Triangular distribution — Smalltalk implementa-
tion

Listing C.7 shows the implementation of the triangular distribution in Smalltalk.

Listing C.7 Smalltalk implementation of the triangular distribution

Class DhbTriangularDistribution
Subclass of DhbProbabilityDensity

Instance variable names: lowLimit highLimit peak

Class methods

distributionName

C.7. TRIANGULAR DISTRIBUTION 379

^’Triangular distribution’

fromHistogram: aHistogram

| b c|

b := aHistogram standardDeviation * 1.73205080756888

new

^self new: (1 / 2) from: 0 to: 1

new: aNumber1 from: aNumber2 to: aNumber3

^super new initialize: aNumber1 from: aNumber2 to: aNumber3

Instance methods

acceptanceBetween: aNumber1 and: aNumber2

^self privateAcceptanceBetween: aNumber1 and: aNumber2

average

^(lowLimit + peak + highLimit) / 3

changeParametersBy: aVector

lowLimit := lowLimit + (aVector at: 1).

highLimit := highLimit + (aVector at: 2).

peak := peak + (aVector at: 3).

distributionValue: aNumber

| norm |

^(aNumber between: lowLimit and: highLimit)

ifTrue: [aNumber < peak

ifTrue: [norm := (highLimit - lowLimit) * (

peak - lowLimit).

(aNumber - lowLimit) squared /

norm

]

ifFalse:[aNumber > peak

ifTrue: [norm := (highLimit

- lowLimit) * (highLimit - peak).

1 - ((

380 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

highLimit - aNumber) squared / norm)

]

ifFalse:[(peak - lowLimit)

/ (highLimit - lowLimit)]

]

]

ifFalse:[0]

initialize: aNumber1 from: aNumber2 to: aNumber3

(aNumber2 < aNumber3 and: [aNumber1 between: aNumber2 and:

aNumber3])

ifFalse: [self error: ’Illegal distribution parameters’].

peak := aNumber1.

lowLimit := aNumber2.

highLimit := aNumber3.

^self

inverseAcceptanceAfterPeak: aNumber

^ highLimit - (((1 - aNumber) * (highLimit - lowLimit) * (

highLimit - peak)) sqrt)

inverseAcceptanceBeforePeak: aNumber

^ (aNumber * (highLimit - lowLimit) * (peak - lowLimit)) sqrt

+ lowLimit

kurtosis

^(-6/10)

parameters

^Array with: lowLimit with: highLimit with: peak

privateInverseDistributionValue: aNumber

^(peak - lowLimit) / (highLimit - lowLimit) > aNumber

ifTrue: [self inverseAcceptanceBeforePeak: aNumber]

ifFalse: [self inverseAcceptanceAfterPeak: aNumber]

skewness

C.8. UNIFORM DISTRIBUTION 381

^(((lowLimit squared * lowLimit + (peak squared * peak) + (

highLimit squared * highLimit)) / 135)

-(((lowLimit squared * peak) + (lowLimit squared * highLimit) +

(peak squared * lowLimit) + (peak squared * highLimit) + (highLimit

squared * lowLimit) + (highLimit squared * peak))/90)

+(2 * lowLimit * peak * highLimit / 45)) / (self

standardDeviation raisedToInteger: 3)

value: aNumber

| norm |

^(aNumber between: lowLimit and: highLimit)

ifTrue: [aNumber < peak

ifTrue: [norm := (highLimit - lowLimit) * (

peak - lowLimit).

2 * (aNumber - lowLimit) / norm

]

ifFalse:[aNumber > peak

ifTrue: [norm := (highLimit

- lowLimit) * (highLimit - peak).

2 * (highLimit

- aNumber) / norm

]

ifFalse:[2 / (highLimit -

lowLimit)]

]

]

ifFalse:[0]

variance

^(lowLimit squared + peak squared + highLimit squared - (

lowLimit * peak) - (lowLimit * highLimit) - (peak * highLimit)) /

18

C.8 Uniform distribution

Table C.8 shows the properties of the uniform distribution. The uniform dis-
tribution is another ad-hoc distribution used when a variable is limited to an
interval.

C.8.1 Uniform distribution — Smalltalk implementation

Listing C.8 shows the implementation of the uniform distribution in Smalltalk.

382 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

Table C.8: Properties of the uniform distribution

Range of random variable [a, b]

Probability density function P (x) =
1

b− a

Parameters −∞ < a < b < +∞

Distribution function F (x) =
x− a
b− a

Average a+b
2

Variance (b−a)2

12

Skewness 0

Kurtosis −1.2

Listing C.8 Smalltalk implementation of the uniform distribution

Class DhbUniformDistribution
Subclass of DhbProbabilityDensity

Instance variable names: lowLimit highLimit

Class methods

distributionName

^’Uniform distribution’

from: aNumber1 to: aNumber2

^super new initialize: aNumber1 to: aNumber2

fromHistogram: aHistogram

| b c|

b := aHistogram standardDeviation * 1.73205080756888

new

^self from: 0 to: 1

C.8. UNIFORM DISTRIBUTION 383

Instance methods

acceptanceBetween: aNumber1 and: aNumber2

^self privateAcceptanceBetween: aNumber1 and: aNumber2

average

^(highLimit + lowLimit) / 2

changeParametersBy: aVector

lowLimit := lowLimit + (aVector at: 1).

highLimit := highLimit + (aVector at: 2).

distributionValue: aNumber

aNumber < lowLimit

ifTrue: [^0].

^aNumber < highLimit

ifTrue: [(aNumber - lowLimit) / (highLimit - lowLimit)]

ifFalse:[1]

initialize: aNumber1 to: aNumber2

aNumber1 < aNumber2

ifFalse: [self error: ’Illegal distribution parameters’].

lowLimit := aNumber1.

highLimit := aNumber2.

^self

kurtosis

^-12 / 10

parameters

^Array with: lowLimit with: highLimit

privateInverseDistributionValue: aNumber

^(highLimit - lowLimit) * aNumber + lowLimit

skewness

384 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

^0

standardDeviation

^(highLimit - lowLimit) / 3.46410161513775

value: aNumber

^(aNumber between: lowLimit and: highLimit)

ifTrue: [1/(highLimit - lowLimit)]

ifFalse:[0]

variance

^(highLimit - lowLimit) squared / 12

C.9 Weibull distribution

Table C.9 shows the properties of the Weibull distribution. The Weibull distri-

Table C.9: Properties of the Weibull distribution

Range of random variable [0,+∞[

Probability density function P (x) =
αxα−1

βα
e−(xβ)

α

Parameters 0 < α <∞
0 < β <∞

Distribution function F (x) = 1− e−(xβ)
α

Average β
αΓ
(

1
α

)
Variance β2

α

[
2Γ
(

2
α

)
− 1

αΓ
(

1
α

)2]
Skewness

Kurtosis

bution is used to model the behavior of reliability. It is defined by its acceptance
function. Its shape is similar to that of the gamma distribution and, thus, can
be applied to the same types of problems.Figure C.7 shows the shapes taken by
the Weibull distribution for a few values of the parameters.

C.9. WEIBULL DISTRIBUTION 385

Figure C.7: Weibull distribution for a few parameters

Because the Weibull distribution is defined by its distribution function, the
estimation of the initial values of the parameters from a histogram is made
by computing the distribution function at 2 positions. These positions are
determined using the histogram limits and the average so that the estimation
of the distribution function using the histogram has enough significance.

C.9.1 Weibull distribution — Smalltalk implementation

Listing C.9 shows the implementation of the Weibull distribution in Smalltalk.

Listing C.9 Smalltalk implementation of the Weibull distribution

Class DhbWeibullDistribution
Subclass of DhbProbabilityDensity

Instance variable names: alpha beta norm

Class methods

distributionName

^’Weibull distribution’

fromHistogram: aHistogram

386 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

| average xMin xMax accMin accMax |

aHistogram minimum < 0

ifTrue: [^nil].

average := aHistogram average.

xMin := (aHistogram minimum + average) / 2.

accMin := (aHistogram countsUpTo: xMin) / aHistogram totalCount.

xMax := (aHistogram maximum + average) / 2.

accMax := (aHistogram countsUpTo: xMax) / aHistogram totalCount.

^[self solve: xMin acc: accMin upper: xMax acc: accMax]

when: ExAll do: [:signal | signal exitWith: nil]

new

^self error: ’Illegal creation message for this class’

shape: aNumber1 scale: aNumber2

^super new initialize: aNumber1 scale: aNumber2

solve: lowX acc: lowAcc upper: highX acc: highAcc

| lowLnAcc highLnAcc deltaLnAcc lowLnX highLnX |

lowLnAcc := (1 - lowAcc) ln negated ln.

highLnAcc := (1 - highAcc) ln negated ln.

deltaLnAcc := highLnAcc - lowLnAcc.

lowLnX := lowX ln.

highLnX := highX ln.

^self shape: deltaLnAcc / (highLnX - lowLnX)

scale: ((highLnAcc * lowLnX - (lowLnAcc * highLnX)) /

deltaLnAcc) exp

Instance methods

acceptanceBetween: aNumber1 and: aNumber2

^self privateAcceptanceBetween: aNumber1 and: aNumber2

average

^(1 / alpha) gamma * beta / alpha

changeParametersBy: aVector

alpha := alpha + (aVector at: 1).

beta := beta + (aVector at: 2).

self computeNorm.

C.9. WEIBULL DISTRIBUTION 387

computeNorm

norm := alpha/ (beta raisedTo: alpha).

distributionValue: aNumber

^aNumber > 0

ifTrue: [1 - (((aNumber / beta) raisedTo: alpha) negated

exp)]

ifFalse:[0]

initialize: aNumber1 scale: aNumber2

(aNumber1 > 0 and: [aNumber2 > 0])

ifFalse: [self error: ’Illegal distribution parameters’].

alpha := aNumber1.

beta := aNumber2.

self computeNorm.

^self

parameters

^Array with: alpha with: beta

privateInverseDistributionValue: aNumber

^((1 - aNumber) ln negated raisedTo: (1 / alpha)) * beta

value: aNumber

^((aNumber / beta) raisedTo: alpha) negated exp * (aNumber

raisedTo: (alpha - 1)) * norm

variance

^(beta squared / alpha) * ((2 / alpha) gamma * 2 - ((1 / alpha

) gamma squared / alpha))

388 APPENDIX C. ADDITIONAL PROBABILITY DISTRIBUTIONS

Appendix D

Accurate accumulation of
expectation values

D.1 Accurate accumulation of central moments

This section shows the detailed derivation of equation 9.13 of section 9.2. The
aim of this demonstration is to expressed the central moment of order k esti-
mated over a sample of n+1 measurements as a function of the central moments
of order lower or equal to k estimated over a sample of n measurements. The
estimator of the central moment of order k is defined by:

〈
(x− x̄)

k
〉
n+1

=
1

n+ 1

n+1∑
i=1

(
xi − 〈x〉n+1

)k
. (D.1)

We shall now concentrate on changing the sum of equation D.1 in such way as
to bring quantities which are already computed. The sum of D.1 is equal to

S = (n+ 1)
〈

(x− x̄)
k
〉
n+1

=

n+1∑
i=1

(
xi − 〈x〉n+1

)k
=

n+1∑
i=1

(
xi − 〈x〉n + 〈x〉n − 〈x〉n+1

)k
=

n+1∑
i=1

[(xi − 〈x〉n) + ∆n+1]
k
,

(D.2)

389

390APPENDIX D. ACCURATE ACCUMULATION OF EXPECTATION VALUES

where we have introduced the correction defined in equation 9.12. We can now
transform the expression inside the sum using the binomial expansion:

S =

n+1∑
i=1

k∑
l=0

(
l

k

)
(xi − 〈x〉n)

l
∆k−l
n+1

=

k∑
l=0

(
l

k

) n+1∑
i=1

(xi − 〈x〉n)
l
∆k−l
n+1

(D.3)

In the second part of equation D.3 the two sums have been permuted. Like in
the case of the average, we now make the last term of the inner sum explicit.
The remaining sum can then be expressed as a function of the estimators of
the central moments over n measurements. The term containing the (n + 1)th

measurement can be rewritten as a function of the correction defined in equation
9.12. We have:

S =

k∑
l=0

(
l

k

)[
(xn+1 − 〈x〉n)

l
∆k−l
n+1 + ∆k−l

n+1

n+1∑
i=1

(xi − 〈x〉n)
l

]

=

k∑
l=0

(
l

k

)[
(n+ 1)

l

(
xn+1 − 〈x〉n

n+ 1

)l
∆k−l
n+1 + n

〈
(x− x̄)

l
〉
n

∆k−l
n+1

]

=

k∑
l=0

(
l

k

)[
(−n− 1)

l
∆k
n+1 + n

〈
(x− x̄)

l
〉
n

∆k−l
n+1

]
=

k∑
l=0

(
l

k

)
(−n− 1)

l
∆k
n+1 +

k∑
l=0

(
l

k

)
n
〈

(x− x̄)
l
〉
n

∆k−l
n+1.

(D.4)
In the last line of equation D.4 the first term contains the binomial expansion
of the following expression

k∑
l=0

(
l

k

)
(−n− 1)

l
= [1 + (−n− 1)]

k
= (−n)

k
. (D.5)

Thus,we have:

S = (−n∆n+1)
k

+ n

k∑
l=0

(
l

k

)〈
(x− x̄)

l
〉
n

∆k−l
n+1. (D.6)

In this last equation, the first term of the sum is just ∆k
n+1 and the second

term of the sum vanishes by definition of the average x̄. This gives us the final
expression to compute the estimator of the central moment computed over n+1
measurements as a function of the estimator of the central moment computed
over n measurements〈

(x− x̄)
k
〉
n+1

=
n

n+ 1

{[
1− (−n)

k−1
]

∆k
n+1 +

k∑
l=2

(
l

k

)〈
(x− x̄)

l
〉
n

∆k−l
n+1

}
.

(D.7)
Quod erat demonstrandum. . .

D.2. ACCURATE ACCUMULATION OF THE COVARIANCE 391

D.2 Accurate accumulation of the covariance

This section shows the detailed derivation of equation 12.6. To simplify notation,
the components xi and xj have been renamed x and y respectively.

The estimator of the covariance of two random variables x and y over n
measurements is defined by:

covn (x, y) = 〈(xi − 〈x〉n) (yi − 〈y〉n)〉n =
1

n

n∑
i=1

(xi − 〈x〉n) (yi − 〈y〉n) . (D.8)

The estimator of the covariance of x and y over n + 1 measurements is then
given by:

covn+1 (x, y) =
1

n+ 1

n+1∑
i=1

(
xi − 〈x〉n+1

) (
yi − 〈y〉n+1

)
. (D.9)

The sum in the equation above can then be expressed as:

Cn+1 = (n+ 1)
〈(
xi − 〈x〉n+1

) (
yi − 〈y〉n+1

)〉
n+1

=

n+1∑
i=1

(
xi − 〈x〉n+1

) (
yi − 〈y〉n+1

)
=

n+1∑
i=1

(
xi − 〈x〉n + 〈x〉n − 〈x〉n+1

) (
yi − 〈y〉n + 〈y〉n − 〈y〉n+1

)
=

n+1∑
i=1

(xi − 〈x〉n + ∆x,n+1) (yi − 〈y〉n + ∆y,n+1) ,

(D.10)
where we have introduce the corrections to the estimation of the expectation
value of x and y as follow:

∆x,n+1 = 〈x〉n − 〈x〉n+1

=
〈x〉n − xn+1

n+ 1 ,

∆y,n+1 = 〈y〉n − 〈y〉n+1

=
〈y〉n − yn+1

n+ 1 .

(D.11)

Thus, we have:

Cn+1 =

n+1∑
i=1

[(xi − 〈x〉n) (yi − 〈y〉n) + ∆y,n+1 (xi − 〈x〉n)

+∆x,n+1 (yi − 〈y〉n) + ∆x,n+1∆y,n+1]

=

n+1∑
i=1

(xi − 〈x〉n) (yi − 〈y〉n) + (n+ 1) ∆x,n+1∆y,n+1

+∆y,n+1 (xn+1 − 〈x〉n) + ∆x,n+1 (yn+1 − 〈x〉n) .
(D.12)

392APPENDIX D. ACCURATE ACCUMULATION OF EXPECTATION VALUES

The last line is obtained from the definition of the expectation values 〈x〉n and
〈y〉n.Using the definitions of ∆x,n+1 and ∆y,n+1 we have:

Cn+1 =

n+1∑
i=1

(xi − 〈x〉n) (yi − 〈y〉n)− (n+ 1) ∆x,n+1∆y,n+1

=

n∑
i=1

(xi − 〈x〉n) (yi − 〈y〉n)− (n+ 1) ∆x,n+1∆y,n+1

+ (xn+1 − 〈x〉n) (yn+1 − 〈y〉n)

= n covn (x, y) + n (n+ 1) ∆x,n+1∆y,n+1.

(D.13)

Now, we obtain the expression for the estimator of the covariance over n + 1
measurements as a function of the estimator of the covariance over n measure-
ments:

covn+1 (x, y) =
n

n+ 1
covn (x, y) + n∆x,n+1∆y,n+1. (D.14)

Note that this equation yields equation 9.14 if one put y = x.

Bibliography

[Abramovitz & Stegun] Milton Abramovitz and Irene A. Stegun, Handbook of
Mathematical Functions, Dover publications, Inc., 1964.

[Achtley & Bryant] William R. Achtley and Edwin H. Bryant editors,
Benchmark Papers in Systematic and Evolutionary Bi-
ology, Vol. 1, Dowden, Hutchinson & Ross, Inc., Strouds-
burg, Pa.; distributed by Halsted Press [John Wi-
ley & Sons, Inc.], New York, 1975.

[Bass] J. Bass, Cours de Mathmatiques, Tome II, Masson, 1968.

[Beck] Kent Beck, Smalltalk Best Practice Patterns, Prentice
Hall, 1997.

[Berry & Linoff] Michael J.A. Berry and Gordon Linoff, Data mining
for marketing, sales and customer support, John Wi-
ley & Sons, Inc., 1997.

[Cormen et al.] Thomas H. Cormen, Charles E. Leiserson and Ronald L.
Rivest, Introduction to Algorithms, McGraw-Hill, 1990.

[Gamma et al.] Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides , Design Patterns, Addison-Wesley, 1995.

[Gullberg] Jan Gullberg, Mathematics From the Birth of the Num-
bers, W.W. Norton & Company, 1997.

[Ifrah] Georges Ifrah, Histoire Universelle des Chiffres, Robert
Laffont, 1994.

[Knudth 1] Donald E. Knuth, The Art of Computer Programming
Vol. 1, Addison-Wesley, 1973.

[Knudth 2] Donald E. Knuth, The Art of Computer Programming
Vol. 2, Addison-Wesley, 1981.

[Knudth 3] Donald E. Knuth, The Art of Computer Programming
Vol. 3, Addison-Wesley, 1973.

393

394 BIBLIOGRAPHY

[Koza et al.] John R. Koza, Forrest H, Bennett III, David Andre and
Martin A. Keane, Genetic Programming III, Morgan
Kaufmann, 1999.

[Law & Kelton] Averill M. Law and W. David Kelton, Simulation Mod-
eling and Analysis, McGraw-Hill, 1982.

[Phillips & Taylor] G.M. Phillips and P.J. Taylor, Theory and Applications
of Numerical Analysis, Academic Press: London and
New York, 1973.

[Press et al.] William H. Press, Saul A. Teukolsky, William T. Vet-
terling and Brian P. Flannery, Numerical recipes for C
: the art of scientific computing, Cambridge University
Press, 1992.

[Alpert et al.] Sherman R. Alpert, Kyle Brown and Bobby Woolf,
Design Pattern Smalltalk Companion, Addison-Wesley,
1998.

[Smith] David N. Smith, IBM Smalltalk, The language, Addison-
Wesley, 1995.

[Flanagan] David Flanagan, Java in a nutshell, O’Reilly, 1996.

