
Learning Object-Oriented
Programming and Design with TDD

Learning From Real
Examples
Stéphane Ducasse
http://stephane.ducasse.free.fr

http://www.pharo.org
W7S05

http://stephane.ducasse.free.fr
http://www.pharo.org


What You Will Learn

 Thinking about design
 Comparing design
 Techniques also applicable to code/design review
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Studying a Sokoban Implementation
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Looking at the Model
 Block

◦ EmptyBlock
◦ Wall

 GameModel
 GameState
 Maze
 MazeTemplate
 MoveResult

◦ Move
Push

◦ NoMove

We will come back later...
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Views
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Views are Decoupled from Model

Good decomposition View/UIs
 Support multiple views
 Logic of displaying is encapsulated in different objects
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Let us Guess the Model

 Wall
 Floor
 Box
 Robot
 Target
 Board
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Comparing Models

 Wall
 Floor
 Box
 Robot
 Target

Instead we got
 Block

◦ EmptyBlock
◦ Wall

Let us study that...
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Checking API

Type checks and disguided type checks
 often violate the "Don’t Ask, Tell" principle
 favor hardcoded conditional design

For example:
 isEmptyBlock
 isWall

Let us check the way this API is used
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Too Many ifs....

GameView >> drawBlock: aBlock on: aCanvas
(aBlock isWall) ifTrue: [ self drawWall: aCanvas ].
(aBlock isEmptyBlock) ifTrue: [
(aBlock hasPlayer) ifTrue: [
(aBlock hasTarget) ifTrue: [ self drawTargetAndPlayer: aCanvas ].
(aBlock hasTarget) ifFalse: [ self drawPlayer: aCanvas ]].
(aBlock hasPlayer) ifFalse: [
(aBlock hasBox) ifTrue: [
(aBlock hasTarget) ifTrue: [ self drawTargetAndBox: aCanvas ].
(aBlock hasTarget) ifFalse: [ self drawBox: aCanvas ] ].
(aBlock hasBox) ifFalse: [
(aBlock hasTarget) ifTrue: [ self drawTarget: aCanvas ].
(aBlock hasTarget) ifFalse: [ self drawEmptyBlock: aCanvas ] ].

]
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Analysis....

 Changing a block is difficult
 Reuse logic (in another game) is impossible
 Logic is complex
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Why?

 The model only defines
◦ EmptyBlock and
◦ Wall

 There is no Player, no Target, no Box abstraction
 Too much logic is put in EmptyBlock
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A Better Model

 Block
◦ Box
◦ BoxOnTarget
◦ EmptyBlock
◦ Player
◦ PlayerOnTarget
◦ Wall

W7S05 13 / 21



A Possible Solution

GameView >> drawBlock: aBlock on: aCanvas
(aBlock isWall) ifTrue: [ self drawWall: aCanvas ].
(aBlock isEmptyBlock) ifTrue: [
...

Becomes

AthensGameView >> drawBlock: aBlock on: aCanvas
aBlock drawOn: aCanvas view: self

Wall >> drawOn: aCanvas view: aView
aView drawWall: aCanvas

EmptyBlock >> drawOn: aCanvas view: aView
aView drawEmptyBlock: aCanvas
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A Possible Solution: Telling instead of Asking

AthensGameView >> drawBlock: aBlock on: aCanvas
aBlock drawOn: aCanvas view: self

Tells the block that it should be drawn...

Wall >> drawOn: aCanvas view: aView
aView drawWall: aCanvas

The wall tell the canvas that it should be drawn as a wall
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A Possible Solution: Telling instead of Asking

Analysis
 The canvas has still the knowledge how to draw but does not ask the object

about its kind.
 The canvas just tells a block to draw itself
 The current block tells the canvas to draw it accordingly

(see Lecture on double dispatch)
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Back to the Model

What are:
 MoveResult

◦ Move
Push

◦ NoMove
 Kind of Command objects
 Good to support Undo
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Studying the API
MoveResult >> isMove
^ false

MoveResult >> isPush
^ false

MoveResult >> isNoMove
^ true

GameState >> moveBy: aDirection
| moveResult |
moveResult := maze moveBy: aDirection.
(moveResult isMove) ifTrue: [ moves := moves + 1 ].
(moveResult isPush) ifTrue: [
pushes := pushes + 1.
moves := moves + 1 ].
self addMoveResult: moveResult.
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Do not ask tell
GameState >> moveBy: aDirection
| moveResult |
moveResult := maze moveBy: aDirection.
moveResult updateGameState: self.
self addMoveResult: moveResult.

Move >> updateGameState: aGameState
aGameState incrementMoves

Push >> updateGameState: aGameState
super updateGameState: aGameState.
aGameState increasePushes

NoMove >> updateGameState: aGameState
self
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Conclusion

 Messages act as a dispatcher
 Avoid conditional when possible
 Tell do not ask objects
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