
CHA P T E R 10
An electronic wallet

In this chapter you will develop a wallet. You will start by designing tests to
define the behavior of our program, then we will define the methods accord-
ing. Pay attention we will not give you all the solutions and the code.

10.1 A first test

Since we want to know if the code we will develop effectively does what it
should do, we will write tests. A test can be as simple as verifying if our wal-
let contains money. To test that a newly created wallet does not contain
money we can write a test as follow:

However doing it is tedious because we would have to manually run all the
tests . We will use SUnit a system that automatically runs tests once we de-
fine them.

Our process will be the following one:

• imagine what we want to define

• define a test method

• execute it and check that it is failing

• define the method and fix it until the test pass.

With SUnit, tests are defined as methods inside a class subclass from
. So let us start to define a test class named inside the pack-

age .
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And now we can define a test. To define a test, we define a method starting
with . Here is the definition of the same test as before but using SUnit.

Now executing a test can be done in different ways:

• click on the icon close to the method in class browser,

• use the TestRunner tools,

• execute or

Now you should get started. Define the class inside the package
.

Run the test! It should be red and now define the method . For now
this method is plain stupid and will return 0. In the following of course it will
sum all the coins and return such sum.

10.2 Adding coins

Now we should be able to add coins to a wallet. Let us first define a new test
.

The test adds several coins of different values and verifies that we did not
lose any coins.
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10.3 Looking at Bag

Now we should think how we will represent our wallet. We need to count
how many coins of a given values are added or removed to a wallet. If we
use an array or an ordered collection, we will have to maintain a mapping
between the index and its corresponding value. Using a set will not really
work since we will lose the occurrence of each coins.

10.3 Looking at Bag

A good structure to represent a wallet is a bag, instance of the class : a
bag keeps elements and their respective occurrences. Let us have a look at a
bag example before continuing. You can add and remove elements of a bag
and iterate on them. Let us play with it.

First we create a bag and we expect it to be empty.

Then we add 3 bananas and verify that our bag really contains the three ba-
nanas we just added.

Now let us add different fruits

Now we check that they are not mixed together.

We can also add a single fruit to our bag.

We can then iterate over all the contents of the bag using the message .
The code snippet with print on the Transcript (open>Tools>Transcript) all
the elements one by one.
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Since for an element we know its occurrence we can iterate differently as
follows:

We get the following trace in the transcript.

10.4 Using a bag for a wallet

Since we can know how many coins of a given value are in a bag, a bag is
definitively a good structure for our wallet.

We will define add an instance variable to the class and the meth-
ods

•

• and

• .

Let us start with the method . We define the method
as follows. It is invoked automatically when an instance is created.

Now define the method . Browse
the class to find the messages that you can send to a bag.

We can define the method that returns the number of coins
of a given value (looks like the same as asking how many banana are in the
fruit bag).
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10.5 More tests

10.5 More tests

The previous test is limited in the sense that we cannot distinguish if the
coins are not mixed. It would be bad that a wallet would convert cents into
euros. So let us define a new test to verify that the added coins are not mixed.

We should also test that when we add twice the same coins they are effec-
tively added.

10.6 Testing money

Now we can test that the message returns the amount of money con-
tained in the wallet and we should change the implementation of the .
We define two tests.

Now we should implement the method .
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10.7 Checking to pay an amount

Now we can add a new message to know whether we can pay a certain amount.
But let us write some tests first.

Define the message .

10.8 Biggest coin

Now let us define a method to determine the largest coin in a wallet. We
write a test.

Note that the message can also be replaced and
this is what we did: we replaced the expression

by .

Now we should define the method .
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10.9 Biggest below a value

10.9 Biggest below a value

We can also define the method that returns the first coin
whose value is stricly smaller than the argument.

returns 0.2.

10.10 Improving the API

Better string representation

Now it is time to improve the API for our objects. First we should improve
the way the wallet objects are printed so that we can debug more easily. For
that we add the method as follows:

Easier addition

We can improve the API to add coins in particular when we add only one
coin. So now you start to get used to it. We define a test.
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Define the method .

Removing coins

We can now implement the removal of a coin.

Define the method .

We can generalize this behavior with a method .
Write a test.

We can also define the method which removes the biggest
coin and returns it.
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10.11 Coins for paying: First version

10.11 Coins for paying: First version

Now we would like to know the coins that we can use to pay a certain amount.
We can define a method that will return a new wallet containing
the coins to pay a given amount.

This is a more challenging task and we will propose a first version then we
will add more complex situations and propose a more complex solution. So
let us define a test.

The method creates wallet and fill with the largest coins com-
prising a given value.

Using the previously defined methods, define a first version of the method
.

Here is a possible simple solution: we remove from the wallet the largest
coin and we add it to the resulting wallet. This solution is not working well
as we will show it.
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10.12 Better heuristics

Let us try some tests to see if our previous way to get coins is working. (The
previous algorithm does not work with such behavior.)

The first test checks that when there is no more coins of the biggest value,
we check that the next coin is then used.

Run the tests and define the method to invoke a copy of the method
renamed

to start with.

The previous algorithm (implemented above in )
does not work with such behavior. So you should start to address the prob-
lem and add more and more tests. The second test checks that even if there
is a coin with a largest value, the algorithm selects the next one. Here to pay
0.6, we should get 0.5 then we should not take 0.2 the next coin but 0.1 in-
stead.

In this version we check that the algorithm should skip multiple coins that
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10.13 Conclusion

are available. In the example, for 0.6 it should select: 0.5 then skip the re-
maining 0.5, and 0.2 to get one 0.1.

The following one is a variant of the previous test where the biggest coin
should be skipped.

10.13 Conclusion

What this example shows is that while a wallet is essentially a bag, having a
wallet is a much more powerful solution. The wallet encapsulates an internal
representation and builds a more complex API around it.
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