
Pharo Syntax in a
Nutshell
Damien Cassou, Stéphane Ducasse and Luc Fabresse

W1S05

http://www.pharo.org

http://www.pharo.org

Getting a Feel About Syntax

Give you the general feel to get started:
 Overview of syntactical elements and constructs
 Three kinds of messages to minimize parentheses
 Overview of block syntax

This lecture is an overview
No stress if you do not get it right now!
We will repeat in future lectures

W1S05 2 / 28

The Complete Syntax on a Postcard
No need to understand everything! But "everything" is on this
screen :)

exampleWithNumber: x
"This method illustrates the complete syntax."
<aMethodAnnotation>

| y |
true & false not & (nil isNil)
ifFalse: [self halt].
y := self size + super size.
#($a #a 'a' 1 1.0)
do: [:each | Transcript

show: (each class name);
show: (each printString);
show: ' '].

^ x < y

W1S05 3 / 28

Hello World

'Hello World' asMorph openInWindow

We send the message asMorph to a string and obtain a
graphical element that we open in a window by sending it the
message openInWindow

W1S05 4 / 28

Getting the Pharo Logo from the Web

(ZnEasy getPng: 'http://pharo.org/web/files/pharo.png')
asMorph openInWindow

 ZnEasy designates a class
◦ Class names start with an uppercase character

 Message getPng: is sent to the ZnEasy class with a string
as argument
◦ getPng: is a keyword message

 ’http://pharo.org/web/files/pharo.png’ is a string
 Messages asMorph and openInWindow are executed from

left to right

W1S05 5 / 28

Syntactic Elements

comment "a comment"
character $c $# $@
string ’lulu’ ’l”idiot’
symbol (unique string) #mac #+
literal array #(12 23 36)
integer 1, 2r101
real 1.5 6.03e-34,4, 2.4e7
boolean true, false

(instances of True and False)
undefined nil

(instance of UndefinedObject)
point 10@120

W1S05 6 / 28

Essential Constructs

 Temporary variable declaration: | var |
 Variable assignment: var := aValue
 Separator: message . message
 Return: ^ expression
 Block (lexical closures, a.k.a anonymous method)

[:x | x + 2] value: 5
> 7

W1S05 7 / 28

Essence of Pharo Computation

 Objects (created using messages)
 Messages
 Blocks (anonymous methods)

W1S05 8 / 28

Three Kinds of Messages to Minimize Parentheses

 Unary message
◦ Syntax: receiver selector
◦ 9 squared
◦ Date today

 Binary message
◦ Syntax: receiver selector argument
◦ 1+2
◦ 3@4

 Keyword message
◦ Syntax: receiver key1: arg1 key2: arg2
◦ 2 between: 10 and: 20

W1S05 9 / 28

Message Precedence

(Msg) > Unary > Binary > Keywords
 First we execute ()
 Then unary, then binary and finally keyword messages

This order minimizes () needs
But let us start with messages

W1S05 10 / 28

Sending an Unary Message

receiver selector

Example

10000 factorial

We send the message factorial to the object 10000

W1S05 11 / 28

Sending a Binary Message

receiver selector argument

Example

1 + 3

We send the message + to the object 1 with the object 3 as
argument

W1S05 12 / 28

Sending a Keyword Message

receiver keyword1: arg1 keyword2: arg2

equivalent to C like syntax

receiver.keyword1keyword2(arg1, arg2)

W1S05 13 / 28

Example: Sending an HTTP Request

ZnClient new
url: 'https://en.wikipedia.org/w/index.php';
queryAt: 'title' put: 'Pharo';
queryAt: 'action' put: 'edit';
get

 new is a unary message sent to a class
 url:, queryAt:put: are keyword messages
 get is a unary message
 ; (called a cascade) sends all messages to the same

receiver

W1S05 14 / 28

Messages are Everywhere!

 Conditionals
 Loops
 Iterators
 Concurrency

W1S05 15 / 28

Conditionals are also Message Sends

factorial
"Answer the factorial of the receiver."
self = 0 ifTrue: [^ 1].
self > 0 ifTrue: [^ self * (self− 1) factorial].
self error: 'Not valid for negative integers'

 ifTrue: is sent to an object, a boolean!
 ifFalse:ifTrue:, ifTrue:ifFalse: and ifFalse: also exist

You can read their implementation, this is not magic!

W1S05 16 / 28

Loops are also Message Sends

1 to: 4 do: [:i | Transcript << i]
> 1
> 2
> 3
> 4

 to:do: is a message sent to an integer
 Many other messages implement loops: timesRepeat:,
to:by:do:, whileTrue:, whileFalse:, ...

W1S05 17 / 28

With Iterators

We ask the collection to perform the iteration on itself

#(1 2−4−86)
do: [:each | Transcript show: each abs printString ; cr]
> 1
> 2
> 4
> 86

W1S05 18 / 28

Blocks Look like Functions

fct(x) = x*x+3

fct := [:x | x * x + 3]

fct(2)

fct value: 2

W1S05 19 / 28

Blocks

 Kind of anonymous methods

[:each | Transcript show: each abs printString ; cr]

 Are lexical closures
 Are plain objects:

◦ can be passed as method arguments
◦ can be stored in variables
◦ can be returned

W1S05 20 / 28

Block Usage

#(1 2−4−86)
do: [:each | Transcript show: each abs printString ; cr]
> 1
> 2
> 4
> 86

 [] delimits the block
 :each is the block argument
 each will take the value of each element of the array

W1S05 21 / 28

Class Definition Template

W1S05 22 / 28

Class Definition within the IDE

W1S05 23 / 28

Method Definition

 Methods are public
 Methods are virtual (i.e., looked up at runtime)
 By default return self

messageSelectorAndArgumentNames
"comment stating purpose of message"

| temporary variable names |
statements

W1S05 24 / 28

Method Definition Example

W1S05 25 / 28

Messages Summary

3 kinds of messages:
 Unary: Node new
 Binary: 1+2, 3@4
 Keywords: 2 between: 10 and: 20

Message Priority:
 (Msg) > unary > binary > keyword
 Same-Level messages: from left to right

W1S05 26 / 28

Conclusion

 Compact syntax
 Few constructs but really expressive
 Mainly messages and closures
 Three kinds of messages
 Support for Domain Specific Languages

W1S05 27 / 28

A course by

and

in collaboration with

Inria 2020

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

