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Behind the Scene

 What is happening when we recompile a class?
 What are the reflective operations that take place?
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A Typical Scenario

 Define one class
 Define some methods
 Create some instances
 Add an instance variable to the class
 Existing instances got mutated
 Continue working
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Operations Supporting Interactive Coding

 Dynamic class (re)definition
 Method recompilation
 Transparent instance migration

◦ Collecting instances
◦ Switching pointers from old to new instances
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Getting All Instances

Dictionary allInstances size

Window allInstances first close
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Getting All Pointers to an Object

anObject pointersTo

returns all objects that store a reference to anObject
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Symmetric Pointer Swapping

anObject become: anotherObject

 All the pointers to anObject point now to anotherObject
 And "the inverse" atomically
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Symmetric Pointer Swapping

| pt1 pt2 pt3 |
pt1 := 0@0.
pt2 := pt1.
pt3 := 100@100.
pt1 become: pt3.
self assert: pt2 = (100@100).
self assert: pt3 = (0@0).
self assert: pt1 = (100@100)
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Asymmetric Pointer Swapping

Swap all the pointers from one object to the other
(asymmetric)

anObject becomeForward: anotherObject

W7S04 9 / 18



Example: Asymmetric Pointer Swapping

| pt1 pt2 pt3 |
pt1 := 0@0.
pt2 := pt1.
pt3 := 100@100.
pt1 becomeForward: pt3.
self assert: pt1 = (100@100).
self assert: pt1 == pt2.
self assert: pt2 == pt3.
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Changing the Class of an Object

Class >> adoptInstance: anInstance
"Change the class of anInstance to me. Returns the class
rather than the modified instance"

 Limited reflective feature
 Target class should have the same format as the original

one
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Essence of a Class

1. A format i.e., a number of instance variables and types
(named/indexed)

2. A superclass
3. A method dictionary
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Class initialize

Behavior >> initialize

super initialize.
self superclass: Object.
self methodDict: self emptyMethodDictionary.
self setFormat: Object format.
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Instance Specific Behavior

| behavior model newClass |
behavior := Behavior new.
behavior superclass: Model.
behavior setFormat: Model format.
model := Model new.
model primitiveChangeClassTo: behavior new.
self assert: model class = behavior.
self assert: model class superclass = Model.
behavior compile: 'foo ^ 2'.
self assert: model foo = 2.
self should: [Model new foo] raise: MessageNotUnderstood
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Instance Specific Behavior
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Anonymous Classes For Spying

| logClass set |
logClass := Behavior new.
logClass superclass: Set;
setFormat: Set format.
logClass compile: 'add: anObject
Transcript show: ''adding '', anObject printString; cr.
^ super add: anObject'.

set := Set new.
set add: 1.
set class.
set primitiveChangeClassTo: logClass basicNew.
set add: 2.
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Conclusion

 Reflection is a solid foundation for innovation and language
extensibility

 Avoid using reflective operations in domain code
 Understand when you absolutely need reflection
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