
Learning Object-Oriented
Programming and Design with TDD

A different way to model
the world
Stéphane Ducasse
http://stephane.ducasse.free.fr

http://www.pharo.org

W3S04

http://stephane.ducasse.free.fr
http://www.pharo.org

Model of a the World

 There is not one single model of the world
 There are multiple ways to capture a model of the world

◦ Data driven (often used with relational database)
◦ Object-Oriented Design
◦ Procedural modeling
◦ Reactive programming

 A program models the world

W3S04 2 / 20

Object-Orientation

 Is a paradigm, not a technology
 Reflects, simulates the real world
 Organized in terms of decentralized organizations
 Tries to

◦ handle complexity
◦ enhance reusability
◦ minimize maintenance cost

W3S04 3 / 20

Comparing

 Procedural
 Object-Oriented Design

W3S04 4 / 20

Structured/Procedural Programming Point of View

 Focuses upon structures and procedures
 Data is shared between procedures
 Data accessible from procedures (and client procedures too)
 Procedures know about the structure of data

W3S04 5 / 20

Structured/Procedural Programming Point of View

 No late binding (can be simulated with pointer tables)
 Requires large number of procedures and procedure names
 Single namespace for procedures
 No decoupling between messages and methods: just procedures accessing

data

W3S04 6 / 20

Let us Compare

Problem: compute the total area of a set of geometric shapes

myPicture := Picture new.
myPicture add: (Square x: 3 y: 3 width: 3).
myPicture add: (Rectangle x: 5 y: with:5 height: 3)
myPicture add: (Circle x: 12 y: 3 radius: 3).

myPicture area

W3S04 7 / 20

Procedural Way: Centralized Way (in Java)

double pictureArea() {
double total = 0;
for (Shape shape : shapes) {
switch (shape.kind()) {
case SQUARE:
Square square = (Square) shape;
total += square.width * square.width; break;

case RECTANGLE:
Rectangle rectangle = (Rectangle) shape;
total += rectangle.width * rectangle.height; break;

case CIRCLE:
Circle circle = (Circle) shape;
total += java.lang.Math.PI * circle.radius * circle.radius / 2; break;
} }

return total; }

W3S04 8 / 20

Procedural Way: a Centralized Way (in Pharo)

pictureArea
| total |
total := 0.
self shapes do [:aShape |
aShape kind == #SQUARE

ifTrue: [total := total + aShape width * aShape width]
ifFalse: [
aShape kind == #RECTANGLE
ifTrue: [
total := aShape width * aShape height]
ifFalse: [
total := total + (Float pi * shape radius squared / 2)]

^ total

W3S04 9 / 20

Procedural Way: Drawbacks

 All the logic is defined in a single place
◦ monolithic

 No reuse of the main function pictureArea
 What if we want to add a new shape?

◦ need to recompile the area procedure
◦ need to check for the new shape

W3S04 10 / 20

The OO Way: Delegate to Other Entities
Picture >> area
| total |
total := 0.
self shapes do [:aShape |
total := total + aShape area].
^ total

Square >> area
^ self side squared

Rectangle >> area
^ self width * self height

Circle >> area
^ (Float pi * self radius squared / 2)

W3S04 11 / 20

OOP Advantages

 Adding a new shape
◦ add a class with the area message
◦ create objects of this class

 Reuse of the Picture >> area
◦ we do not have to modify it each time a shape is added/removed

 Reuse of the definition of the shapes
 Decentralised view of computation
 Each shape class represents its data/logic internally

W3S04 12 / 20

There is a catch

To be able to reuse the code in Picture >> area and add new shapes
 It is important that all the shapes can answer to the message area
 Polymorphism: different objects answering the same messages with different

execution

W3S04 13 / 20

Thinking about names

Naming Picture >> area the same way than Shape methods (area)
 support that picture can be used as a shape
 Composite design pattern
 Possibility to rethink/refactor change area logic independently from clients

W3S04 14 / 20

Stepping back: What is OOP?

 An application is a collection of interacting entities (objects).
 Objects are characterized by behavior and state.
 Objects are described by methods, data are stored in private variables.
 Objects communicates by exchanging messages.
 Objects expose polymorphic interface to be able to be substituted for other

objects.
 Message passing late bound the selection of the method to be executed in

response to messages.
 Ideally everything is an object

W3S04 15 / 20

OOP Cornerstones: Encapsulation/Composition

Encapsulation
 Hide and control the internal representation of an object. This will ease further

evolution
 Clients do not access object internals

Composition
 An object can be composed of several simpler other objects

W3S04 16 / 20

OOP Cornerstones: Distribution of responsibility

Distribution of responsibility and delegation
 Computing a problem is the results of many objects performing (sub) tasks.

Late binding and message passing
 The receiver of a message determines which method will be executed on it.

◦ What to perform? the message
◦ How to perform? the method

Polymorphism
 Objects exhibiting the same interface can be substitued
 Class hierarchy defines families of polymorphic (kind of substituable) objects

W3S04 17 / 20

OOP Cornerstones: Reuse via abstraction extension

Inheritance structures abstractions as conceptual hierarchies
 OrderedCollection is a kind of Collection
 Array is a kind of Collection

Inheritance supports reuse and extensions in subclasses

W3S04 18 / 20

What you should know

 OOP describes programs as collaborating entities
 Objects encapsulate data and expose API of behavior
 Late binding selects the method to be executed in reaction to a message
 Classes reuse (extend, modify their superclass behavior)
 Good design promote polyrmorphism

W3S04 19 / 20

A course by Stéphane Ducasse
http://stephane.ducasse.free.fr

Reusing some parts of the Pharo Mooc by

Damien Cassou, Stéphane Ducasse, Luc Fabresse
http://mooc.pharo.org

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

http://stephane.ducasse.free.fr
http://mooc.pharo.org
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

