
Learning Object-Oriented
Programming and Design with TDD

About Testing
Stéphane Ducasse
http://stephane.ducasse.free.fr

http://www.pharo.org
W4S06

http://stephane.ducasse.free.fr
http://www.pharo.org

Goal of the Lecture

 Why tests are important?
 What are their advantages?
 What are the techniques to write good tests?

W4S06 2 / 23

Pros

 Specifying expected behavior and results (see previous lectures)
 Finding problems
 Understanding code
 Increase trust

W4S06 3 / 23

Finding Problems: Pros

 Find bugs when they appear
 Improve customer trust
 Reproduce complex scenari
 Check contracts of super types
 Guarantee old bugs won’t come back
 Isolate the problem

W4S06 4 / 23

Finding Problems: Characteristics of a Good Test
Suite

 Check extreme cases (e.g., null, 0 and empty)
 Check complex cases (e.g., exceptions, network pbs)
 1 test for each bug (at least)
 Good coverage
 Check abstractions
 Check units independently

W4S06 5 / 23

Understanding Code

testConvert
self assert: Color white convert = '#FFFFFF'.
self assert: Color red convert = '#FF0000'.
self assert: Color black convert = '#000000'

W4S06 6 / 23

Understanding Code

testConvert2
| table aColorString |
table := #('0' '1' '2' '3' '4' '5' '6' '7' '8' '9' 'A' 'B' 'C' 'D' 'E' 'F').

table do: [:each |
aColorString := '#', each, each, '0000'.
self assert: ((Color fromString: aColorString) convert sameAs: aColorString)].

table do: [:each |
aColorString := '#', '00', each, each, '00'.
self assert: ((Color fromString: aColorString) convert sameAs: aColorString)].

table do: [:each |
aColorString := '#', '0000', each, each.
self assert: ((Color fromString: aColorString) convert sameAs: aColorString)].

W4S06 7 / 23

Understanding Code

testBitShi�
self assert: (2r11 bitShi�: 2) equals: 2r1100.
self assert: (2r1011 bitShi�:−2) equals: 2r10.

testShi�OneLe�ThenRight
"Shi� 1 bit le� then right and test for 1"
1 to: 100 do: [:i | self assert: ((1 bitShi�: i) bitShi�: i negated) = 1].

W4S06 8 / 23

Understanding Code: Pros

 Give simple and reproducible examples
 Explain an API
 Offer up-to-date ’documentation’
 Check conformity of new code
 Offer a first client to new code
 Force a modular design

W4S06 9 / 23

Understanding Code: Characteristics of a Good
Test Suite

 Deterministic
 Automatic
 Self-explained
 Simple
 Unit

W4S06 10 / 23

Increasing Trust: Pros

 Accelerate bug detection
 Accelerate new code checking
 Ease refactorings
 Prevent regressions

W4S06 11 / 23

Increasing Trust: Characteristics of a Good Test
Suite

 Change less frequently than the rest
 Good code coverage
 Deterministic

W4S06 12 / 23

Collateral Pros

 Improve feeling of customers who care
 Allow for automatic bug fixing
 Improve type inference
 Provide examples to variable values

W4S06 13 / 23

Testing Abstractions

How do you test contracts of abstract types?

W4S06 14 / 23

Testing Abstractions
How do you test that one and only one state is active at any time?

W4S06 15 / 23

Testing Abstractions

testOnlyOneValidStateAtEachMoment
| action |
action := self createAction.
self assert: action isReady.
self deny: action isInProgress. self deny: action isFinished.

[action isFinished] whileFalse: [
action doStep.
self deny: action isReady.
self assert: action isFinished = action isInProgress not].

self deny: action isReady. self deny: action isInProgress.
self assert: action isFinished

W4S06 16 / 23

Testing Abstractions
 Parallel hierarchies
 Test must be in the highest abstraction
 Factory method

W4S06 17 / 23

Mocking
How do you test that a questionnaire only accepts compatible answers from the
user?

W4S06 18 / 23

Mocking
How do you test that a questionnaire only accepts compatible answers from the
user?

W4S06 19 / 23

Mocking

readAnswerAsLongAsItIsNotCompatible
| nbRejectsBeforeAccept question ui |
nbRejectsBeforeAccept := 3.
question := MockQuestion new nbRejects: nbRejectsBeforeAccept.
ui := MockQuestionnaireUI new.
self assert: ui nbReadAnswers equals: 0.
self assert: question nbAcceptAnswerCalls equals: 0.
questionnaire runQuestion: question on: ui.
self assert: ui nbReadAnswers equals: nbRejectsBeforeAccept + 1.
self assert: question nbAcceptAnswerCalls equals: nbRejectsBeforeAccept + 1.

W4S06 20 / 23

Mocking

 Mocks are reusable across tests
 Mocks can be generated with mocking frameworks

W4S06 21 / 23

Conclusion

 Talking about tests is good
 Implementing tests and feeling their power is better!

W4S06 22 / 23

A course by Stéphane Ducasse
http://stephane.ducasse.free.fr

Reusing some parts of the Pharo Mooc by

Damien Cassou, Stéphane Ducasse, Luc Fabresse
http://mooc.pharo.org

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

http://stephane.ducasse.free.fr
http://mooc.pharo.org
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

