
Iterators
Damien Cassou, Stéphane Ducasse and Luc Fabresse

W3S09

http://www.pharo.org

http://www.pharo.org

What You Will Learn

 Understand the power of iterators
 Offer an overview of iterators

W3S09 2 / 24

Pharo code is Compact!
ArrayList<String> strings = new ArrayList<String>();
for(Person person: persons)
strings.add(person.name());

is expressed as

strings := persons collect: [:person | person name]

 Yes in Java 8.0 it is finally simpler

strings = persons.stream().map(person−> person.getName())

 But it is like that in Pharo since day one!
 Iterators are deep into the core of the language and

libraries

W3S09 3 / 24

A First Iterator - collect:

collect: applies the block to each element and returns a
collection (of the same kind than the receiver) with the results

#(2−3 4−35 4) collect: [:each | each abs]
> #(2 3 4 35 4)

 collect: evaluates the block for each element (using value:)
 In the block, each element is sent abs (absolute)
 collect: returns a new collection (of the same kind of the

receiver) with all results
 [Think object] We ask the collection to do something for us

W3S09 4 / 24

Another collect: Example

We want to know if each elements is odd or even

#(16 11 68 19) collect: [:i | i odd]

> #(false true false true)

W3S09 5 / 24

Choose your camp!

#(16 11 68 19) collect: [:i | i odd]

We can also do it that way! (We copied the definition of
collect:)

| result |
aCol := #(16 11 68 19).
result := aCol species new: aCol size.
1 to: aCollection size do:
[:each | result at: each put: (aCol at: each) odd].

^ result

W3S09 6 / 24

Part of the Collection Hierarchy
Iterators work polymorphically on the entire collection
hierarchy. Below a part of the Collection hierarchy.

W3S09 7 / 24

Think objects!

 With iterators we tell the collection to iterate on itself
 As a client we do not have to know the internal logic of the

collection
 Each collection can implement differently the iterator

W3S09 8 / 24

Basic Iterators Overview

 do: (iterate)
 collect: (iterate and collect results)
 select: (select matching elements)
 reject: (reject matching elements)
 detect: (get first element matching)
 detect:ifNone: (get first element matching or a default

value)
 includes: (test inclusion)
 and a lot more...

W3S09 9 / 24

do: an Action on Each Clement
 Iterates on each elements
 Applies the block on each elements

#(16 11 68 19) do: [:each | Transcript show: each ; cr]

Here we print each element and insert a carriage return

W3S09 10 / 24

select: Elements Matching a Criteria

To select some elements, use select:

#(16 11 68 19) select: [:i | i odd]
> #(11 19)

W3S09 11 / 24

With Unary Messages, No Block Needed

When a block is just one message, we can pass an unary
message selector

#(16 11 68 19) select: [:i | i odd]

is equivalent to

#(16 11 68 19) select: #odd

W3S09 12 / 24

reject: Some Elements Matching a Criteria

To filter some elements, use reject:

#(16 11 68 19) reject: [:i | i odd]
> #(16 68)

W3S09 13 / 24

detect: The First Elements That...

To find the first element that matches, use detect:

#(16 11 68 19) detect: [:i | i odd]
> 11

W3S09 14 / 24

detect:ifNone:

To find the first element that matches else return a value, use
detect:ifNone:
#(16 12 68 20) detect: [:i | i odd] ifNone: [0]
> 0

W3S09 15 / 24

Some Powerful Iterators

 anySatisfy: (tests if one object is satisfying the criteria)
 allSatisfy: (tests if all objects are satisfying the criteria)
 reverseDo: (do an action on the collection starting from the

end)
 doWithIndex: (do an action with the element and its index)
 pairsDo: (evaluate aBlock with my elements taken two at a

time.)
 permutationsDo: ...

W3S09 16 / 24

Iterating Two Structures

To iterate with:do:
#(1 2 3)
with: #(10 20 30)
do: [:x :y | Transcript show: (y * x) ; cr]

with:do: requires two structures of the same length

W3S09 17 / 24

Use do:separatedBy:

String streamContents: [:s |
#('a' 'b' 'c')
do: [:each | s << each]
separatedBy: [s << ', ']

]
> 'a, b, c'

W3S09 18 / 24

Grouping Elements

To group elements according to a grouping function:
groupedBy:

#(1 2 3 4 5 6 7) groupedBy: #even
> a PluggableDictionary(false−>#(1 3 5 7) true−>#(2 4 6))

W3S09 19 / 24

Flattening Results

How to remove one level of nesting in a collection? Use
flatCollect:
#(#(1 2) #(3) #(4) #(5 6)) collect: [:each | each]
> #(#(1 2) #(3) #(4) #(5 6)))

#(#(1 2) #(3) #(4) #(5 6)) flatCollect: [:each | each]
> #(1 2 3 4 5 6)

W3S09 20 / 24

Opening The Box

 You can learn and discover the system
 You can define your own iterator
 For example how do: is implemented?

SequenceableCollection >> do: aBlock
"Evaluate aBlock with each of the receiver's elements as the

argument."

1 to: self size do: [:i | aBlock value: (self at: i)]

W3S09 21 / 24

Analysis

 Iterators are really powerful because they support
polymorphic code

 All the collections support them
 New ones are defined
 Missing controlled navigation as in the Iterator design

pattern

W3S09 22 / 24

Summary

 Iterators are your best friends
 Simple and powerful
 Enforce encapsulation of collections and containers

W3S09 23 / 24

A course by

and

in collaboration with

Inria 2016

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

