
Building A Simple Contact Book Application

Chapter 1

Building A Simple Contact
Book Application

In this tutorial, you will develop a simple contact book application with a
web interface. It consists of a couple of classes for the model and the UI
of the application). Figure 1.1 shows the resulting application. You will de-
velop the web interface using Seaside (http://ww.seaside.st). Seaside is a
powerful web framework for developing highly dynamic and complex web
application. For more information you can read the book: ’Dynamic Web
Development with Seaside’ which is freely available at http://book.seaside.st.
Now in this little tutorial we will only use some simple server side Seaside
behavior.

1.1 The Model

The contact book is composed of 2 model classes: Contact and
ContactBook. Let us start with the Contact class.

The Contact

A contact has two instance variables fullname and email, both strings.
Create the Contact class with its instance variables:

Object subclass: #Contact
instanceVariableNames: 'fullname email'
classVariableNames: ''
category: 'ContactBook'

Building A Simple Contact Book Application

http://www.seaside.st
http://book.seaside.st

2 Building A Simple Contact Book Application

Figure 1.1: Screenshot of the finished contact book application.

It should be possible to create a new contact by executing the following
code:

contact := Contact newNamed: 'Marcus Denker' email: 'marcus.denker@inria.fr'.

It means that we want to send a message (newNamed:email:) to the
class Contact itself and that it will should return a Contact instance.

Add the class newNamed:email: method in Contact class. To define
a class method, pay attention that you should browse the class side of the
Contact class. and necessary mutator in Contact:

Contact class>>newNamed: aString email: aString2
^ self new

setFullname: aString email: aString2;
yourself

You will need to define a instance method (setFullname:email:) to
set all the information to the receiver.

Contact>>setFullname: aString email: aString2
fullname := aString.

1.1 The Model 3

email := aString2

Note that this is just one way to do it. Another way is to use simple
setter messsages. We need to define setter, because in Pharo the only way to
modify the state of an instance from the outside is by sending it messages.

You can define a test to make sure that you can create an instance without
error and that it contains the right information.

TestCase subclass: #ContactText
instanceVariableNames: ''
classVariableNames: ''
category: 'ContactBook'

ContactText>>testCreation
| contact |
contact := Contact newNamed: 'Marcus Denker' email: 'marcus.denker@inria.fr
'.
self assert: contact fullname = 'Marcus Denker'.
self assert: contact email = 'marcus.denker@inria.fr'.

For this test to work you need to define the following accessors.

Contact>>fullname
^ fullname

Contact>>email
^ email

If you inspect or print the contact variable created above, you will
see that the string representation of Contact instances is "a Contact"
which says nothing about the contact itself. This is problematic when debug-
ging and developers typically appreciate nicer string representations. You
can change that by overriding the method Object>>printOn: in the
Contact class and sending several nextPutAll: messages to the stream
argument as follows:

Contact>>printOn: aStream
aStream

nextPutAll: self fullname;
nextPutAll: ' <';
nextPutAll: self email;
nextPutAll: '>'

The string representation of the above contact variable will then be:

'Marcus Denker <marcus.denker@inria.fr>'

4 Building A Simple Contact Book Application

Don’t forget to categorize the methods in dedicated protocols and to com-
ment the class.

Note that in future extensions you could

The Contact Book

A contact book contains a collection of contacts. Let us create the
ContactBook class with its instance variable contacts:

Object subclass: #ContactBook
instanceVariableNames: 'contacts'
classVariableNames: ''
category: 'ContactBook'

It should be possible to add and remove contacts from the collection.
Add the necessary methods:

ContactBook>>addContact: aContact
self contacts add: aContact

ContactBook>>removeContact: aContact
self contacts remove: aContact

You can either define an initialize method (that is automatically in-
voked at instance creation time) or use lazy initialization. The following
method uses lazy initialization.

ContactBook>>contacts
^ contacts ifNil: [contacts := OrderedCollection new]

To simplify further development, we define a default contact book with
predefined contacts inside. We do this by adding createDefault as a class
method to the default instance protocol of ContactBook class:

ContactBook class>>createDefault
^ self new

addContact: (Contact newNamed: 'Damien Cassou' email: 'damien@cassou.
me');
addContact: (Contact newNamed: 'Marcus Denker' email: 'marcus.
denker@inria.fr');
addContact: (Contact newNamed: 'Jorge Luis Ressia' email: 'ressia@iam.
unibe.ch');
addContact: (Contact newNamed: 'Clara Allende' email: 'clari.allende@gmail.
com');
yourself

Don’t forget to categorize the methods in dedicated protocols and to com-
ment the class.

1.2 A First Web View 5

1.2 A First Web View

Now that we have the model, we need a web view. In this tutorial, we use
the Seaside web framework to define the views of our application.

Seaside must be loaded in the image to start using it. Open the Catalog
browser tool and search for Seaside. Install the stable version. As it can take
a while you can also download a pre-installed version of Seaside available
at https://ci.inria.fr/pharo-contribution/job/Seaside/.

Seaside is a component framework: Seaside web applications are built
by aggregating components. Typically, an application consists of a top-level
component delegating part of its rendering to sub-components. Our simple
application will only consist of a top-level component represented by the
WAContactBook class, subclass of WAComponent.

Create the WAContactBook class with a contactBook instance vari-
able:

WAComponent subclass: #WAContactBook
instanceVariableNames: 'contactBook'
classVariableNames: ''
category: 'ContactBook'

Rendering a Title

Every Seaside component class must override the renderContentOn:
method to specify how a component is rendered. Define this method to the
rendering protocol:

WAContactBook>>renderContentOn: html
"Main entry point of the view. Render a title."

html heading
level: 1;
with: 'My Contact Book'.

The method argument html acts as a brush that can be parametrized to
emit adequate XHTML. Here we request the heading brush and set it to level
one. Then we specify the contents of the corresponding section.

The next step is to register the WAContactBook class to the /contacts
URL path. This way you will be able to reach the application as on
http://localhost:8080/contacts. Do this by implementing a class initialize
method in WAContactBook class:

WAContactBook class>>initialize
WAAdmin register: self asApplicationAt: 'contacts'.

https://ci.inria.fr/pharo-contribution/job/Seaside/
http://localhost:8080/contacts

6 Building A Simple Contact Book Application

Figure 1.2: Screenshot of the contact book application title

Class initialize method are executed when the code is loaded in memory,
now since the class is already loaded, we should executed it once manually:

WAContactBook initialize

The last step before getting something in the web browser is to
start the web server. Open the Seaside control panel tool, add a
ZnZincServerAdaptor on port 8080 and start it.

Open your favorite web browser on http://localhost:8080/contacts and you
should see something similar to Figure 1.2. Currently, the title of the web
page is "Seaside", as we can see it in the web browser window title and the
tab title. This can be changed by overriding updateRoot: as follows.

WAContactBook>>updateRoot: anHtmlRoot
super updateRoot: anHtmlRoot.
anHtmlRoot title: 'Contact Book'

You can refresh the page in the web browser to see the result.

Rendering a Table of Contacts

Below the title, we now want a table containing the contacts of the con-
tact book. For this, we need to change the renderContentOn: method
and add a few new methods. We will decompose the behavior we want to
be able to reuse it if necessary. First we introduce a new method named
renderContactsOn:.

WAContactBook>>renderContentOn: html
"Main entry point of the view. Render both a title and the list of contacts."

http://localhost:8080/contacts

1.2 A First Web View 7

html heading
level: 1;
with: 'My Contact Book'.

self renderContactsOn: html

The method renderContactsOn: defines a table with a table header
and delegates to the the method renderContact:on:.

WAContactBook>>renderContactsOn: html
html

table: [
html

tableHead: [
html

tableHeading: 'Name';
tableHeading: 'Email'].

self contactBook contactsDo: [:contact | self renderContact: contact on: html
]]

The method renderContact:on: defines the rendering of a single con-
tact as table row.

WAContactBook>>renderContact: aContact on: html
html

tableRow: [
html

tableData: aContact name;
tableData: aContact email]

As we saw, the renderContentOn: method delegates the table
rendering to the renderContactsOn: method. The latter creates a
table with a heading row and delegates the contact rendering to the
renderContact:on: method. This method renders a table row with the
contact’s details.

Some methods are used above but not yet defined. The
WAContactBook>>contactBook method is an accessor to the
contactBook instance variable. If the variable is not yet set, we can
set it to a default contact book like this:

WAContactBook>>contactBook
^ contactBook ifNil: [contactBook := ContactBook createDefault]

The contactsDo: method is implemented in the ContactBook class
like this:

ContactBook>>contactsDo: aBlock
self contacts do: aBlock

8 Building A Simple Contact Book Application

Figure 1.3: Screenshot of a contact book contacts

This contactsDo: method is not as useless as it might seem. This
method hides the existence of a contactBook collection in ContactBook.
It could be useful later to replace the collection by a database.

Refreshing the web browser should now show a list of contacts as can be
seen in Figure 1.3.

1.3 Improving the View with Bootstrap

The rendering can be visually improved by adding some Cascading Style
Sheets (CSS). In the following, we use the Bootstrap framework that must be
loaded in the image. Open the Catalog browser tool and search for Bootstrap.
Install the stable version.

The contact book application must declare its dependency on Bootstrap.
This is done by modifying the class initialize method:

WAContactBook class>>initialize
(WAAdmin register: self asApplicationAt: 'contacts')

addLibrary: JQDeploymentLibrary;
addLibrary: TBSDeploymentLibrary

Do not forget to reinitialize it manually again:

WAContactBook initialize

http://getbootstrap.com/

1.4 Finishing the Details 9

The Bootstrap framework defines some special methods (such as
tbsContainer:, tbsTable) to improve the application rendering. We
now adapt our existing code to use these methods:

WAContactBook>>renderContentOn: html
"Main entry point of the view. Render both a title and the list of contacts."

html
tbsContainer: [

html heading
level: 1;
with: 'My Contact Book'.

self renderContactsOn: html]

WAContactBook>>renderContactsOn: html
html

tbsTable: [
html

tableHead: [
html

tableHeading: 'Name';
tableHeading: 'Email'].

self contactBook contactsDo: [:contact | self renderContact: contact on: html]]

As you can see, the adaptation consisted in adding a container with
tbsContainer: and replacing a table: by a tbsTable: message.

The result in Figure 1.4 already looks much nicer. In a real applica-
tion, it is recommended to avoid using Bootstrapspecific methods such as
tbsContainer: and tbsTable: to use Bootstrap mixins instead. We will
not cover that in our tutorial though.

1.4 Finishing the Details

We will now add photos and buttons to our contact list to obtain the result
in Figure 1.1.

Adding Photos

We will improve the contact book application by displaying photos next to
each contact. We fetch these photos automatically fetched from the web us-
ing Gravatar or equivalent. Gravatar provides a web API to retrieve a photo
from an email address:

Contact>>gravatarUrl

http://ruby.bvision.com/blog/please-stop-embedding-bootstrap-classes-in-your-html
http://gravatar.com/
http://en.gravatar.com/site/implement/

10 Building A Simple Contact Book Application

Figure 1.4: Screenshot of the contact book application with bootstrap

^ 'http://www.gravatar.com/avatar/', (MD5 hashMessage: email trimBoth
asLowercase) hex, '.jpg'

For example, for marcus.denker@inria.fr, the Gravatar URL is:

'http://www.gravatar.com/avatar/c147c32f94baa71afa9d7be0a289766d.jpg'

The web application must be adapted with a new column for the photos:

WAContactBook>>renderContactsOn: html
html

tbsTable: [
html

tableHead: [
html

tableHeading: 'Name';
tableHeading: 'Email';
tableHeading: 'Photo'].

self contactBook contactsDo: [:contact | self renderContact: contact on: html]]

Then we display the photo on the third column.

WAContactBook>>renderContact: aContact on: html
html

tableRow: [
html

mailto:marcus.denker@inria.fr

1.4 Finishing the Details 11

tableData: aContact name;
tableData: aContact email;
tableData: [self renderPhotoOf: aContact on: html]]

WAContactBook>>renderPhotoOf: aContact on: html
html image url: aContact gravatarUrl

Adding Buttons

Finally, we add buttons to remove contacts one by one and to reset the con-
tact book to the default one.

We first add a remove button on each contact line in the table:

WAContactBook>>renderContact: aContact on: html
html

tableRow: [
html

tableData: aContact name;
tableData: aContact email;
tableData: [self renderPhotoOf: aContact on: html];
tableData: [self renderRemoveButtonForContact: aContact on: html]]

WAContactBook>>renderRemoveButtonForContact: aContact on: html
html tbsButton

beDanger;
callback: [self contactBook removeContact: aContact];
with: 'Remove'

You can refresh the page in the web browser and you will see the remove
buttons. However, none of them will work because an HTML form must
wrap the buttons. This can be done by modifying the renderContentOn:
method again:

WAContactBook>>renderContentOn: html
"Main entry point of the view. Render both a title and the list of contacts."

html
tbsContainer: [

html heading
level: 1;
with: 'My Contact Book'.

html tbsForm: [self renderContactsOn: html]]

The remove buttons should now work fine. To let the contact book user
reset the contact book to its default state, we now add a reset button below
the contact table:

12 Building A Simple Contact Book Application

WAContactBook>>renderContentOn: html
"Main entry point of the view. Render both a title and the list of contacts."

html
tbsContainer: [

html heading
level: 1;
with: 'My Contact Book'.

html
tbsForm: [

self renderContactsOn: html.
self renderButtonsOn: html]]

WAContactBook>>renderButtonsOn: html
html

tbsButtonGroup: [
html tbsButton

beDanger;
callback: [self resetContactBook];
with: 'Reset']

WAContactBook>>resetContactBook
contactBook := nil

You should now get the same result as in Figure 1.1.

1.5 Summary

During this tutorial we defined a simple model and one simple web view.
We follow a traditional development style where we define methods upfront.
We could also have written tests are while they get executed define method
directly in the debugger. Pharo developer often prefer this way because they
go faster and the tests define more precise context.

	 Building A Simple Contact Book Application
	The Model
	A First Web View
	Improving the View with Bootstrap
	Finishing the Details
	 Summary

