
CHA P T E R 1
TinyBlog: presentation and

model

In this project, we will guide you to develop a mini project: a small web ap-
plication, named TinyBlog, that manages a blog system (see its final state in
Figure 1.1). The idea is that a visitor of the web site can read the posts and
that the post author could connect to the web site to admin the application
and manage its posts (add, remove and modify existing ones).

TinyBlog is a small pedagogical application that will show you how to define
and deploy a web application using Pharo / Seaside / Mongo and frameworks
available in Pharo such as NeoJSON. We will show you how to expose your
application via a REST server. Presented solutions are sometimes not the
best to offer you a room for improvement. Our goal is not to be exhaustive.
We present one way to develop TinyBlog nevertheless we invite the reader
to read further references such as books or tutorials on Pharo to deepen his
expertise and enhance his application.

1.1 Installing Pharo

In this project, we assume that you use Pharo 5.0 and since we will also use
some extra libraries and frameworks dedicated to web development such as:
Seaside, Magritte, Bootstrap, Voyage, VoyageMongo, ... we provide a spe-
cific Pharo web image that already includes all of these libraries. You can
download it at the following address: http://mooc.pharo.org/. For this project,
we suggest to always use this image because it contains all the packages you
need.

1

http://mooc.pharo.org/


TinyBlog: presentation and model

Figure 1.1 Final state of the TinyBlog application

1.2 The model of posts

The model part of TinyBlog is really simple. We start here with the TBPost
class.

TBPost Class

We adopt the following naming convention: all class names will be prefixed
by TB (for TinyBlog). You must choose another prefix (e.g. TBM) if you want
to be able to load the correction code in the same Pharo image as your code
to compare both implementations.

Define the TBPost class using:

Object subclass: #TBPost
instanceVariableNames: 'title text date category visible'
classVariableNames: ''
package: 'TinyBlog'

Description of a post

A blog post is described by 5 instance variables.

2



1.3 Post Visibility

Variable Signification

title post title
text post text
date date of writing
category name of the category of the post
visible is the post publicly visible or not?

All of these variables have corresponding accessor methods in the ’accessing’
protocol.

TBPost >> title
^ title

TBPost >> title: anObject
title := anObject

TBPost >> text
^ text

TBPost >> text: anObject
text := anObject

TBPost >> date
^ date

TBPost >> date: anObject
date := anObject

TBPost >> visible
^ visible

TBPost >> visible: anObject
visible := anObject

TBPost >> category
^ category

TBPost >> category: anObject
category := anObject

1.3 Post Visibility

We should add methods to make a post visible or not and also test if it is visi-
ble. Those methods are defined in the ’action’ protocol.

TBPost >> beVisible
self visible: true

TBPost >> notVisible
self visible: false

TBPost >> isVisible
^ self visible

3



TinyBlog: presentation and model

1.4 Initialization

The initializemethod (’initialization’ protocol) sets the date to the cur-
rent day and the visibility to false: the user must explicitly make a post vis-
ible. This allows him to write drafts and only publish when the post is fin-
ished. By default, a post belongs to the ’Unclassified’ category. This category
name is defined on class-side by the unclassifiedTagmethod.

TBPost class >> unclassifiedTag
^ 'Unclassified'

Pay attention the method unclassifiedTag should be defined on the class-
side of the class TBPost (click on the class button to define it). The other
methods are defined on the instance-side: it means that they will be applied
to TBBlog instances.

TBPost >> initialize
self category: TBPost unclassifiedTag.
self date: Date today.
self notVisible

In the above solution, it would be better that the initializemethod does
not hard code the reference to the TBPost class. We will present and discuss
this point later in the MOOC.

1.5 Posts creation methods

On class-side, we add methods to ease posts creation for blogs that belong to
a category or not.

TBPost class >> title: aTitle text: aText
^ self new

title: aTitle;
text: aText;
yourself

TBPost class >> title: aTitle text: aText category: aCategory
^ (self title: aTitle text: aText)

category: aCategory;
yourself

1.6 Creating posts

You can now create some posts. Open the Playground tool and execute the
following snippet:

TBPost
title: 'Welcome in TinyBlog'
text: 'TinyBlog is a small blog engine made with Pharo.'

4



1.7 Testing post classification

category: 'TinyBlog'

If you inspect the resulting object of the above expression (right click on the
expression and select the ”inspect it” menu entry), you will get an inspector
on the newly created TBPost object.

1.7 Testing post classification

We define a method for testing if a post has a category or not.

TBPost >> isUnclassified
^ self category = TBPost unclassifiedTag

Similarly to initialize, it would be better to not hard code the reference to
the TBPost class.

1.8 Conclusion

We have now a first part of the model and it is a good time to save your Pharo
image (menu item ’save’). In the next session we will show you how to save
your code (package) with the Pharo versioning system.

5


	TinyBlog: presentation and model
	Installing Pharo
	The model of posts
	TBPost Class
	Description of a post

	Post Visibility
	Initialization
	Posts creation methods
	Creating posts
	Testing post classification
	Conclusion


