
CHA P T E R 6
Some collection katas with

words

This chapter proposes some little challenges around words and sentences as
a way to explore Pharo collections.

6.1 Isogram

An isogram is a word or phrase without a repeating letter. The following
words are examples of isograms in english and french:

• egoism, sea, lumberjacks, background, hacking, pathfinder, pharo

• antipode, altruisme, absolument, bigornaux

Isograms are interesting words also because they are often the basis of sim-
ple cifers. Isograms of length 10 are commonly used to encode numbers. This
way salespeople of products can get access to the original cost of the product
and control their sale.

Using the pathfinder cipher we can decide that p represents the number 1, a
represents the number 2 and so on. The price tag for an item selling for 1100
Euros may also bear the cryptic letters frr written on the back or bottom of
the tag. A salesman familiar with the pathfinder cipher will know that the
original cost of the item is 500 Euros and he can control his sale.

Since we will essentially manipulate strings, let us start with some basic
knowledge on strings.

49

Some collection katas with words

6.2 About strings

A string in Pharo is in fact an array of characters. We can access string ele-
ments using the message . Since all collections in Pharo have
their first elements at index 1, the message returns the first element
of a string.

As with any collection, we can apply iterators such , , or
. Here we select all the characters that are after, hence bigger, than

character .

We can also apply all kinds of operations on the collection. Here we reverse
it.

We can also find the index of a string inside another one using the message
.

We simply present some of the possible messages that can be sent to a string.
We select some that you can use in the following or in the next chapter. Now
let us solve our problem to identify if a string is an isogram.

6.3 A solution using sets

We can do a simple (and not really efficient) implementation using sets. Sets
are collections that only contain one occurence of each element added to
them. Adding twice the same element only adds one.

Note that sets in Pharo can contain any objects, even sets themselves. This
is not the case in all languages. In Pharo, there are no restriction about set
elements.

You can convert a string into a set of characters sending the string the mes-
sage .

50

6.3 A solution using sets

Now this is your turn: Imagine how using a set of characters, you can deter-
mine if a string is a isogram.

Hints

If the size of a set with the contents of a string and this string are the same, it
means that the string does not contain any letter twice! Bingo we can simply
identify an isogram.

To get the size of a collection use the message

Now we convert into a set using the message .

Note that the message is equivalent to the following script:

• Here we define a variable

• We iterate over all the characters of the string , and we add
each character one by one to the set .

• We return the set.

• The set contains only three elements , , as expected.

Checking expression

So now we can get to the expression that verifies that is an isogram.

And that is not!

51

Some collection katas with words

Adding a method to the class String

Now we can define a new method to the class . Since you may propose
multiple implementations, we postfix the message with the implementation
strategy we use. Here we define

And we test that our method is correct.

Wait! We do not want to have to check manually all the time!

Important When you verify two times the same things, better write a
test! Remember you write a test once and execute it million times!

6.4 Defining a test

To define tests we could have extended the class, but we prefer
to define a little class for our own experiment. This way we will create also
a package and move the methods we define as class extension to the that
package.

Important To define a method as a class extension of package , just
name the protocol of the method .

We define the class as follow. It inherits from
and belong to the package .

52

6.4 Defining a test

Now we are ready to implement our first automated test for this chapter.

Test methods are special.

• A test method should start with .

• A test method is executed automatically when we press the icons dis-
playing the method.

• A test method can contain expressions such as
or .

Here

• Our method is named .

• We check () that ’pharo’ is an isogram i.e., that
returns .

• We check () that ’phaoro’ is not an isogram i.e., that
returns .

Important When you write a test, make sure that you test different situ-
ations or results. Why? Because imagine that your methods always return
true, you would never be sure that not all the string are isograms. So al-
ways check for positive and negative results.

Messages and are equivalent as follows: assert (something)
is equals to deny(something not) and assert (something not) is equivalent to
deny (something). Hence the following expressions are strictly equivalent.

Testing several strings

Now we do not want to write a test per string. We want to test multiple strings
at the same time. For that we will define a method in the test class that re-
turns a collection of strings. Here we create a methods returning an array of
isograms.

Then we define a new test method that simply iterates
over the string array and for each verifies using that the element is
indeed an isogram.

53

Some collection katas with words

In Pharo, there are multiple ways to express loops on collection, the easiest
is to send the message to the collection. The message executes the
block to each element of the collection one by one.

Important The message executes its argument taking each ele-
ments of the receiver collection one by one. Note the way we express it,
we ask the collection to iterate on itself. Note also that we do not have to
worry about the size of the collection and the index of an element as this
is often the case in other languages.

Since we said that we should also tests negative let us to the same for non
isograms. We create another method that returns non isogram strings and
we enhance our testing method.

And we make our test using both.

6.5 Some fun: Obtaining french isograms

Now we would like to find some isograms in french. http://www.pallier.org/
ressources/dicofr/liste.de.mots.francais.frgut.txt contains 330 000 french words
one by line. So we would like to get all the lines.

We will use , the HTTPClient that comes with Pharo. This page re-
turns text that is latin1 (iso-8859-1) encoded, but describes it as ’text/plain’
without further qualification. then assumes the encoding is utf8
(the most reasonable default today). So we have to tell the client which en-
coding to use using mime types. Mime-types can specify the encoding as fol-
lows: or .

Here is how to override the default in . Since this is a lot of data,
execute the expression using the Inspect Itmenu or shocut to get an inspec-
tor instead of a simple DoIt.

54

http://www.pallier.org/ressources/dicofr/liste.de.mots.francais.frgut.txt
http://www.pallier.org/ressources/dicofr/liste.de.mots.francais.frgut.txt

6.6 Pangrams

The expression above will give you an array of 336531 words (it is a bit slow
depending on your internet connection because it is lot of data).

Once you get the inspector opened, you can start to play with the data. Make
sure that you select and in the text pane you can execute the following
expressions:

The first one will select all the words that are isogram and you will see them
in the second list that will appear on the right.

Now you can select again all the isogram longer or equal to 10.

We have other ways to implement isograms and we will discuss such imple-
mentations in the next chapter. Now we will play with pangrams.

6.6 Pangrams

The definition of a pangram is the following: A Pangram or holoalphabetic sen-

tence for a given alphabet is a sentence using every letter of the alphabet at least

once.

Here are examples of english pangrams:

• the five boxing wizards jump quickly

• the quick brown fox jumps over the lazy dog

Let us write a test first. Yes we want to make sure that we will be able to con-
trol if our code is correct and we do not want to repeat typing the test.

55

Some collection katas with words

Imagine a solution

Imagine that we have a collection or string representing the alphabet. A
solution is to check that the potential pangram string contains each of the
characters of the alphabet, as soon as we see that one character is missing we
stop and know that the sentence is not a pangram.

A first version

Here is a first version. We define a variable that will represent
the information we know about the receiver. We set it to true to start. Then
we iterate over an alphabet character by character and as soon as the charac-
ter is not included in the receiver we set the variable to false. At the end we
return the variable .

This first implementation has a problem. Can you see which one? If the sen-
tence does not contain , we will know it immediately still we will look for
all the other letters. So this is clearly inefficient.

A better version

Instead for testing all characters, even if we know one is missing, what we
should do is to stop looking as soon as we identify that there is one missing
character and return the result.

The following definition is doing this and it deserves a word of explanation.

The expression returns the value to the caller method.
The program execution exits at that point: it does not execute the rest of
method. The program execution returns to the method caller. Usually we
use as last statement of a method when they need to return
a special value. Now can occur anywhere and in particu-

56

6.7 Handling alphabet

lar inside a loop. In such a case the loop is stopped, the method execution is
stopped and the value is returned.

Note that we do not need the variable anymore. We return true
as last expression because we assume that if the execution arrives to the this
point, it means that all the characters of the alphabet are in the receiver, else
the execution would have been stopped and false would have been returned.

Important When you define a method returning a boolean value, always
think that you should at least return a true and a false value. This sounds
like a stupid advice but developing such basic reflex is important.

Important The execution of any expression preceded by a (a caret)
will cause the method to exit at that point, returning the value of that
expression. A method that terminates without explicitly returning some
expression will implicitly return .

6.7 Handling alphabet

A pangram is only valid within a given alphabet. The web site http://clagnut.
com/blog/2380/ describes pangrams in many different languages. Now we
could follow one gag in Gaston Lagaffe with the ’Il y a des poux. Parmi les
poux, il y a des poux papas et des poux pas papas. Parmi les poux papas, il y
a des poux papas papas et des poux papas non papas....’ and all their descen-
dance. ’les poux papas et les poux pas papas’ is not a pangram in french but a
pangram in the alphabet ’apouxetl’.

We would like to be able to specify the alphabet to be used to verify. Yes we
define a new test.

You can do it really simply:

57

http://clagnut.com/blog/2380/
http://clagnut.com/blog/2380/

Some collection katas with words

Execute all the tests to verify that we did not change anything.

If we keep to use french words that do not need accents, we can verify that
some french sentences are also pangrams.

6.8 Identifying missing letters

Building a pangram can be difficult and the question is how we can identify
missing letters. Let us define some methods to help us. But first let us write a
test.

We will start to write a test for the method
. As you see we just remove one unique letter from our previous pan-

gram and we are set.

58

6.8 Identifying missing letters

Your work: Propose a definition for the method
.

In fact this method is close to the method . It should
iterate over the alphabet and check that the char is included in the string.
When this is not the case, it should return the character and we can return
an empty string when there is no missing letter.

About the return values of detectFirstMissingLetterFor:

Returning objects that are not polymorphic such as a single character or a
string (which is not a character but a sequence of characters) is really bad
design. Why? Because the user of the method will be forced to check if the
result is a single character or a collection of characters.

Important Avoid as much as possible to return objects that are not
polymorphic. Return a collection and an empty collection. Not a collec-
tion and nil. Write methods returning the same kind of objects, this way
their clients will be able to treat them without asking if they are different.
This practice reinforces the Tell do not ask principle.

We have two choices: either always return a collection as for that we con-
vert the character into a string sending it the message as follow,
or we can return a special character to represent that nothing happens for
example Character space.

Here we prefer to return a string since the method is returning the first
character. In the following one we return a special character.

59

Some collection katas with words

Now it is better to return all the missing letters.

Detecting all the missing letters

Let us write a test to cover this new behavior. We removed the character a
and g from the pangram and we verify that the method returns an array with
the corresponding missing letters.

Your work: Implement the method .

One of the problem that you can encounter is that the order of the missing
letters can make the tests failed. You can create a Set instead of an Array.

Now our test does not work because it verifies that we get an array of charac-
ters while we get an ordered collection. So we change it to take into account
the returned collection.

Instead of explicitely creating a Set, we could also use the message
that converts the receiver into a Set as shown in the second check.

60

6.9 Palindrome as exercise

6.9 Palindrome as exercise

We let as an exercise the identification if a string is a palindrom. A palin-
drome is a word or sentence that can be read in both way. ’KAYAK’ is a palin-
drome.

Some possible implementations

Here is a list of possible implementation.

• You can iterate on strings and check that the first element and the last
element are the same.

• You can also reverse the receiver (message) and compare the
character one by one. You can use the message which iter-
ate on two collections.

You can also add the fact that space do not count.

6.10 Conclusion

We got some fun around words and sentences. You should know more about
strings and collection. In particular, in Pharo a collection can contain any
objects. You also saw is that loops to not require to specify the first index
and how to increment it. Of course we can do it in Pharo using the message

and . But only when we need it. So play with some itera-
tors such as and . The iterators are really powerful and this is
really important to be fluent with them because they will make you save a lot
of time.

61

	Illustrations
	About this book
	A word of presentation
	Structure of the book
	Fast track

	What you will learn
	Growing software
	Syntax, blocks and iterators

	Typographic conventions
	Videos
	Thanks

	Getting in touch with Pharo
	Pharo syntax in a nutshell
	Simplicity and elegance of messages
	Sending a message & the receiver
	Evaluating code and convention for showing results
	Other messages & return values
	The selector & unary messages
	A first keyword-based message
	Keyword-based messages with multiple arguments
	Binary messages

	Which message is executed first?
	Sending messages to classes
	Local variables and statement sequences
	About literal objects
	Sending multiple messages to the same object
	Blocks
	Control structures
	Methods
	Conclusion

	Challenge yourself
	Challenge: Message identification
	Challenge: Literal objects
	Challenge: Kind of messages
	Challenge: Results
	Challenge: unneeded parentheses

	Developing a simple counter
	Our use case
	Create your own class
	Create a package
	Create a class

	Define protocols and methods
	Create a method
	Adding a setter method

	Define a Test Class
	Saving your work
	Saving using Monticello
	Step 1: Add a repository

	Saving your package

	Adding more messages
	Better object description
	Instance initialization method
	Define an initialize method

	Conclusion

	Tests, tests and tests
	What is a test?
	How do we declare a test in Pharo?

	Test Driven Design
	Why testing is important
	What makes a good test?
	right-Bicep
	SUnit by example
	Step 1: Create the test class
	Step 2: Write some test methods
	Step 4: Run the tests
	Step 5: Interpret the results

	The SUnit cookbook
	About assert:equals:
	Other assertions
	Running a single test
	Running all the tests in a test class
	Must I subclass TestCase?

	Defining a fixture
	Step 1: Define the class and context
	Step 2: Setting a reusable context
	Step 3: Write some test methods

	Chapter summary

	Some collection katas with words
	Isogram
	About strings
	A solution using sets
	Hints
	Checking expression
	Adding a method to the class String

	Defining a test
	Testing several strings

	Some fun: Obtaining french isograms
	Pangrams
	Imagine a solution
	A first version
	A better version

	Handling alphabet
	Identifying missing letters
	About the return values of detectFirstMissingLetterFor:
	Detecting all the missing letters

	Palindrome as exercise
	Some possible implementations

	Conclusion

	About objects and classes
	Objects and classes
	Objects: Entities reacting to messages
	Turtles as an example
	Creating an object
	Sending messages
	Multiple instances: each with its own state.

	Messages and Methods
	Message: what should be executed
	Method: how we execute it

	An object is a protective entity
	An object protects its data
	With counters
	A class: blueprint or factory of objects
	Object structure
	Object behavior
	Self is the message receiver

	Class and instances are really different
	Conclusion

	Revisiting objects and classes
	A simple and naive file system
	Studying a first scenario
	Defining a class
	A first little analysis

	Printing a directory
	Adding files
	An example first
	A new class definition

	One message and multiple methods
	Objects: stepping back
	Examples of distribution of responsibilities
	File size
	Search

	Important points
	Modular thinking
	Sending a message is making a choice
	Polymorphic objects

	Distribution of responsibilities
	Procedural

	So far so good? Not fully!
	Conclusion

	Converter
	First a test
	Define a test method (and more)
	The class TemperaturConverter
	Converting from Farhenheit to Celsius
	About floats
	Printing rounded results
	Building a map of degrees
	Spelling Fahrenheit correctly!
	Adding logging behavior
	Discussion
	Conclusion

	An electronic wallet
	A first test
	Adding coins
	Looking at Bag
	Using a bag for a wallet
	More tests
	Testing money
	Checking to pay an amount
	Biggest coin
	Biggest below a value
	Improving the API
	Better string representation
	Easier addition
	Removing coins

	Coins for paying: First version
	Better heuristics
	Conclusion

	Crafting a simple embedded DSL with Pharo
	Getting started
	Create a test
	Define the class Die

	Rolling a die
	Creating another test
	Instance creation interface
	Defining a class method
	[Optional] Alternate instance creation definition

	First specification of a die handle
	Testing a die handle

	Defining the DieHandle class
	Improving programmer experience
	Rolling a die handle
	About Dice and DieHandle API
	About composition

	Role playing syntax
	About class extensions

	Handle's addition
	Conclusion

	Sending messages
	Sending a message is making a choice
	Negation: the not message
	Implementing not
	A first hint.
	A second hint.
	Studying the implementation

	Implementing disjunction
	When receiver is true.
	When receiver is false.

	About ifTrue:ifFalse: implementation
	Implementation.
	Optimisation.

	What is the point?
	Classes represent choices

	Conclusion

	Looking at inheritance
	Inheritance: Incremental definition and behavior reuse
	Inheritance
	Improving files/directories example design
	Objectives

	Transformation strategies
	Factoring out state
	Moving instance variable name to superclass
	Moving parent to the superclass

	Factoring similar methods
	Sending a message and method lookup
	Inheritance properties

	Basic method overrides
	self-send messages and lookup create hooks
	Example
	Describe implementation

	Hook/Template explanations
	Essence of self and dispatch
	Solutions

	Instance variables vs. messages
	Conclusion

	Extending superclass behavior
	Revisiting printOn:
	Improving the situation
	Why self does not work!

	Extending superclass behavior using super
	Another example
	Really understanding super
	Solution

	Conclusion

	A little expression interpreter
	Starting with constant expression and a test
	Negation
	Adding expression addition
	Multiplication
	Stepping back
	Messages and methods
	About common superclass
	Design corner: About addition and multiplication model

	Negated as a message
	negated message for constants
	negated message for negations
	negated message for additions
	negated message for multiplications

	Annoying repetition
	Introducing Expression class
	Class creation messages
	Better instance creation for constants
	Better instance creation for negations
	Better instance creation for additions
	Better instance creation for multiplications

	Introducing examples as class messages
	Printing
	A word about streams
	Printing constant
	Printing negation
	Printing addition
	Printing multiplication

	Revisiting negated message for Negation
	Understanding method override

	Introducing BinaryExpression class
	Creating a template and hook method

	What did we learn
	About hook methods
	Creating hooks is always good
	Avoid not documenting hooks

	Variables
	Some technical points
	Dictionaries
	Dynamic Arrays
	Pairs

	Back to variable expressions
	Non working approaches
	The solution: adding evaluateWith:

	Conclusion

	Little projects
	A simple network simulator
	Basic definitions and a starting point
	Packets are simple value objects
	Nodes
	Links are one-way connections between nodes
	Nodes can emit packets
	Sending
	Transmitting

	A standalone node can transmit a packet to itself

	Modeling the network itself
	The network class
	Looking up nodes
	Looking up links

	Packet delivery in a more realistic network
	Differenciating hubs from normal nodes
	Other examples of specialized nodes
	Workstations count received packets
	Printers accumulate printouts
	Servers answer requests

	Cycles and routing tables

	Snakes and ladders
	Game rules
	Game possible run
	Potential objects and responsibilities
	Possible class candidates
	About representation

	About object-oriented design
	CRC cards
	Some heuristics
	Kind of data passed around
	Agility to adapt

	Let us get started
	A first real test
	Accessing one tile
	Adding players
	Avoid leaking implementation information
	About tools
	Displaying players
	Preparing to move players
	Finding the tile of a player
	Moving to another tile
	About our implementation

	Snakes and ladders
	A hierarchy of tiles
	Split Tile class in two
	Adding snake and ladder tiles

	New printing hook
	Using the new hook
	super does not have to be the first expression

	About hooks and templates
	Snake and ladder declaration
	Better tile protocol
	Another little improvement

	Active tile actions
	Alternating players
	Player turns and current player
	How to find the logic of currentPlayer?
	Game end
	Alternate solution

	Playing one move
	Playing one game step

	Automated play
	Some final tests

	Variations
	Conclusion

	TinyChat: a fun and small chat client/server
	Objectives and architecture
	Loading Teapot
	Message representation
	Class TCMessage
	Accessor creation

	Instance initialisation
	Converting a message object into a string
	Building a message from a string
	Starting with the server
	Storing messages
	Basic operations on message list
	List of messages from a position
	Message formatting

	The Chat server
	TCServer class creation

	Server logic
	The client
	TinyChat class
	HTTP commands

	Client operations
	Client connection parameters
	User interface
	Now chatting
	Conclusion and ideas for future extensions

	Solutions
	Solution of challenge yourself
	Challenge: Message identification
	Challenge: Literal objects
	Challenge: Kind of messages
	Challenge: Results
	Challenge: unneeded parentheses

	Some collection katas solutions
	Isogram
	Pangrams
	Identifying missing letters
	Detecting all the missing letters

	Palindrome

	Electronic wallet solutiuon
	Using a bag for a wallet
	Testing money
	Checking to pay an amount
	Biggest coin
	Biggest below a value
	Improving the API
	Coins for paying: First version

	Converter solution
	Converting from Farhenheit to Celsius
	Adding logging behavior

	Die DSL
	Define class Die
	Rolling a die
	Define class DieHandle
	Die addition

	Rolling a dice handle
	Role playing syntax
	Adding DieHandles

	Expressions solutions
	Evaluate message
	Negated message
	Better class instance creation interface
	Printing addition and multiplication
	Negated negation
	evaluateWith:

	Snake and ladder solutions
	A first real test
	Accessing on tile
	Adding players
	Displaying players
	Avoid leaking implementation information
	Preparing to move players
	Finding the tile of a player
	Moving a player
	New printing hook
	Snake and ladder declaration
	Active tile actions
	Player turns and current player
	Game end
	Playing one move

