
Learning Object-Oriented
Programming and Design with TDD

Use vs. Inheritance
Stéphane Ducasse
http://stephane.ducasse.free.fr

http://www.pharo.org
W6S06

http://stephane.ducasse.free.fr
http://www.pharo.org

Outline

 An exercise
 Some criteria
 Solutions
 Comparing solutions

W6S06 2 / 20

Exercise Set Up

Imagine the TextEditor class and several algorithms
 formatWithTex (t TextEditor)
 formatFastColoring (t TextEditor)
 formatSlowButPreciseColoring (t TextEditor)

How can we create an editor that will format differently texts?

W6S06 3 / 20

Next step

 Propose one solution
 Propose different solutions
 Define some criteria
 Compare the approaches using such criteria

W6S06 4 / 20

Solution 1: Inheritance

TextEditor subclass: #SlowFormatingTextEditor

SlowFormatingTextEditor >> format
self formatSlowButPreciseColoring: text

TextEditor subclass: #FastFormatingTextEditor

SlowFormatingTextEditor >> format
self formatFastColoring: text

TextEditor subclass: #NullFormatingTextEditor

NullFormatingTextEditor >> format
^ self "do nothing"

W6S06 5 / 20

Inheritance

text
format

TextEditor

format
FastFormatingTextEditor

format
SlowFormatingTextEditor

format
NullFormatingTextEditor

W6S06 6 / 20

Solution 2: With conditionals

text
formatSlowButPrecise: t
formatFastColoring: t
formatWithTex: t

TextEditor

TextEditor >> format
currentSelection = #slow
ifTrue: [self formatSlowButPreciseColoring: text]
ifFalse: [currentSelection = #fast
ifTrue: [self formatFastColoring: text]
....]

W6S06 7 / 20

Alternate with Registry and Meta Programming

Object subclass: #TextEditor
currentSelection formatters text

TextEditor class >> initialize
self formatters
at: #slow put: #slowFormat: ;
at: #fast put: #fastFormat: ;
at: #null put: #nullFormat: ;
at: #tex put: #texFormat:

TextEditor >> format
self perform: (formatters at: currentSelection) with: text

What are your criterias to compare these and other solutions?

W6S06 8 / 20

Criteria

 Yes what are they?

W6S06 9 / 20

Criteria

 Adding a new formatting algo
◦ what is the cost to define a new formatting algorithm

 Dynamically use a formatter
◦ can I switch dynamically to a new formatting algorithm

 Packaging
◦ can I deploy a new formatting algorithm separately from others

W6S06 10 / 20

Analysing Solution 1: Inheritance?

Adding a new formatting algo:
 we can add a new formatter

Packaging:
 we can package a new formatter

Not the best solution since:
 you have to create objects of the right class
 it is difficult to change the policy at run-time.

◦ we do not want to have and reopen the texteditor

W6S06 11 / 20

Analysing Solution 1: Inheritance?
You can get an explosion of classes bloated with functionalities
 we do not want a hierarchy for each text editor features to be multiplied with

previous ones
 TextEditor API can get large: no clear identification of responsibility

text
format

TextEditor

format
FastFormatingTextEditor

format
SlowFormatingTextEditor

format
NullFormatingTextEditor

MultipaneSlow...

SinglepaneSlow...

MultipaneNull...

SinglepaneNull...

MultipaneFast...

SinglepaneFast...

SpellMultipaneSlow...

ExtraSpellMultipaneSlow...

W6S06 12 / 20

Analysing Solution 2: Conditionals

Dynamic use: we can use a different formatter dynamically
Adding a new formatting algo:
 adding a version requires to edit and recompile the conditionals

Packaging:
 we cannot package a new algorithm separately

W6S06 13 / 20

Another solution...

Delegating to a formatter
 Sketch the solution

W6S06 14 / 20

Delegating to a formatter

format(Text)

formatter: formatter
text

Editor

format: text

 self formatFastColoring: text

format: t
#formatFastColoring: t

FastFormatter

format: (Text)
Formatter

format: t
#formatSlowButPreci
seColoring: t

SlowFormatter

Client

format: text

 self formatter format: text

format: t
NullFormatter

myEditor formatter: FastFormatter new.
myEditor format.
myEditor formatter: SlowFormatter new.

W6S06 15 / 20

Delegating to a formatter

Dynamic use:
 we can use a different formatter dynamically. Just create a new instance and set

it.

Adding a new formatting algo:
 adding a version is just adding a new class

Packaging:
 we package a new algorithm separately

W6S06 16 / 20

Strategy Design Pattern

 Uniformize the communication (API) between the Editor and the Formatter
◦ all formatters should understand format:

 Modular
 Incremental

W6S06 17 / 20

But there is nothing like a free lunch

 The formatter should access the state (i.e. the text, positions... contained in the
text editor)

 Information should flow between the textEditor and the formatter
 API of textEditor should be opened to support it

W6S06 18 / 20

Conclusion

Inheritance
 is about incremental static definition
 It can lead of static design
 It can help

◦ build dynamic solutions
◦ structure abstractions

 It supports late binding

Delegation (Use)
 can bring runtime flexibility
 can be combined with inheritance

W6S06 19 / 20

A course by Stéphane Ducasse
http://stephane.ducasse.free.fr

Reusing some parts of the Pharo Mooc by

Damien Cassou, Stéphane Ducasse, Luc Fabresse
http://mooc.pharo.org

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

http://stephane.ducasse.free.fr
http://mooc.pharo.org
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

