
Crafting a Simple Embedded DSL with Pharo

Chapter 1

Crafting a Simple Embedded
DSL with Pharo

In this tutorial we develop a simple Domain Specific Language (DSL) for
rolling dice. Players of games such as Dungeon and Dragons are familiar
with the DSL we implement. An example of such DSL is

2 D20 + 1 D6

This example means that we should roll two times a 20-faces dice and
one time a 6 faces dice. This tutorial shows how we can (1) simply reuse
traditional operator such as +, (2) develop an embedded DSL and (3) use
class extensions (aka open classes).

1.1 Getting started

Using the code browser (click on the background to open the World menu and
select System Browser), define a package named Dice (contextual menu, Add
package).

Defining the class Dice

In this package, define a class Dice with an instance variable faces (contextual
menu, Add class).

Your code here

Add an initialize protocol, and define a method initialize that simply sets
the default number of faces to 6. Save this method (ctrl s)

Crafting a Simple Embedded DSL with Pharo

2 Crafting a Simple Embedded DSL with Pharo

Your code here

Creating a test

It is always empowering to verify that the code we write is always working
as we defined it. For this purpose we create a unit test. So we define the class
DiceTest as a subclass of TestCase.

TestCase subclass: #DiceTest
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Dice'

We add a new test testInitializeIsOk to make sure we can create a new dice.

DiceTest>>testInitializeIsOk
self shouldnt: [Dice new] raise: Error

When this method is saved, you can click on the gray icon in front of
the method name in the methods pane to execute the test. The icon should
become green.

1.2 Rolling a dice

To roll a dice we use the method atRandom from Number. This method ran-
domly chooses a number between one and the receiver. For example 10
atRandom draws a number between 1 and 10. Now, define the roll method
of the class Dice class so that it returns a random number between 1 and the
number of faces.

Your code here

Now we can create a new instance of Dice, send it the message roll, and
get a result. Open a workspace (World menu, Workspace). Write Dice new
inspect and execute the expression (ctrl d). You should get an inspector like
the one shown in Figure 1.1. With it you can interact with the dice by writing
expressions in the bottom pane. In this pane, type self roll and print the result
(ctrl p). You should get a random number.

Creating another test

We define a test that verifies that rolling a new created dice (with 6 faces by
default) only returns values comprised between 1 and 6. This is what the

1.3 Instance creation interface 3

Figure 1.1: Inspecting and interacting with a Dice.

following test method is actually specifying.

DiceTest>>testRolling
| d |
d := Dice new.
100 timesRepeat: [self assert: (d roll between: 1 and: 6)]

Execute the test to make sure it runs fine.

1.3 Instance creation interface

Now, we would like to get a simpler way to create Dice instances. For exam-
ple we want to create a 20-faces dice as follows: Dice faces: 20. Let us define
a test for it. When you save this method, you might get a warning message
saying that faces: is an unknown method name (aka., selector). Just confirm
the name to validate.

DiceTest>>testCreationIsOk
self shouldnt: [Dice faces: 20] raise: Error

Execute the test and you should get an error message because the class
Dice does not have a method faces:. The message faces: is sent to the class
Dice and not to an instance of this class. Such methods are called class meth-
ods or class-side methods; this is equivalent to static methods in Java. To
add such a method to a class from the code browser, you have to tick the
class checkbox.

Another way to create this method is to do it right from the debugger
that pops up when a method does not exist. Just click the Create button

4 Crafting a Simple Embedded DSL with Pharo

in the debugger, select the Dice class, and the instance creation protocol. The
method first creates an instance, then sends it the message faces:, and returns
the instance. You can implement the method right in the debugger.

Dice class>>your code here

To implement this method, you will have to send the message new to the
class: self is the current class when implementing a class method.

Note:
If your implementation of the method uses a tem-
porary variable, you may want to simplify it by us-
ing the cascade operator ; and the yourself message.
Look at the implementation of Object>>yourself and
its senders (contextual menu, Senders of) to get ex-
amples on how to do this.

This method can not yet be executed because you first have to implement
the instance-side method faces: (the setter for the variable) that configure
a new dice with a number of faces passed as an argument. In Java, you
would not have to do that because constructors can access instance variables.
In Smalltalk, a class method only knows about the class variables not the
instance variables. You can keep on using the debugger to do that or you
can go back to the code browser.

Your code here

Now, all your tests should pass and this is good moment to save your
code (World menu, Save).

So even if the class Dice could implement more behavior, we are ready to
implement a dice handle.

1.4 First specification of a dice handle

Let us define a new class DiceHandle that represents a dice handle.

Here is the API that we would like to offer for now. We create a new
instance of the handle then add some dice to it.

DiceHandle new
addDice: (Dice faces: 6);
addDice: (Dice faces: 10);
yourself

1.4 First specification of a dice handle 5

Testing Dice Handle

Of course we define a test for this new class. We define the class DiceHan-
dleTest as follow.

TestCase subclass: #DiceHandleTest
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Dice'

We define a new test method as follows.

DiceHandleTest>>testCreationAdding
| handle |
handle := DiceHandle new

addDice: (Dice faces: 6);
addDice: (Dice faces: 10);
yourself.

self assert: handle diceNumber equals: 2.

When you save the method, the code browser will offer to create the
class and may warn you that addDice and diceNumber are unknown method
names.

With another test, we can make sure we can add two times a similar dice.

DiceHandleTest>>testAddingTwiceTheSameDice
| handle |
handle := DiceHandle new

addDice: (Dice faces: 6);
yourself.

self assert: handle diceNumber equals: 1.
handle addDice: (Dice faces: 6).
self assert: handle diceNumber equals: 2.

Defining the DiceHandle class

The DiceHandle class defines one instance variable named dice to hold a col-
lection of dice. Add this variable to the class now.

When an instance is initialized, the instance variable dice must contain an
empty OrderedCollection. Implement the corresponding initialize method.

Your code here

Then we define a simple method (addDice:) to add a dice to the list of dice
of the handle. You can do that from the code browser or from a debugger
after having run a failing unit test.

6 Crafting a Simple Embedded DSL with Pharo

Figure 1.2: Inspecting a dice handle.

Your code here

Now you can execute the code snippet and inspect it (ctrl i):

DiceHandle new
addDice: (Dice faces: 6);
addDice: (Dice faces: 10);
yourself

You should get an inspector as shown in Figure 1.2.

Finally we should add the method diceNumber to the DiceHandle class to
get the number of dice of the handle. The method returns the size of the dice
collection.

Your code here

Now your tests should pass and this is good moment to save your code.

1.5 Improving the programmer experience

When you open an inspector on a dice handle (such as the one in Figure 1.2)
you cannot see the details of the dices that compose the dice handle. Click on
the dice instance variable and you only get a list of "a Dice" without further
information as you can see in Figure 1.2.

Enhance the printOn: method of the Dice class to provide more informa-
tion: simply add the number of faces surrounded by parenthesis to make the
result look like the one in Figure 1.4.

1.6 Rolling a dice handle 7

Figure 1.3: Dice details.

Figure 1.4: Dice Handle with more information.

Note:
You may want to have a look at all the implementors
of printOn: (contextual menu of the printOn: method,
Implementors of) to get examples.

Your code here

Now in your inspector you can see the number of faces a dice has as
shown by Figure 1.3 and it is now easier to check the dice contained inside a
handle (see Figure 1.4).

8 Crafting a Simple Embedded DSL with Pharo

1.6 Rolling a dice handle

Now we can define the rolling of a dice handle by simply summing the dice
rolls. Implement the roll method of the DiceHandle class. This method must
collect the results of rolling each dice of the handle and sum them.

Note:
You may want to have a look at the method sum in
the class Collection.

Your code here

We can now send the message roll to a dice handle.

handle := DiceHandle new
addDice: (Dice faces: 6);
addDice: (Dice faces: 10);
yourself.

handle roll

1.7 Role playing syntax

We are ready to offer a syntax following practice of role playing game, i.e.,
using 2 D20 to create a handle of two 20-faces dice. For this purpose we
use class extensions: we define methods in the class Integer. We want these
methods to only be available when the package Dice is loaded.

First let us specify what we would like to obtain by writing a new test in
the class DiceHandleTest. Remember to always take any opportunity to write
tests. When we execute 2 D20 we should get a new handle composed of two
dice and can verify that. This is what the method testSimpleHandle is doing.

DiceHandleTest>>testSimpleHandle
self assert: 2 D20 diceNumber equals: 2.

Verify that the test is not passing! It is much more satisfactory to get a test
running when it was not working before. Now define the method D20 with
a protocol name *Dice. The * (star) prefixing the protocol name indicates that
the protocol belongs to another package. You can define this method either
from the debugger resulting from the execution of the failed test or in the
code browser.

The method D20 simply creates a new dice handle, adds the correct num-
ber of dice to this handle, and returns the handle.

1.8 Conclusion 9

Your code here

Your test should pass and this is probably a good moment to save your
work.

We could do the same for different face numbers: 4, 6 and 10. But we
should avoid duplicating logic and code. We first introduce a new method
D: in the Integer class and, based on it, we define all the others.

Your code here

The D20 method should now look like:

Integer>>D20
^ self D: 20

We have a compact form to create dice and we are ready for the last part:
the addition of handles.

Adding handles

Now we can simply support the addition of handles. Let us write a test first.

DiceHandleTest>>testSumming
| handle |
handle := 2 D20 + 3 D10.
self assert: handle diceNumber equals: 5.

We define a + method on the DiceHandle class. In other languages this is
often not possible or is based on operator overloading. In Pharo + is just a
message as any other. Therefore we can define the + method on the classes
we want.

What is the semantics of adding two handles? Should we modify the
receiver of the expression or create a new handle? In this tutorial we choose
the functional style and decide that a new handle should be created. As a
result, the method + first creates a new handle then adds to it the dice of
the receiver and the ones of the handle passed as argument. Finally, + must
return the newly created handle. To access the dice of the dice handle passed
as a parameter, you will have to add a dedicated accessor.

Your code here

Now we can execute (2 D20 + 1 D6) roll and start playing games, of course.

10 Crafting a Simple Embedded DSL with Pharo

1.8 Conclusion

This tutorial illustrates how to create a small DSL based on the definition of
some domain classes (here Dice and DiceHandle). We used class extension (on
Integer) to simplify the instanciation of these classes. This tutorial shows that
in Pharo we can use standard operators to express natural models.

	Crafting a Simple Embedded DSL with Pharo
	 Getting started
	 Rolling a dice
	 Instance creation interface
	 First specification of a dice handle
	 Improving the programmer experience
	 Rolling a dice handle
	 Role playing syntax
	 Conclusion

