
Developing a simple counter

Chapter 1

Developing a simple counter

We want you to implement a simple counter by following the steps given
below. In this exercise you will learn how to create classes, method, instances.
You will learn how to define tests and many more.

Note that the development flow promoted by this little tutorial is tradi-
tional in the sense that you will define a package, a class, then define its
instance variable then define its methods and finally execute it. The compan-
ion video follows also such programming development flow.

Now in Pharo, developers often follows a totally different style (that we
call more live coding) where they execute an expression that will raise errors
and they will code in the debugger or let the system define some instance
variables and methods on the fly for them. Once you will have finish this
tutorial we will ask you to try the other style by following a video showing
such different development practice.

1.1 Our use case

Here is our use case: We want to be able to create a counter, increment it
twice, decrement it and check that its value is correct.

| counter |
counter := Counter new.
counter increment; increment.
counter decrement.
counter count = 1

Now we will develop all the mandatory class and methods to support
this scenario.

Developing a simple counter

2 Developing a simple counter

Figure 1.1: Package created.

1.2 Create your own class

In this part you will create your first class. In Pharo a class is defined in a
package. The steps we will do are the same ones every time you create a
class, so memorize them well. We are going to create a class Counter in a
package called MyCounter. Figure 1.1 shows the result of creating such a
package.

Create a package

In the Browser create a package. The system will ask you a name, write
Counter. open This new package will be created and added to the list.

Create a class

Creating a class requires five steps. They consist basically of editing the class
definition template to specify the class you want to create.

• Superclass Specification. First, you should replace the word

1.3 Define protocols and methods 3

NameOfSuperclass with the word Object. Thus, you specify the
superclass of the class you are creating. Note that this is not always the
case that Object is the superclass, since you may to inherit behavior
from a class specializing already Object.

• Class Name. Next, you should fill in the name of your class by replac-
ing the word NameOfClass with the word Counter. Take care that
the name of the class starts with a capital letter and that you do not
remove the #sign in front of NameOfClass

• Instance Variable Specification. Then, you should fill in the names
of the instance variables of this class. We need one instance variable
called count. Take care that you leave the string quotes!

• Class Variable Specification. As we do not need any class variable
make sure that the argument for the class instance variables is an
empty string classInstanceVariableNames: ”.

• Compile. That’s it! We now have a filled-in class definition for the class
Counter. To define it, we still have to compile it. Therefore, select the
accept menu. The class Counter is now compiled and immediately
added to the system.

You should get the following class definition.

Object subclass: #Counter
instanceVariableNames: 'count'
classVariableNames: ''
category: 'MyCounter'

Figure 1.2 illustrates the resulting situation that the browser should show.

As we are disciplined developers, we provide a comment to Counter
class by clicking Comment button. You can write the following comment:

Counter is a concrete class which supports incrementing and decrementing a
counter.

It knows how to increment and decrement its value.

Select accept to store this class comment in the class.

1.3 Define protocols and methods

In this part you will use the browser to learn how to add protocols and meth-
ods.

4 Developing a simple counter

Figure 1.2: Class created.

The class we have defined has one instance variable named count. You
should remember that in Pharo, everything is an object, that instance vari-
ables are private to the object and that the only way to interact with an object
is by sending messages to it.

Therefore, there is no other mechanism to access the instance variables
from outside an object than sending a message to the object. What you can
do is to define messages that return the value of the instance variable of
a class. Such methods are called accessors, and it is a common practice to
always define and use them. We start to create an accessor method for our
instance variable count.

Remember that every method belongs to a protocol. These protocols are
just a group of methods without any language semantics, but convey impor-
tant navigation information for the reader of your class. Although protocols
can have any name, Pharo programmers follow certain conventions for nam-
ing these protocols. If you define a method and are not sure what protocol it
should be in, first go through existing code and try to find a fitting name.

1.3 Define protocols and methods 5

Create a method

Now let us create the accessor methods for the instance variable value. Start
by selecting the class Counter in a browser, and make sure the you are
editing the instance side of the class (i.e., we define methods that will be sent
to instances) by deselecting the Class side radiobutton.

Create a new protocol by bringing the menu of methods protocol list.
Select the newly created protocol. Then in the bottom pane, the edit field
displays a method template laying out the default structure of a method.
Replace the template with the following method definition:

count
"return the current value of the value instance variable"
^ count

This defines a method called count, taking no arguments, having a
method comment and returning the instance variable count. Then choose
accept in the operate menu to compile the method. You can now test your
new method by typing and evaluating the next expression in a Playground,
or any text editor.

Counter new count
> nil

This expression first creates a new instance of Counter, and then sends
the message count to it and retrieves the current value of the counter. This
should return nil (the default value for noninitialised instance variables;
afterwards we will create instances with a reasonable default initialisation
value.

Remarks

Accessors can be defined in protocols accessing or private. Use the access-
ing protocol when a client object (like an interface) really needs to access
your data. Use private to clearly state that no client should use the accessor.
This is purely a convention. There is no simple way in Pharo (as in many
dynamically-typed languages) to enforce access rights like private in C++ or
Java. Note that this discussion does not seem to be very important in the con-
text of this specific simple example. However, this question is central to the
notion of object and encapsulation of the data. An important side effect of
this discussion is that you should always ask yourself when you, as a client
of an object, are using an accessor if the object is really well defined and if it
does not need extra functionality.

6 Developing a simple counter

Adding a setter method

Another method that is normally used besides the accessor method is a so-
called setter method. Such a method is used to change the value of an in-
stance variable from a client. For example, the expression Counter new
count: 7 first creates a new Counter instance and then sets its value to
7:

The snippets shows that the counter effectively contains its value.

| c |
c := Counter new count: 7.
c count
> 7

This setter method does not currently exist, so as an exercise write the
method count: such that, when invoked on an instance of Counter, in-
stance variable is set to the argument given to the message. Test your method
by typing and evaluating the expression above.

1.4 Define a Test Class

Writing tests is an important activity that will support the evolution of your
application. Remember that a test is written once and executed million times.
To define a test case we will define a class that inherits from TestCase.
Therefore define a class named CounterTest as follows:

TestCase subclass: #CounterTest
instanceVariableNames: ''
classVariableNames: ''
category: 'Counter'

Now we can write a first test by defining one method. Test methods
should start with text to be automatically executed by the test runner or
when you press on the icon of the method. Now to make sure that you
understand in which class we define the method we prefix the method body
with the class name and >>. CounterTest>> means that the method is
defined in the class CounterTest.

Define the following method. It first creates an instance, set its value and
verifies that the value is correct. The message assert: is a special message
recording if the test passed or not.

CounterTest>>testCountIsSetAndRead
| c |
c := Counter new.
c count: 15.

1.5 Adding more messages 7

self assert: c count = 15

Verify that the test passes by executing either pressing the icon in front of
the method or using the test runner (selecting your package).

1.5 Adding more messages

Before implementing the following messages we will define first a test. We
define one test for the method increment as follows:

CounterTest>>testIncrement
| c |
c := Counter new.
c count: 0 ; increment; increment.
self assert: c count = 2

• Propose a definition for the method increment.

• Define a test and method for the method decrement.

• Implement the following methods increment and decrement in the
protocol operation.

Counter>>increment
self count: self count + 1

Counter>>decrement
self count: self count - 1

Run your tests they should pass (as shown in Figure 1.3).

Better object description

When you open an inspect (putting a self halt inside a method defini-
tion) you obtain an inspector or when you select the expression Counter
new and print its result (using the Print it menu of the editor) you obtain a
simple string ’a Counter’.

Counter new
> a Counter

We would like to get a much richer information for example knowing the
counter value. Implement the following methods in the protocol printing

8 Developing a simple counter

Figure 1.3: Class with green tests.

Counter>>printOn: aStream
super printOn: aStream.
aStream nextPutAll: ' with value: ',
self count printString.
aStream cr.

Note that the method printOn: is used when you print an object using
print it (See Figure 1.4) or click on self in an inspector.

1.6 Instance initialization method

Right now the initial value of our counter is not set.

Counter new count
> nil

Let us write a test checking that a newly created instance has 0 as a de-
fault value.

Counter>>testValueAtCreationTimeIsZero

1.6 Instance initialization method 9

Figure 1.4: Better description.

self assert: Counter new count = 0

• Define the new test method.

Define initialize method

Now we have to write an initialization method that sets a default value of the
count instance variable. However, as we mentioned the initialize mes-
sage is sent to the newly created instance. This means that the initialize
method should be defined at the instance side as any method that is
sent to an instance of Counter (like increment) and decrement. The
initialize method is responsible to set up the instance variable default
values.

Therefore at the instance side, you should create a protocol
initialization, and create the following method (the body of this
method is left blank. Fill it in!).

Counter>>initialize
"set the initial value of the value to 0"

10 Developing a simple counter

Now create a new instance of class Counter. Is it initialized by default?
The following code should now work without problem:

Counter new increment

and the following one should return 2

Counter new increment; increment; count
> 2

1.7 Define a new instance creation method

To be sure that you have really understood the distinction between instance
and class methods, you should now define a different instance creation
method named withValue:. This method receives an integer as argument
and returns an instance of Counter with the specified value.

Let us define a test:

CounterTest>>testAlternateCreationMethod
self assert: ((Counter withValue: 19) increment ; count) = 20

Here the message withValue: is sent to the class Counter itself.

1.8 Saving your Work

Several ways to save your work exist: You can

• Save the class by clicking on it and selecting the fileout menu item. You
will get a file containing the source code on your harddisc - This is not
the favorite way to save your code.

• Use the Monticello browser to save a package.

Use SmalltalkHub to save your work. Go to http://www.smalltalkhub.com/
and create a member account then register a new project. You get then an
HTTP entry that refer to your project. Enter it as an HTTP repository in
Monticello.

To save your work, simply publish your package. This will open a dialog
where you can give a comment, version numbers and blessing. From then
on, other people can load it from there, in the same way that you would use
cvs or other multi-user versioning systems. Saving the image is also a way
to save your working environment, but publishing it is better.

http://www.smalltalkhub.com/

1.9 Conclusion 11

You can of course both publish your package (so that other people can
load it, and that you can compare it with other versions, etc.) and save your
image (so that next time that you start your image you are in the same work-
ing environment).

1.9 Conclusion

In this exercise you learned how to define classes, methods, and define tests.
The flow of programming that we chose for this first exercise is similar to
most of programming languages. In Pharo you can use a different flow that
is based on defining a test first, executing it and when the execution raises
error to define the corresponding classes, methods, and instance variable
often from inside the debugger. We suggest you now to redo the exercise
following the second companion video.

	 Developing a simple counter
	 Our use case
	 Create your own class
	 Define protocols and methods
	 Define a Test Class
	 Adding more messages
	 Instance initialization method
	 Define a new instance creation method
	 Saving your Work
	 Conclusion

