4.1

CHAPTER

Developing a simple counter

To get started in Pharo, we invite you to implement a simple counter by fol-
lowing the steps given below. In this exercise you will learn how to create
packages classes, methods, instances. You will learn how to define tests and
more. This simple tutorial covers most of the important actions that we do
when developing in Pharo.

Note that the development flow promoted by this little tutorial is traditional
in the sense that you will define a package, a class, then define its instance
variable then define its methods and finally execute it. The companion video
follows also such programming development flow. Now in Pharo, developers
often follow a totally different style (that we call live coding) where they ex-
ecute an expression that raises errors and they code in the debugger and let
the system define some instance variables and methods on the fly for them.
Once you will have finished this tutorial, you will feel more confident with
Pharo and we strongly suggest you to try the other style by following the sec-
ond video showing such different development practices.

Our use case

Here is our use case: we want to be able to create a counter, increment it
twice, decrement it and check that its value is correct. It looks like this lit-
tle use case will fit perfectly a unit test - you will define one later.

| counter |

counter := Counter new.
counter increment; increment.
counter decrement.

counter count =1

25

4.2

Developing a simple counter

x -0 MyCounter v
Scoped Variables tory Navigat Ve
v
» [£1 Morphic-Widgets-Tree *
» [£1 Morphic-Widgets-Windo
3 Multilingual-Encodings
3 Multilingual-Languages
[Multilingual-OtherLangu
» [E1 Multilingual-Tests
1 Multilingual-TextConver:
[E1 Multilingual-TextConveri
MyCounter
» [Z1 NECompletion
[E1 NECompletion-Tests

» [Z]1 NativeBoost-Core v
< > A, Hier © Class ? Com.

Object subclass: #NameOfSubclass
instanceVariableNames: ''
classvariableNames: ''
package: 'MyCounter'

1/4[1] Formatasyouread W +L

Figure 41 Package created and class creation template.

Now we will develop all the mandatory class and methods to support this
scenario.

Create your own class

In this part, you will create your first class. In Pharo, a class is defined in a
package. You will create a package then a class. The steps we will do are the
same ones every time you create a class, so memorize them well.

Create a package

Using the Browser create a package. The system will ask you a name, write
MyCounter. This new package is then created and added to the list. Figure
4-1 shows the result of creating such a package.

Create a class

Creating a class requires four steps. They consist basically in editing the class
definition template to specify the class you want to create.

+ By default, the system helps you to define a subclass of the class 0b-
ject. This is why it is written Object subclass: #NameOfSubclass.

26

4.3

4.3 Define protocols and methods

« Class Name. You should fill in the name of your class by replacing the
word NameOfSubclass with the word Counter. Take care that the
name of the class starts with a capital letter and that you do not re-
move the #sign in front of NameOfClass. This is because the class we
want to create does not exist yet, so we have to give its name, and we
use a Symbol (a unique string in Pharo) to do so.

+ Instance variable definition. Then, you should fill in the names of the
instance variables of this class. We need one instance variable called
count. Take care that you leave the string quotes!

« Class variable definition. As we do not need any class variable make
sure that the argument for the class instance variables is an empty
string classInstanceVariableNames: ''

You should get the following class definition.

Object subclass: #Counter
instanceVariableNames: 'count’
classVariableNames: "'
package: 'MyCounter'

Now we should compile it. We now have a filled-in class definition for the
class Counter. To define it, we still have to compile it. Therefore, select the
accept menu item. The class Counter is now compiled and immediately
added to the system.

Figure 4-2 illustrates the resulting situation that the browser should show.

The tool runs automatically some code critic and some of them are just inac-
curate, so do not care for now.

As we are disciplined developers, we add a comment to Counter class by
clicking Comment button. You can write the following comment:

Counter is a simple concrete class which supports incrementing and
decrementing a counter.

Its API is

- decrement, increment

- count

Its creation API is message withValue:

Select menu item "accept’ to store this class comment in the class.

Define protocols and methods

In this part you will use the browser to learn how to add protocols and meth-
ods.

The class we have defined has one instance variable named count. You should
remember that in Pharo, (1) everything is an object, (2) instance variables

27

Developing a simple counter

x -0 Counter >
Scoped Variables t gat VvV @&
w ! Counter no messages
» [E1 Morphic-Widgets-Tree
» [E1 Morphic-Widgets-Windoy
[Multilingual-Encodings
3 Multilingual-Languages
3 Multilingual-OtherLangu
» [E1 Multilingual-Tests
[E3 Multilingual-TextConver:
[Multilingual-TextConveri
4 MyCounter
» [£1 NECompletion
[E1 NECompletion-Tests

» [2] NativeBoost-Core v -
< A, Hier. © Class ? Com.

Object subclass: #Counter
instanceVariableNames: 'count'
classvariableNames: "'
package: 'MyCounter'

1/4[1] Formatasyouread W +L

Figure 4-2 Class created.

are private to the object, and (3) the only way to interact with an object is by
sending messages to it.

Therefore, there is no other mechanism to access the instance variable val-
ues from outside an object than sending a message to the object. What you
can do is to define messages that return the value of the instance variable.
Such methods are called accessors, and it is a common practice to always de-
fine and use them. We start to create an accessor method for our instance
variable count.

A method is usually sorted into a protocol. These protocols are just a group
of methods without any language semantics, but convey important nav-
igation information for the reader of your class. You get protocol named:
"testing' for method performing tests, 'printing' for methods displaying
the object, 'accessing' for simple accessor methods and so on.

Although protocols can have any name, Pharo programmers follow certain
conventions for naming these protocols. But don’t be stressed if you do not
name well your protocols.

28

4.3 Define protocols and methods

Create a method

Now let us create the accessor methods for the instance variable count. Start
by selecting the class Counter in a browser, and make sure the you are edit-
ing the instance side of the class (i.e., we define methods that will be sent to
instances) by deselecting the Class side radio button.

Create a new protocol by bringing the menu of methods protocol list: click
on the third list from the left. Select the newly created protocol. Then in
the bottom pane, the edit field displays a method template laying out the
default structure of a method. As a general hint, double click at the end of
or beginning of the text and start typing your method. Replace the template
with the following method definition:

count
"return the current value of the value instance variable"
" count

This defines a method called count, taking no arguments, having a method
comment and returning the instance variable count. Then choose accept in
the menu to compile the method. You can now test your new method by typ-
ing and evaluating the next expression in a Playground, or any text editor.

Counter new count
>>> nil

This expression first creates a new instance of Counter, and then sends the
message count to it. It retrieves the current value of the counter. This should
return nil (the default value for non-initialised instance variables). After-
wards we will create instances with a reasonable default initialisation value.

Adding a setter method

Another method that is normally used besides the accessor method is a so-
called setter method. Such a method is used to change the value of an in-
stance variable from a client. For example, the expression Counter new
count: 7 first creates a new Counter instance and then sets its value to 7:

The snippets shows that the counter effectively contains its value.

| c |

c := Counter new count: 7.
c count

>>> 7

This setter method does not currently exist, so as an exercise write the method
count: such that, when invoked on an instance of Counter, instance vari-

able is set to the argument given to the message. Test your method by typing
and evaluating the expression above.

29

4.4

4.5

Developing a simple counter

Define a Test Class

Writing tests is an important activity that will support the evolution of your
application. Remember that a test is written once and executed million times.
For example if we have turned the expression above into a test we could have
checked automatically that our new method is correctly working.

To define a test case we will define a class that inherits from TestCase. There-
fore define a class named CounterTest as follows:
TestCase subclass: #CounterTest

instanceVariableNames: ''

classVariableNames: ''

package: 'MyCounter'

Now we can write a first test by defining one method. Test methods should
start with test to be automatically executed by the TestRunner or when you
press on the icon of the method. Now to make sure that you understand in
which class we define the method we prefix the method body with the class
name and >>. CounterTest>> means that the method is defined in the class
CounterTest.

Define the following method. It first creates an instance, sets its value and
verifies that the value is correct. The message assert: is a special message
verifying if the test passed or not.

CounterTest >> testCountIsSetAndRead
I c |
c := Counter new.
c count: 7.
self assert: c count = 7

Verify that the test passes by executing either pressing the icon in front of
the method or using the TestRunner available in the Tools menu (selecting
your package). Since you have a first green test. This is a good moment to
save your work.

Saving your work

Several ways to save your work exist.

» Using plain files. You can save the class or a method by clicking on it
and selecting the fileout menu item. You will get a file containing the
source code on your hard-disc - This is not the favorite way to save
your code.

» Using a version control system. It is better to use a version control sys-
tem. In Pharo you can use Monticello and Git (even if it is more for ad-
vanced users).

30

Save

Open

x - 0O Monticello Browser

+Package +Config +Slice Browse Changes +Repository
Hit return to accept W || Hit return to accept

* MyCounter ()

AST-Core (Thelntegrator.395)
AST-FFI-Pharo50Compatibility (EstebanLorenzano.1)

1Tt POy

WV Package

AST-Tests-€
Alien (eem
Announcer|
Announcer|
Announcer
AsmJit-Corl
AsmJit-Ext:
AsmJit-Inst
AsmJit-Op¢
AsmJit-Sta
AsmJit-Tes|
AsmJit-x86|
Athens-Bal
Athens-Cai

Repository type:

directory
FTP

directory with subdirectories
filetree://

ss3.gemstone.com
squeaksource.com
smalltalkhub.com

Cancel

v

4 [/Users/ducasse/Workspace/FirstCircle/ActiveResearch

Athens-CairoPools (NicolaiHess.14)

Figure 4-3 Selecting a new kind of repository to the list of possible places to
commit the package.

x - 0 Monticello Browser -
+Package +Config +Slice Browse Changes +Repository Save Open
Hit return to accept W || Hit return to accept W Package W
* MyCounter () A [1/Users/ducasse/Workspace/FirstCircle/ActiveResearch
AST-Core (Thelntegrator.395)
AS’ ihilihe [Ectahanl \ 1)
AS Information Required
Ali
An HTTP Repository:
An
An| | MCHttpRepository
t location: 'http://smalltalkhub.com/mc/PharoMooc/Counter/main’
As user: 'StephaneDucasse’
As password: "'
Asi
Asi
Asi
At
At
Atl OK Cancel
<« — 3

Figure 4-4 Editing the repository information.

Developing a simple counter

In this chapter, we explain the simplest way to get you done. Note that the
complete set of Pharo packages is managed via Monticello (which is a dis-
tributed versioning control system - there are chapters in Pharo by Exam-
ple and Deep into Pharo books http://books.pharo.org).

Use the Monticello Browser (available in Tools) to save your work. You can
save a package locally on your harddisc or on a remote server on the web
such as http://www.smalltalkhub.com

Saving using Monticello
Using Monticello you can save your work:

* Locally. You can store your packages in a folder on your disc (use direc-
tory as a kind of repository below).

* Remotely. Using an account on a free server such http://www.smalltalkhub.
com/. You can save your work and share it with others.

Note each time you load or save a package, this package is also be stored in
the folder named "package-cache’ on your hard-disc.

Step 1: Add a repository

Go to http://www.smalltalkhub.com/ and create a member account then regis-
ter a new project. You get an HTTP entry that refers to your project. Define
anew HTTP repository using the Monticello Browser as shown by Figures 4-3
and 4-4.

E3)

Figure 4-3 shows that you package is dirty: this is indicated with the little
in front of the packages.

Example. As authors we are saving the examples for this chapter as a special
team named PharoMooc in the the Counter project so our information is the
following:

MCHttpRepository
location: 'http://smalltalkhub.com/mc/PharoMooc/Counter/main'
user: "'
password: "'
Now for you, you should adapt the following template to use your own infor-
mation:
MCHttpRepository
location: 'http://smalltalkhub.com/mc/YourAccount/YourProject/main'
user: 'YourAccountID'
password: 'YourAccountPassword'

32

http://books.pharo.org
http://www.smalltalkhub.com
http://www.smalltalkhub.com/
http://www.smalltalkhub.com/
http://www.smalltalkhub.com/

4.6

4.6 Adding more messages

Saving your package

To save your work, simply select your package and the repository you want
to save it to and save it using the Save button. This will open a dialog where
you can give a comment, version numbers and blessing. From then on, other
people can load it from there, in the same way that you would use cvs or
other multi-user versioning systems. Saving the image is also a way to save
your working environment, but not a way to version and publish it in a way
that can be easily shared.

You can of course both publish your package (so that other people can load
it, and that you can compare it with other versions, etc.) and save your im-
age (so that next time that you start your image you are in the same working
environment).

Adding more messages

Before implementing the following messages we define first a test. We define
one test for the method increment as follows:

CounterTest >> testIncrement
| c |
c := Counter new.
c count: O ; increment; increment.
self assert: c count = 2

Here we create a counter, set its value to 0, send it the message increment
two times and verify that we get a counter of value 2.

Now you should implement some more methods.
* Propose a definition for the method increment and implement it.
« Implement also a new test method for the method decrement.

* Define the method decrement place it together with increment in the
protocol 'operation’.

Here are the possible definitions for such methods.

Counter >> increment
count := count + 1

Counter >> decrement
count := count - 1

Run your tests they should pass (as shown in Figure 4-5). Again this is a good
moment to save your work. Saving at point where tests are green is always a
good process.

33

Developing a simple counter

x -0 CounterTest>>#testIncrement v
Scoped Variables Hist: Ve

V¥ (© Counter —-all- testCountisSetAndRead
A CounterTest tests testDecrement

» [£1 Morphic-Widgets-Tree testincrement

» [£1 Morphic-Widgets-Windo)
3 Multilingual-Encodings
[Multilingual-Languages
3 Multilingual-OtherLangu
» [Multilingual-Tests
1 Multilingual-TextConver:
[Multilingual-TextConverl
MyCounter
» [E1 NECompletion
[E1 NECompletion-Tests
» [2] NativeBoost-Core v
< >

A, Hier. c Class ? Com.
testIncrement

lel

c := Counter new.

c count: @ ; increment; increment.
self assert: c count = 2

1/6[1] Formatasyouread W +L

Figure 4-5 Class with green tests.

4.7 Better object description
When you select the expression Counter new and print its result (using the
Print it menu of the editor) you obtain a simple string 'a Counter'.

Counter new
>>> a Counter

We would like to get a much richer information for example knowing the
counter value. Implement the following methods in the protocol printing

Counter >> printOn: aStream
super printOn: aStream.
aStream nextPutAll: ' with value: ', self count printString.

Note that the method printOn: is used when you print an object using print
it (See Figure 4-6) or click on self in an inspector.

4.8 Instance initialization method

Right now the initial value of our counter is not set as the following expres-
sion shows it.

34

4.8 Instance initialization method

x - 0O Playground D~
Page >

Counter new count: 15 aCounterwithvalue: 15 &

Figure 4-6 Better description.

Counter new count
>>> nil

Let us write a test checking that a newly created instance has 0 as a default
value.

CounterTest >> testValueAtCreationTimeIsZero
self assert: Counter new count = 0

If you run it, it will turn yellow indicating a failure (a situation that you an-
ticipated but that is not correct) - by opposition to an error which is an antic-
ipated situation leading to failed assertion.

Define an initialize method

Now we have to write an initialization method that sets a default value of the
count instance variable. However, as we mentioned the initialize mes-
sage is sent to the newly created instance. This means that the initialize
method should be defined at the instance side as any method that is sent to
an instance of Counter (like increment) and decrement. The initialize
method is responsible to set up the instance variable default values.

Therefore at the instance side, you should create a protocol initializa-
tion, and create the following method (the body of this method is left blank.
Fill it in!).

Counter >> initialize
"set the initial value of the value to 0"

count := 0

Now create a new instance of class Counter. Is it initialized by default? The
following code should now work without problem:

[Counter new increment

and the following one should return 2

Counter new increment; increment; count
>>> 2

35

4.9

Developing a simple counter

Again save your work

Conclusion

In this chapter you learned how to define packages, classes, methods, and
define tests. The flow of programming that we chose for this first tutorial is
similar to most of programming languages. In Pharo you can use a different
flow that is based on defining a test first, executing it and when the execu-
tion raises error to define the corresponding classes, methods, and instance
variables often from inside the debugger. We suggest you now to redo the
exercise following the second companion video.

36

	Illustrations
	About this book
	A word of presentation
	Structure of the book
	Fast track

	What you will learn
	Growing software
	Syntax, blocks and iterators

	Typographic conventions
	Videos
	Thanks

	Getting in touch with Pharo
	Pharo syntax in a nutshell
	Simplicity and elegance of messages
	Sending a message & the receiver
	Evaluating code and convention for showing results
	Other messages & return values
	The selector & unary messages
	A first keyword-based message
	Keyword-based messages with multiple arguments
	Binary messages

	Which message is executed first?
	Sending messages to classes
	Local variables and statement sequences
	About literal objects
	Sending multiple messages to the same object
	Blocks
	Control structures
	Methods
	Conclusion

	Challenge yourself
	Challenge: Message identification
	Challenge: Literal objects
	Challenge: Kind of messages
	Challenge: Results
	Challenge: unneeded parentheses

	Developing a simple counter
	Our use case
	Create your own class
	Create a package
	Create a class

	Define protocols and methods
	Create a method
	Adding a setter method

	Define a Test Class
	Saving your work
	Saving using Monticello
	Step 1: Add a repository

	Saving your package

	Adding more messages
	Better object description
	Instance initialization method
	Define an initialize method

	Conclusion

	Tests, tests and tests
	What is a test?
	How do we declare a test in Pharo?

	Test Driven Design
	Why testing is important
	What makes a good test?
	right-Bicep
	SUnit by example
	Step 1: Create the test class
	Step 2: Write some test methods
	Step 4: Run the tests
	Step 5: Interpret the results

	The SUnit cookbook
	About assert:equals:
	Other assertions
	Running a single test
	Running all the tests in a test class
	Must I subclass TestCase?

	Defining a fixture
	Step 1: Define the class and context
	Step 2: Setting a reusable context
	Step 3: Write some test methods

	Chapter summary

	Some collection katas with words
	Isogram
	About strings
	A solution using sets
	Hints
	Checking expression
	Adding a method to the class String

	Defining a test
	Testing several strings

	Some fun: Obtaining french isograms
	Pangrams
	Imagine a solution
	A first version
	A better version

	Handling alphabet
	Identifying missing letters
	About the return values of detectFirstMissingLetterFor:
	Detecting all the missing letters

	Palindrome as exercise
	Some possible implementations

	Conclusion

	About objects and classes
	Objects and classes
	Objects: Entities reacting to messages
	Turtles as an example
	Creating an object
	Sending messages
	Multiple instances: each with its own state.

	Messages and Methods
	Message: what should be executed
	Method: how we execute it

	An object is a protective entity
	An object protects its data
	With counters
	A class: blueprint or factory of objects
	Object structure
	Object behavior
	Self is the message receiver

	Class and instances are really different
	Conclusion

	Revisiting objects and classes
	A simple and naive file system
	Studying a first scenario
	Defining a class
	A first little analysis

	Printing a directory
	Adding files
	An example first
	A new class definition

	One message and multiple methods
	Objects: stepping back
	Examples of distribution of responsibilities
	File size
	Search

	Important points
	Modular thinking
	Sending a message is making a choice
	Polymorphic objects

	Distribution of responsibilities
	Procedural

	So far so good? Not fully!
	Conclusion

	Converter
	First a test
	Define a test method (and more)
	The class TemperaturConverter
	Converting from Farhenheit to Celsius
	About floats
	Printing rounded results
	Building a map of degrees
	Spelling Fahrenheit correctly!
	Adding logging behavior
	Discussion
	Conclusion

	An electronic wallet
	A first test
	Adding coins
	Looking at Bag
	Using a bag for a wallet
	More tests
	Testing money
	Checking to pay an amount
	Biggest coin
	Biggest below a value
	Improving the API
	Better string representation
	Easier addition
	Removing coins

	Coins for paying: First version
	Better heuristics
	Conclusion

	Crafting a simple embedded DSL with Pharo
	Getting started
	Create a test
	Define the class Die

	Rolling a die
	Creating another test
	Instance creation interface
	Defining a class method
	[Optional] Alternate instance creation definition

	First specification of a die handle
	Testing a die handle

	Defining the DieHandle class
	Improving programmer experience
	Rolling a die handle
	About Dice and DieHandle API
	About composition

	Role playing syntax
	About class extensions

	Handle's addition
	Conclusion

	Sending messages
	Sending a message is making a choice
	Negation: the not message
	Implementing not
	A first hint.
	A second hint.
	Studying the implementation

	Implementing disjunction
	When receiver is true.
	When receiver is false.

	About ifTrue:ifFalse: implementation
	Implementation.
	Optimisation.

	What is the point?
	Classes represent choices

	Conclusion

	Looking at inheritance
	Inheritance: Incremental definition and behavior reuse
	Inheritance
	Improving files/directories example design
	Objectives

	Transformation strategies
	Factoring out state
	Moving instance variable name to superclass
	Moving parent to the superclass

	Factoring similar methods
	Sending a message and method lookup
	Inheritance properties

	Basic method overrides
	self-send messages and lookup create hooks
	Example
	Describe implementation

	Hook/Template explanations
	Essence of self and dispatch
	Solutions

	Instance variables vs. messages
	Conclusion

	Extending superclass behavior
	Revisiting printOn:
	Improving the situation
	Why self does not work!

	Extending superclass behavior using super
	Another example
	Really understanding super
	Solution

	Conclusion

	A little expression interpreter
	Starting with constant expression and a test
	Negation
	Adding expression addition
	Multiplication
	Stepping back
	Messages and methods
	About common superclass
	Design corner: About addition and multiplication model

	Negated as a message
	negated message for constants
	negated message for negations
	negated message for additions
	negated message for multiplications

	Annoying repetition
	Introducing Expression class
	Class creation messages
	Better instance creation for constants
	Better instance creation for negations
	Better instance creation for additions
	Better instance creation for multiplications

	Introducing examples as class messages
	Printing
	A word about streams
	Printing constant
	Printing negation
	Printing addition
	Printing multiplication

	Revisiting negated message for Negation
	Understanding method override

	Introducing BinaryExpression class
	Creating a template and hook method

	What did we learn
	About hook methods
	Creating hooks is always good
	Avoid not documenting hooks

	Variables
	Some technical points
	Dictionaries
	Dynamic Arrays
	Pairs

	Back to variable expressions
	Non working approaches
	The solution: adding evaluateWith:

	Conclusion

	Little projects
	A simple network simulator
	Basic definitions and a starting point
	Packets are simple value objects
	Nodes
	Links are one-way connections between nodes
	Nodes can emit packets
	Sending
	Transmitting

	A standalone node can transmit a packet to itself

	Modeling the network itself
	The network class
	Looking up nodes
	Looking up links

	Packet delivery in a more realistic network
	Differenciating hubs from normal nodes
	Other examples of specialized nodes
	Workstations count received packets
	Printers accumulate printouts
	Servers answer requests

	Cycles and routing tables

	Snakes and ladders
	Game rules
	Game possible run
	Potential objects and responsibilities
	Possible class candidates
	About representation

	About object-oriented design
	CRC cards
	Some heuristics
	Kind of data passed around
	Agility to adapt

	Let us get started
	A first real test
	Accessing one tile
	Adding players
	Avoid leaking implementation information
	About tools
	Displaying players
	Preparing to move players
	Finding the tile of a player
	Moving to another tile
	About our implementation

	Snakes and ladders
	A hierarchy of tiles
	Split Tile class in two
	Adding snake and ladder tiles

	New printing hook
	Using the new hook
	super does not have to be the first expression

	About hooks and templates
	Snake and ladder declaration
	Better tile protocol
	Another little improvement

	Active tile actions
	Alternating players
	Player turns and current player
	How to find the logic of currentPlayer?
	Game end
	Alternate solution

	Playing one move
	Playing one game step

	Automated play
	Some final tests

	Variations
	Conclusion

	TinyChat: a fun and small chat client/server
	Objectives and architecture
	Loading Teapot
	Message representation
	Class TCMessage
	Accessor creation

	Instance initialisation
	Converting a message object into a string
	Building a message from a string
	Starting with the server
	Storing messages
	Basic operations on message list
	List of messages from a position
	Message formatting

	The Chat server
	TCServer class creation

	Server logic
	The client
	TinyChat class
	HTTP commands

	Client operations
	Client connection parameters
	User interface
	Now chatting
	Conclusion and ideas for future extensions

	Solutions
	Solution of challenge yourself
	Challenge: Message identification
	Challenge: Literal objects
	Challenge: Kind of messages
	Challenge: Results
	Challenge: unneeded parentheses

	Some collection katas solutions
	Isogram
	Pangrams
	Identifying missing letters
	Detecting all the missing letters

	Palindrome

	Electronic wallet solutiuon
	Using a bag for a wallet
	Testing money
	Checking to pay an amount
	Biggest coin
	Biggest below a value
	Improving the API
	Coins for paying: First version

	Converter solution
	Converting from Farhenheit to Celsius
	Adding logging behavior

	Die DSL
	Define class Die
	Rolling a die
	Define class DieHandle
	Die addition

	Rolling a dice handle
	Role playing syntax
	Adding DieHandles

	Expressions solutions
	Evaluate message
	Negated message
	Better class instance creation interface
	Printing addition and multiplication
	Negated negation
	evaluateWith:

	Snake and ladder solutions
	A first real test
	Accessing on tile
	Adding players
	Displaying players
	Avoid leaking implementation information
	Preparing to move players
	Finding the tile of a player
	Moving a player
	New printing hook
	Snake and ladder declaration
	Active tile actions
	Player turns and current player
	Game end
	Playing one move

