
Learning Object-Oriented
Programming and Design with TDD

Learning From Real
Examples
Stéphane Ducasse
http://stephane.ducasse.free.fr

http://www.pharo.org
W7S05

http://stephane.ducasse.free.fr
http://www.pharo.org

What You Will Learn

 Thinking about design
 Comparing design
 Techniques also applicable to code/design review

W7S05 2 / 21

Studying a Sokoban Implementation

W7S05 3 / 21

Looking at the Model
 Block

◦ EmptyBlock
◦ Wall

 GameModel
 GameState
 Maze
 MazeTemplate
 MoveResult

◦ Move
Push

◦ NoMove

We will come back later...

W7S05 4 / 21

Views

W7S05 5 / 21

Views are Decoupled from Model

Good decomposition View/UIs
 Support multiple views
 Logic of displaying is encapsulated in different objects

W7S05 6 / 21

Let us Guess the Model

 Wall
 Floor
 Box
 Robot
 Target
 Board

W7S05 7 / 21

Comparing Models

 Wall
 Floor
 Box
 Robot
 Target

Instead we got
 Block

◦ EmptyBlock
◦ Wall

Let us study that...

W7S05 8 / 21

Checking API

Type checks and disguided type checks
 often violate the "Don’t Ask, Tell" principle
 favor hardcoded conditional design

For example:
 isEmptyBlock
 isWall

Let us check the way this API is used

W7S05 9 / 21

Too Many ifs....

GameView >> drawBlock: aBlock on: aCanvas
(aBlock isWall) ifTrue: [self drawWall: aCanvas].
(aBlock isEmptyBlock) ifTrue: [
(aBlock hasPlayer) ifTrue: [
(aBlock hasTarget) ifTrue: [self drawTargetAndPlayer: aCanvas].
(aBlock hasTarget) ifFalse: [self drawPlayer: aCanvas]].
(aBlock hasPlayer) ifFalse: [
(aBlock hasBox) ifTrue: [
(aBlock hasTarget) ifTrue: [self drawTargetAndBox: aCanvas].
(aBlock hasTarget) ifFalse: [self drawBox: aCanvas]].
(aBlock hasBox) ifFalse: [
(aBlock hasTarget) ifTrue: [self drawTarget: aCanvas].
(aBlock hasTarget) ifFalse: [self drawEmptyBlock: aCanvas]].

]

W7S05 10 / 21

Analysis....

 Changing a block is difficult
 Reuse logic (in another game) is impossible
 Logic is complex

W7S05 11 / 21

Why?

 The model only defines
◦ EmptyBlock and
◦ Wall

 There is no Player, no Target, no Box abstraction
 Too much logic is put in EmptyBlock

W7S05 12 / 21

A Better Model

 Block
◦ Box
◦ BoxOnTarget
◦ EmptyBlock
◦ Player
◦ PlayerOnTarget
◦ Wall

W7S05 13 / 21

A Possible Solution

GameView >> drawBlock: aBlock on: aCanvas
(aBlock isWall) ifTrue: [self drawWall: aCanvas].
(aBlock isEmptyBlock) ifTrue: [
...

Becomes

AthensGameView >> drawBlock: aBlock on: aCanvas
aBlock drawOn: aCanvas view: self

Wall >> drawOn: aCanvas view: aView
aView drawWall: aCanvas

EmptyBlock >> drawOn: aCanvas view: aView
aView drawEmptyBlock: aCanvas

W7S05 14 / 21

A Possible Solution: Telling instead of Asking

AthensGameView >> drawBlock: aBlock on: aCanvas
aBlock drawOn: aCanvas view: self

Tells the block that it should be drawn...

Wall >> drawOn: aCanvas view: aView
aView drawWall: aCanvas

The wall tell the canvas that it should be drawn as a wall

W7S05 15 / 21

A Possible Solution: Telling instead of Asking

Analysis
 The canvas has still the knowledge how to draw but does not ask the object

about its kind.
 The canvas just tells a block to draw itself
 The current block tells the canvas to draw it accordingly

(see Lecture on double dispatch)

W7S05 16 / 21

Back to the Model

What are:
 MoveResult

◦ Move
Push

◦ NoMove
 Kind of Command objects
 Good to support Undo

W7S05 17 / 21

Studying the API
MoveResult >> isMove
^ false

MoveResult >> isPush
^ false

MoveResult >> isNoMove
^ true

GameState >> moveBy: aDirection
| moveResult |
moveResult := maze moveBy: aDirection.
(moveResult isMove) ifTrue: [moves := moves + 1].
(moveResult isPush) ifTrue: [
pushes := pushes + 1.
moves := moves + 1].
self addMoveResult: moveResult.

W7S05 18 / 21

Do not ask tell
GameState >> moveBy: aDirection
| moveResult |
moveResult := maze moveBy: aDirection.
moveResult updateGameState: self.
self addMoveResult: moveResult.

Move >> updateGameState: aGameState
aGameState incrementMoves

Push >> updateGameState: aGameState
super updateGameState: aGameState.
aGameState increasePushes

NoMove >> updateGameState: aGameState
self

W7S05 19 / 21

Conclusion

 Messages act as a dispatcher
 Avoid conditional when possible
 Tell do not ask objects

W7S05 20 / 21

A course by Stéphane Ducasse
http://stephane.ducasse.free.fr

Reusing some parts of the Pharo Mooc by

Damien Cassou, Stéphane Ducasse, Luc Fabresse
http://mooc.pharo.org

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

http://stephane.ducasse.free.fr
http://mooc.pharo.org
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

