
CHA P T E R 10
An electronic wallet

In this chapter you will develop a wallet. You will start by designing tests to
define the behavior of our program, then we will define the methods accord-
ing. Pay attention we will not give you all the solutions and the code.

10.1 A first test

Since we want to know if the code we will develop effectively does what it
should do, we will write tests. A test can be as simple as verifying if our wal-
let contains money. To test that a newly created wallet does not contain
money we can write a test as follow:

However doing it is tedious because we would have to manually run all the
tests . We will use SUnit a system that automatically runs tests once we de-
fine them.

Our process will be the following one:

• imagine what we want to define

• define a test method

• execute it and check that it is failing

• define the method and fix it until the test pass.

With SUnit, tests are defined as methods inside a class subclass from
. So let us start to define a test class named inside the pack-

age .

103



An electronic wallet

And now we can define a test. To define a test, we define a method starting
with . Here is the definition of the same test as before but using SUnit.

Now executing a test can be done in different ways:

• click on the icon close to the method in class browser,

• use the TestRunner tools,

• execute or

Now you should get started. Define the class inside the package
.

Run the test! It should be red and now define the method . For now
this method is plain stupid and will return 0. In the following of course it will
sum all the coins and return such sum.

10.2 Adding coins

Now we should be able to add coins to a wallet. Let us first define a new test
.

The test adds several coins of different values and verifies that we did not
lose any coins.

104



10.3 Looking at Bag

Now we should think how we will represent our wallet. We need to count
how many coins of a given values are added or removed to a wallet. If we
use an array or an ordered collection, we will have to maintain a mapping
between the index and its corresponding value. Using a set will not really
work since we will lose the occurrence of each coins.

10.3 Looking at Bag

A good structure to represent a wallet is a bag, instance of the class : a
bag keeps elements and their respective occurrences. Let us have a look at a
bag example before continuing. You can add and remove elements of a bag
and iterate on them. Let us play with it.

First we create a bag and we expect it to be empty.

Then we add 3 bananas and verify that our bag really contains the three ba-
nanas we just added.

Now let us add different fruits

Now we check that they are not mixed together.

We can also add a single fruit to our bag.

We can then iterate over all the contents of the bag using the message .
The code snippet with print on the Transcript (open>Tools>Transcript) all
the elements one by one.

105



An electronic wallet

Since for an element we know its occurrence we can iterate differently as
follows:

We get the following trace in the transcript.

10.4 Using a bag for a wallet

Since we can know how many coins of a given value are in a bag, a bag is
definitively a good structure for our wallet.

We will define add an instance variable to the class and the meth-
ods

•

• and

• .

Let us start with the method . We define the method
as follows. It is invoked automatically when an instance is created.

Now define the method . Browse
the class to find the messages that you can send to a bag.

We can define the method that returns the number of coins
of a given value (looks like the same as asking how many banana are in the
fruit bag).

106



10.5 More tests

10.5 More tests

The previous test is limited in the sense that we cannot distinguish if the
coins are not mixed. It would be bad that a wallet would convert cents into
euros. So let us define a new test to verify that the added coins are not mixed.

We should also test that when we add twice the same coins they are effec-
tively added.

10.6 Testing money

Now we can test that the message returns the amount of money con-
tained in the wallet and we should change the implementation of the .
We define two tests.

Now we should implement the method .

107



An electronic wallet

10.7 Checking to pay an amount

Now we can add a new message to know whether we can pay a certain amount.
But let us write some tests first.

Define the message .

10.8 Biggest coin

Now let us define a method to determine the largest coin in a wallet. We
write a test.

Note that the message can also be replaced and
this is what we did: we replaced the expression

by .

Now we should define the method .

108



10.9 Biggest below a value

10.9 Biggest below a value

We can also define the method that returns the first coin
whose value is stricly smaller than the argument.

returns 0.2.

10.10 Improving the API

Better string representation

Now it is time to improve the API for our objects. First we should improve
the way the wallet objects are printed so that we can debug more easily. For
that we add the method as follows:

Easier addition

We can improve the API to add coins in particular when we add only one
coin. So now you start to get used to it. We define a test.

109



An electronic wallet

Define the method .

Removing coins

We can now implement the removal of a coin.

Define the method .

We can generalize this behavior with a method .
Write a test.

We can also define the method which removes the biggest
coin and returns it.

110



10.11 Coins for paying: First version

10.11 Coins for paying: First version

Now we would like to know the coins that we can use to pay a certain amount.
We can define a method that will return a new wallet containing
the coins to pay a given amount.

This is a more challenging task and we will propose a first version then we
will add more complex situations and propose a more complex solution. So
let us define a test.

The method creates wallet and fill with the largest coins com-
prising a given value.

Using the previously defined methods, define a first version of the method
.

Here is a possible simple solution: we remove from the wallet the largest
coin and we add it to the resulting wallet. This solution is not working well
as we will show it.

111



An electronic wallet

10.12 Better heuristics

Let us try some tests to see if our previous way to get coins is working. (The
previous algorithm does not work with such behavior.)

The first test checks that when there is no more coins of the biggest value,
we check that the next coin is then used.

Run the tests and define the method to invoke a copy of the method
renamed

to start with.

The previous algorithm (implemented above in )
does not work with such behavior. So you should start to address the prob-
lem and add more and more tests. The second test checks that even if there
is a coin with a largest value, the algorithm selects the next one. Here to pay
0.6, we should get 0.5 then we should not take 0.2 the next coin but 0.1 in-
stead.

In this version we check that the algorithm should skip multiple coins that

112



10.13 Conclusion

are available. In the example, for 0.6 it should select: 0.5 then skip the re-
maining 0.5, and 0.2 to get one 0.1.

The following one is a variant of the previous test where the biggest coin
should be skipped.

10.13 Conclusion

What this example shows is that while a wallet is essentially a bag, having a
wallet is a much more powerful solution. The wallet encapsulates an internal
representation and builds a more complex API around it.

113


	Illustrations
	About this book 
	A word of presentation
	Structure of the book
	Fast track

	What you will learn
	Growing software
	Syntax, blocks and iterators

	Typographic conventions
	Videos 
	Thanks

	Getting in touch with Pharo
	Pharo syntax in a nutshell
	Simplicity and elegance of messages
	Sending a message & the receiver
	Evaluating code and convention for showing results
	Other messages & return values
	The selector & unary messages
	A first keyword-based message
	Keyword-based messages with multiple arguments
	Binary messages

	Which message is executed first?
	Sending messages to classes
	Local variables and statement sequences
	About literal objects
	Sending multiple messages to the same object
	Blocks
	Control structures
	Methods
	Conclusion 

	Challenge yourself
	Challenge: Message identification
	Challenge: Literal objects
	Challenge: Kind of messages
	Challenge: Results
	Challenge: unneeded parentheses 

	Developing a simple counter
	Our use case
	Create your own class
	Create a package
	Create a class

	Define protocols and methods
	Create a method
	Adding a setter method

	Define a Test Class
	Saving your work
	Saving using Monticello
	Step 1: Add a repository

	Saving your package

	Adding more messages
	Better object description
	Instance initialization method
	Define an initialize method

	Conclusion

	Tests, tests and tests
	What is a test?
	How do we declare a test in Pharo?

	Test Driven Design
	Why testing is important
	What makes a good test?
	right-Bicep
	SUnit by example
	Step 1: Create the test class
	Step 2: Write some test methods
	Step 4: Run the tests
	Step 5: Interpret the results

	The SUnit cookbook
	About assert:equals:
	Other assertions
	Running a single test
	Running all the tests in a test class
	Must I subclass TestCase?

	Defining a fixture
	Step 1: Define the class and context
	Step 2: Setting a reusable context
	Step 3: Write some test methods

	Chapter summary

	Some collection katas with words
	Isogram
	About strings
	A solution using sets
	Hints
	Checking expression
	Adding a method to the class String

	Defining a test
	Testing several strings

	Some fun: Obtaining french isograms
	Pangrams
	Imagine a solution
	A first version
	A better version

	Handling alphabet
	Identifying missing letters
	About the return values of detectFirstMissingLetterFor:
	Detecting all the missing letters

	Palindrome as exercise
	Some possible implementations

	Conclusion


	About objects and classes
	Objects and classes
	Objects: Entities reacting to messages
	Turtles as an example
	Creating an object
	Sending messages
	Multiple instances: each with its own state. 

	Messages and Methods
	Message: what should be executed
	Method: how we execute it

	An object is a protective entity
	An object protects its data
	With counters
	A class: blueprint or factory of objects
	Object structure
	Object behavior
	Self is the message receiver

	Class and instances are really different
	Conclusion

	Revisiting objects and classes
	A simple and naive file system
	Studying a first scenario
	Defining a class
	A first little analysis

	Printing a directory
	Adding files
	An example first
	A new class definition

	One message and multiple methods
	Objects: stepping back
	Examples of distribution of responsibilities 
	File size 
	Search 

	Important points
	Modular thinking
	Sending a message is making a choice
	Polymorphic objects 

	Distribution of responsibilities
	Procedural

	So far so good? Not fully!
	Conclusion

	Converter
	First a test
	Define a test method (and more)
	The class TemperaturConverter
	Converting from Farhenheit to Celsius 
	About floats
	Printing rounded results
	Building a map of degrees
	Spelling Fahrenheit correctly!
	Adding logging behavior
	Discussion 
	Conclusion

	An electronic wallet
	A first test
	Adding coins
	Looking at Bag
	Using a bag for a wallet
	More tests
	Testing money
	Checking to pay an amount
	Biggest coin
	Biggest below a value
	Improving the API
	Better string representation
	Easier addition
	Removing coins

	Coins for paying: First version
	Better heuristics
	Conclusion

	Crafting a simple embedded DSL with Pharo
	Getting started
	Create a test 
	Define the class Die

	Rolling a die
	Creating another test
	Instance creation interface
	Defining a class method
	[Optional] Alternate instance creation definition

	First specification of a die handle
	Testing a die handle

	Defining the DieHandle class
	Improving programmer experience
	Rolling a die handle
	About Dice and DieHandle API
	About composition

	Role playing syntax
	About class extensions

	Handle's addition
	Conclusion


	Sending messages
	Sending a message is making a choice
	Negation: the not message
	Implementing not
	A first hint. 
	A second hint.
	Studying the implementation

	Implementing disjunction
	When receiver is true.
	When receiver is false.

	About ifTrue:ifFalse: implementation
	Implementation. 
	Optimisation. 

	What is the point?
	Classes represent choices

	Conclusion


	Looking at inheritance
	Inheritance: Incremental definition and behavior reuse
	Inheritance
	Improving files/directories example design
	Objectives

	Transformation strategies
	Factoring out state
	Moving instance variable name to superclass
	Moving parent to the superclass

	Factoring similar methods
	Sending a message and method lookup 
	Inheritance properties

	Basic method overrides
	self-send messages and lookup create hooks
	Example
	Describe implementation 

	Hook/Template explanations
	Essence of self and dispatch
	Solutions

	Instance variables vs. messages
	Conclusion

	Extending superclass behavior
	Revisiting printOn:
	Improving the situation
	Why self does not work!

	Extending superclass behavior using super
	Another example
	Really understanding super
	Solution 

	Conclusion

	A little expression interpreter
	Starting with constant expression and a test
	Negation
	Adding expression addition
	Multiplication
	Stepping back 
	Messages and methods
	About common superclass
	Design corner: About addition and multiplication model 

	Negated as a message
	negated message for constants
	negated message for negations
	negated message for additions
	negated message for multiplications

	Annoying repetition
	Introducing Expression class
	Class creation messages
	Better instance creation for constants
	Better instance creation for negations
	Better instance creation for additions
	Better instance creation for multiplications

	Introducing examples as class messages
	Printing
	A word about streams
	Printing constant
	Printing negation
	Printing addition
	Printing multiplication

	Revisiting negated message for Negation
	Understanding method override

	Introducing BinaryExpression class
	Creating a template and hook method

	What did we learn
	About hook methods
	Creating hooks is always good
	Avoid not documenting hooks

	Variables
	Some technical points
	Dictionaries
	Dynamic Arrays
	Pairs

	Back to variable expressions
	Non working approaches
	The solution: adding evaluateWith:

	Conclusion


	Little projects
	A simple network simulator 
	Basic definitions and a starting point
	Packets are simple value objects
	Nodes
	Links are one-way connections between nodes
	Nodes can emit packets
	Sending
	Transmitting

	A standalone node can transmit a packet to itself

	Modeling the network itself
	The network class
	Looking up nodes
	Looking up links


	Packet delivery in a more realistic network
	Differenciating hubs from normal nodes
	Other examples of specialized nodes
	Workstations count received packets
	Printers accumulate printouts
	Servers answer requests


	Cycles and routing tables

	Snakes and ladders
	Game rules
	Game possible run
	Potential objects and responsibilities
	Possible class candidates
	About representation 

	About object-oriented design
	CRC cards
	Some heuristics
	Kind of data passed around
	Agility to adapt

	Let us get started
	A first real test
	Accessing one tile
	Adding players
	Avoid leaking implementation information
	About tools
	Displaying players
	Preparing to move players
	Finding the tile of a player
	Moving to another tile
	About our implementation

	Snakes and ladders
	A hierarchy of tiles
	Split Tile class in two 
	Adding snake and ladder tiles

	New printing hook
	Using the new hook
	super does not have to be the first expression

	About hooks and templates
	Snake and ladder declaration
	Better tile protocol
	Another little improvement

	Active tile actions
	Alternating players
	Player turns and current player
	How to find the logic of currentPlayer?
	Game end
	Alternate solution

	Playing one move
	Playing one game step

	Automated play
	Some final tests

	Variations
	Conclusion

	TinyChat: a fun and small chat client/server
	Objectives and architecture
	Loading Teapot
	Message representation
	Class TCMessage
	Accessor creation

	Instance initialisation
	Converting a message object into a string
	Building a message from a string 
	Starting with the server
	Storing messages
	Basic operations on message list 
	List of messages from a position 
	Message formatting

	The Chat server
	TCServer class creation

	Server logic
	The client 
	TinyChat class
	HTTP commands

	Client operations
	Client connection parameters
	User interface
	Now chatting
	Conclusion and ideas for future extensions


	Solutions
	Solution of challenge yourself
	Challenge: Message identification
	Challenge: Literal objects
	Challenge: Kind of messages
	Challenge: Results
	Challenge: unneeded parentheses 

	Some collection katas solutions
	Isogram
	Pangrams
	Identifying missing letters
	Detecting all the missing letters

	Palindrome

	Electronic wallet solutiuon
	Using a bag for a wallet
	Testing money
	Checking to pay an amount
	Biggest coin
	Biggest below a value
	Improving the API
	Coins for paying: First version

	Converter solution
	Converting from Farhenheit to Celsius
	Adding logging behavior

	Die DSL 
	Define class Die
	Rolling a die
	Define class DieHandle
	Die addition

	Rolling a dice handle
	Role playing syntax
	Adding DieHandles

	Expressions solutions
	Evaluate message
	Negated message
	Better class instance creation interface
	Printing addition and multiplication
	Negated negation
	evaluateWith:

	Snake and ladder solutions
	A first real test
	Accessing on tile
	Adding players
	Displaying players
	Avoid leaking implementation information
	Preparing to move players
	Finding the tile of a player
	Moving a player
	New printing hook
	Snake and ladder declaration
	Active tile actions
	Player turns and current player
	Game end
	Playing one move



