
Reflective Operations for
Live Programming

Damien Cassou, Stéphane Ducasse and Luc Fabresse

W7S04

http://www.pharo.org

http://www.pharo.org

Behind the Scene

 What is happening when we recompile a class?
 What are the reflective operations that take place?

W7S04 2 / 18

A Typical Scenario

 Define one class
 Define some methods
 Create some instances
 Add an instance variable to the class
 Existing instances got mutated
 Continue working

W7S04 3 / 18

Operations Supporting Interactive Coding

 Dynamic class (re)definition
 Method recompilation
 Transparent instance migration

◦ Collecting instances
◦ Switching pointers from old to new instances

W7S04 4 / 18

Getting All Instances

Dictionary allInstances size

Window allInstances first close

W7S04 5 / 18

Getting All Pointers to an Object

anObject pointersTo

returns all objects that store a reference to anObject

W7S04 6 / 18

Symmetric Pointer Swapping

anObject become: anotherObject

 All the pointers to anObject point now to anotherObject
 And "the inverse" atomically

W7S04 7 / 18

Symmetric Pointer Swapping

| pt1 pt2 pt3 |
pt1 := 0@0.
pt2 := pt1.
pt3 := 100@100.
pt1 become: pt3.
self assert: pt2 = (100@100).
self assert: pt3 = (0@0).
self assert: pt1 = (100@100)

W7S04 8 / 18

Asymmetric Pointer Swapping

Swap all the pointers from one object to the other
(asymmetric)

anObject becomeForward: anotherObject

W7S04 9 / 18

Example: Asymmetric Pointer Swapping

| pt1 pt2 pt3 |
pt1 := 0@0.
pt2 := pt1.
pt3 := 100@100.
pt1 becomeForward: pt3.
self assert: pt1 = (100@100).
self assert: pt1 == pt2.
self assert: pt2 == pt3.

W7S04 10 / 18

Changing the Class of an Object

Class >> adoptInstance: anInstance
"Change the class of anInstance to me. Returns the class
rather than the modified instance"

 Limited reflective feature
 Target class should have the same format as the original

one

W7S04 11 / 18

Essence of a Class

1. A format i.e., a number of instance variables and types
(named/indexed)

2. A superclass
3. A method dictionary

W7S04 12 / 18

Class initialize

Behavior >> initialize

super initialize.
self superclass: Object.
self methodDict: self emptyMethodDictionary.
self setFormat: Object format.

W7S04 13 / 18

Instance Specific Behavior

| behavior model newClass |
behavior := Behavior new.
behavior superclass: Model.
behavior setFormat: Model format.
model := Model new.
model primitiveChangeClassTo: behavior new.
self assert: model class = behavior.
self assert: model class superclass = Model.
behavior compile: 'foo ^ 2'.
self assert: model foo = 2.
self should: [Model new foo] raise: MessageNotUnderstood

W7S04 14 / 18

Instance Specific Behavior

W7S04 15 / 18

Anonymous Classes For Spying

| logClass set |
logClass := Behavior new.
logClass superclass: Set;
setFormat: Set format.
logClass compile: 'add: anObject
Transcript show: ''adding '', anObject printString; cr.
^ super add: anObject'.

set := Set new.
set add: 1.
set class.
set primitiveChangeClassTo: logClass basicNew.
set add: 2.

W7S04 16 / 18

Conclusion

 Reflection is a solid foundation for innovation and language
extensibility

 Avoid using reflective operations in domain code
 Understand when you absolutely need reflection

W7S04 17 / 18

A course by

and

in collaboration with

Inria 2020

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

