CHAPTER

Building A Simple Contact Book
Application

In this tutorial, you will develop a simple contact book application with a
web interface. It consists of a couple of classes for the model and the UI of
the application. Figure 1.1 shows the resulting application. As you see it is
simple but covers many aspects of defining and deploying a web applications.

You will develop the web interface using Seaside (http://ww.seaside.st').
Seaside is a powerful web framework for developing highly dynamic and
complex web application. For more information you can read the book: 'Dy-
namic Web Development with Seaside’ which is freely available at http://
book.seaside.st. In this little tutorial we will only use some simple server side
Seaside behavior. We will use the Twitter Bootstrap library that is fully inte-
grated to Seaside.

Note that the presented solution is often simple and we will list ideas of fur-
ther improvements that you could add. In addition, it is worth to know that
Pharo developers often use object descriptions (as done via the Magritte
framework) to generate new web components instead of manually devel-
oping them.

About development style

While we love coding test first and coding in the debugger (since it let us go
much faster), in this tutorial we will not follow such style because it requires
a lot of text to mention what to do with the user interface of the Pharo tools.
We decided to take a neutral stand point and to let you decide if you code

Thttp://www.seaside.st

http://www.seaside.st
http://book.seaside.st
http://book.seaside.st
http://www.seaside.st

1.1

Building A Simple Contact Book Application

Contact Book - Nightly x
Contact Book ® %+
€ localhost p » =
My Contact Book
Name Email Photo
Clara Allende clari.allende@gmail.com

Edit Remove

Marcus Denker marcus.denker@inria.fr

Stéphane Ducasse stephane.ducasse@inria.fr

=1

New Session Configure Halos Profile Memory XHTML 0/0 ms

Figure 1.1 Screenshot of the finished contact book application.

first the tests, if you prefer to go slowly or not. This tutorial presents the

mandatory information so that you can get it done. Program it the way you
want.

Getting Seaside

In this tutorial, we use the Seaside web framework to define the views of our
application. Seaside must be loaded in the image to start using it. You have
several ways to obtain Seaside

+ either you start coding in the default pharo image and when needed
you open the Catalog browser tool and search for Seaside. Install the
stable version. Since Seaside is large it can take a moment.

* You can also download a pre-installed version of Seaside available at
https://ci.inria.fr/pharo-contribution/job/Seaside/ but you will need to mi-
grate your code to this new image. This is easy with the code version-
ing control system: save from the current image to a code repository
and load from the Seaside ready image from this repository. We prefer
the second version.

The Model

The contact book is composed of two model classes: Contact and Contact-
Book. Let us start with the Contact class.

https://ci.inria.fr/pharo-contribution/job/Seaside/

1.1 The Model

The Contact Class

A contact has two instance variables fullname and email, both strings. Cre-
ate the Contact class with its instance variables:
[Object subclass: #Contact

instanceVariableNames: 'fullname email'

classVariableNames: ''

package: 'ContactBook'

It should be possible to create a new contact by executing the following code:

contact := Contact newNamed: 'Marcus Denker' email:
'marcus.denker@inria.fr'.

It means that we send a message (newNamed:email:) to the class Contact
itself and that it should return a Contact instance.

Add the newNamed:email: class method in the instance creation pro-
tocol of the Contact class. To define a class method, pay attention that you
should browse the class side of the Contact class.
Contact class >> newNamed: aNameString email: anEmailString
* self new
fullname: aNameString;
email: anEmailString;
yourself

Adding a Test

You can now define a test (in the tests protocol) to make sure that you can
create an instance and that it contains the right information.

[TestCase subclass: #ContactTest
instanceVariableNames: ''
classVariableNames: ''
package: 'ContactBook'

[ContactTest >> testCreation

| contact |

contact := Contact newNamed: 'Marcus Denker' email:
'marcus.denker@inria.fr'.

self assert: contact fullname = 'Marcus Denker'.

self assert: contact email = 'marcus.denker@inria.fr'.

For this test to work you need to define the following methods (in the ac-
cessing protocol).

Contact >> fullname

~ fullname

Contact >> fullname: aString
fullname := aString

Building A Simple Contact Book Application

Contact >> email
~ email

Contact >> email: aString
email := aString

Run the test to make sure it passes. It is a good idea to version your code and
save the image.

Further extensions. You can add some extra logic to make sure that the
name is not surrounded by space. In addition handling whether you take
care of note about lowercase and uppercase should be addressed. You can
use messages such as asLowercase to, for example, store only lowercased
strings.

Enhancing Object Textual Interface

If you inspect or print the contact variable created above, you will see that
the string representation of this Contact instance is "a Contact" which
says nothing about the contact itself. This is problematic when debugging
and developers typically appreciate nicer string representations. You can
change that by overriding the method Object>>printOn: (in the printing
protocol) in the Contact class and sending several nextPutAll: messages to
the stream argument as follows:

Contact >> printOn: aStream
aStream
nextPutAll: self fullname;
nextPutAll: ' <';
nextPutAll: self email;
nextPutAll: '>'

The string representation of the above contact variable will then be:

['Marcus Denker <marcus.denker@inria.fr>"'

Class Comment and Saving

We hope you didn’t forget to add a comment to the Contact class. If you did,
here is a possible one:

I represent a person with a name and an email address. I'm usually
part of a contact book.

Note that in a real application, it might be better to use an Email class to
represent a contact’s email address.

Save your image and save the code using the version control browser (Monti-
cello Browser).

1.1 The Model

The Contact Book Class

A contact book contains a collection of Contact instances:
Object subclass: #ContactBook
instanceVariableNames: 'contacts'
classVariableNames: ''
package: 'ContactBook'

Initializing Contact Books

To initialize the contacts variable to an empty collection, you can either
define an initialize method (that is automatically invoked at instance-
creation time) or use lazy initialization. The following code uses lazy initial-
ization. Add this method in the accessing protocol. Pay attention that with
lazy initialization, you should systematically use accessors else you could ac-
cess to a variable not well-initialized.
ContactBook >> contacts

~ contacts ifNil: [contacts := OrderedCollection new]

It should be possible to add and remove contacts from the collection. Add the
necessary methods in the action protocol:

ContactBook >> addContact: aContact
self contacts add: aContact

ContactBook >> removeContact: aContact
self contacts remove: aContact

Add tests. Define some tests to cover the addition and removal of contacts.
You will see in particular that the definition for removeContact: is not that
robust when we want to remove a contact that is not in the collection: Re-
moving an unexisting contact raises an error. Change the definition of the
removeContact: method (check other remove: methods in collection) and
define a test that covers this particular aspect.

Providing a Default Contact Book

To simplify further development, we define a default contact book with pre-
defined contacts inside. We do this by adding the method createDefault as
a class method to the 'default instance’ protocol of ContactBook class:

[ContactBook class >> createDefault
~ self new
addContact: (Contact
newNamed: 'Damien Cassou'
email: 'damiengcassou.me');
addContact: (Contact
newNamed: 'Marcus Denker'

1.2

Building A Simple Contact Book Application

email: 'marcus.denker@inria.fr');
addContact: (Contact
newNamed: 'Tudor Girba'
email: 'tudor@tudorgirba.com');
addContact: (Contact
newNamed: 'Clara Allende'’
email: 'clari.allende@gmail.com');

yourself

Don’t forget to comment the class and to save your image and version your
code.

A First Web View

Now that we have the model, we need a web view. We will use Seaside for
that. Seaside is a component framework: Seaside web applications are built
by aggregating components. Typically, an application consists of a top-level
component delegating parts of its rendering to sub-components. Let us de-
fine a first simple component.

Defining the WAContactBook Component

Our simple application consists of a top-level component represented by the
WAContactBook class, subclass of WAComponent. Create the WAContactBook
class with a contactBook instance variable:
WAComponent subclass: #WAContactBook

instanceVariableNames: 'contactBook'

classVariableNames: "'

package: 'ContactBook'

Rendering a Title

Every Seaside component class must override the renderContentOn: method
to specify how a component is rendered. Define this method in the render-
ing protocol:

WAContactBook>>renderContentOn: html
"Main entry point of the view. Render a title."

html heading
level: 1;
with: 'My Contact Book'.

The method argument htm1l acts as a canvas that can emit adequate HTML
code. Above code asks the heading brush to the canvas and uses it to emit
this HTML code: <h1>My Contact Book</h1>. Seaside abstracts you from
the details of the syntax of the HTML expressions.

1.2 A First Web View

Contact Book - Nightly x

Contact Book ® | 4

€ localhost »

My Contact Book

New Session Configure Halos Profile Memory XHTML 0/0 ms

Figure 1.2 Screenshot of the contact book application title

Remark. It is not a good style to generate component UI using directly
HTML commands representing styles (table, section...). Usually developers
emit tags that map with css class tags provided by an application designer.
We will show you that later.

Registering our ‘App’

The next step is to register the WAContactBook class to the /contacts URL
path. This way you will be able to reach the application at http://localhost:
8080/contacts. Do this by implementing an initialize class method in WA-
ContactBook class(class initialization protocol):

WAContactBook class >> initialize
WAAdmin register: self asApplicationAt: 'contacts'.

An initialize class method is executed when the class is loaded in mem-
ory. Because our class is already loaded, we should execute it once manually.
Write and execute this code, as method comment or in the Playground for
example:

[WAContactBook initialize

Starting the Server

The last step before getting something on the web browser is to start the
web server. Open the Seaside control panel tool (open the Pharo menu
and go to the Tools sub-menu). Now, add a ZnZincServerAdaptor by right-
clicking on the top pane and choosing Add adaptor. ... When prompted,
choose a port, for example 8080 and press Start.

Open your favorite web browser on http://localhost:8080/contacts and you
should see something similar to Figure 1.2. Currently, the title of the web

http://localhost:8080/contacts
http://localhost:8080/contacts
http://localhost:8080/contacts

Building A Simple Contact Book Application

page is "Seaside”, as we can see it in the web browser window title and the
tab title. This can be changed by overriding the updateRoot: method (in the
updating protocol):

WAContactBook >> updateRoot: anHtmlRoot
super updateRoot: anHtmlRoot.
anHtmlRoot title: 'Contact Book'

You can refresh the page in the web browser to see the result.

Accessing the Model

Now we define some methods to access to the model from the view. We de-
fine them in the accessing protocol:

[wAContactBook >> contacts
~ self contactBook contacts

[WAContactBook >> contactBook
* contactBook ifNil: [contactBook := ContactBook createDefault

]

In the ’iterating’ protocol add the method contactsDo:

[WAContactBook >> contactsDo: aBlock
self contacts do: aBlock

This contactsDo: method is not as useless as it might seem. This method
hides the existence of a contactBook collection and could be useful later to
replace the collection by a database.

Rendering a Table of Contacts

Below the title, we want a table containing the contacts of the contact book.
For this, we need to change the renderContentOn: method and add a few
new messages. We will decompose the behavior in several methods to facili-
tate understanding.

[WAContactBook >> renderContentOn: html
"Main entry point of the view. Render both a title and the list
of contacts.”

html heading

level: 1;

with: 'My Contact Book'.
self renderContactsOn: html

We just used a new method named renderContactson: (all rendering meth-
ods should be put in the rendering protocol). The method renderContact-
sOn: defines a table with a header and delegates the rest of the rendering to
the method renderContact:on:.

1.3

1.3 Improving the View with Twitter Bootstrap

Contact Book = Nightly x

Contact Book x | %

€ localhost = »

My Contact Book

Name Email
Clara Allende clari.allende@gmail.com
Damien Cassou damien@cassou.me
Marcus Denker marcus.denker@inria.fr
Tudor Girba tudor@tudorgirba.com

Mew Session Configure Halos Profile Memory XHTML 0/0 ms

Figure 1.3 Screenshot of a contact book contacts.

[wAContactBook >> renderContactsOn: html
html table: [
html tableHead: [
html
tableHeading: 'Name';
tableHeading: 'Email' 1].
self contactsDo: [:contact | self renderContact: contact on:
html] 1]

The method renderContact:on: defines the rendering of a single contact in
a table row.
WAContactBook >> renderContact: aContact on: html
html tableRow: [
html
tableData: aContact fullname;
tableData: aContact email]

As we saw, the renderContentOn: method delegates the table rendering
to the renderContactsOn: method. The latter creates a table with a head-
ing row and delegates the contact rendering to the renderContact:on:
method. This method renders a table row with the contact’s details.

Refreshing the web browser should now show a list of contacts as can be seen
in Figure 1.3.
Improving the View with Twitter Bootstrap

The rendering can be visually improved by adding some Cascading Style
Sheets (CSS). In the following, we use the Twitter Bootstrap framework? that

Zhttp://getbootstrap.com/

http://getbootstrap.com/
http://getbootstrap.com/

Building A Simple Contact Book Application

must be loaded in the image. It is loaded by default in the Seaside distribu-
tion. If not, open the Catalog browser tool and search for Bootstrap. Install the
stable version.

Declaring Twitter Bootstrap Use

The contact book application must declare its dependency on Bootstrap. This
is done by modifying the initialize class method:

WAContactBook class >> initialize
(WAAdmin register: self asApplicationAt: 'contacts')
addLibrary: JQDeploymentLibrary;
addLibrary: TBSDeploymentLibrary

Execute this method manually again:

[WAContactBook initialize

Using Twitter Brushes

The Seaside version of Bootstrap defines some special brushes as messages
(such as thsContainer: and thsTable) to improve the application render-
ing. We now adapt our existing code to use these methods:

[WAContactBook >> renderContentOn: html
"Main entry point of the view. Render both a title and the list
of contacts.”

html
tbsContainer: [
html heading
level: 1;
with: 'My Contact Book'.
self renderContactsOn: html]

[wAContactBook >> renderContactsOn: html
html tbsTable: [
html tableHead: [
html
tableHeading: 'Name';
tableHeading: 'Email' 1].
self contactsDo: [:contact | self renderContact: contact on:
html 1]

As you can see, the adaptation consisted in adding a container with tbsCon-
tainer: andreplacing a table: by a tbsTable: message.

The result in Figure 1.4 already looks much nicer. However, in a real applica-
tion, it is recommended to avoid Bootstrap specific methods such as tbsCon-
tainer: and thsTable: but to use Bootstrap mixins instead. We explained
the idea in Section 1.6.

10

1.4 Adding Photos

Contact Book = Nightly x

Contact Book ® | o4

€ localhost C » =
Name Email
Clara Allende clari.allende@gmail.com
Damien Cassou damien@cassou.me
Marcus Denker marcus.denker@inria.fr
Tudor Girba tudor@tudorgirba.com

MNew Session Configure Halos Profile Memory XHTML 0/0 ms

Figure 1.4 Screenshot of the contact book application with bootstrap.

1.4 Adding Photos

We now improve the contact book application by displaying photos next to
each contact. We fetch these photos automatically from the web using Gra-
vatar®. Gravatar provides a web API* to retrieve a photo from an email ad-
dress:

Contact >> gravatarUrl
* 'http://www.gravatar.com/avatar/', (MD5 hashMessage: email
trimBoth asLowercase) hex, '.jpg'

For example, for marcus.denker@inria.fr, the Gravatar URL is:

['http://www.gravatar.com/avatar/c147c32f94baa71afa9d7be0a289766d.jpg'

The web application must be adapted with a new column for the photos:

[wAContactBook >> renderContactsOn: html
html tbsTable: [
html tableHead: [
html
tableHeading: 'Name';
tableHeading: 'Email';
tableHeading: 'Photo' 1.
self contactsDo: [:contact | self renderContact: contact on:
html 1]

[wAContactBook >> renderContact: aContact on: html
html tableRow: [

3http://gravatar.com/
“4http://en.gravatar.com/site/implement/

1

http://gravatar.com/
http://gravatar.com/
http://en.gravatar.com/site/implement/
mailto:marcus.denker@inria.fr
http://gravatar.com/
http://en.gravatar.com/site/implement/

Building A Simple Contact Book Application

Contact Book

Name

Clara Allende

Damien Cassou

Marcus Denker

Tudor Girba

€ localhost

Contact Book = Nightly

My Contact Book

Email

clari.allende@gmail.com

damien@cassou.me

marcus.denker@inria.fr

tudor@tudorgirba.com

MNew Session Configure Halos Profile Memory XHTML 0/0 ms

»

Photo

Jo

2

Figure 1.5 Screenshot of the contact book application with photos

html

tableData:

tableData: aContact name;
tableData: aContact email;
[self renderPhotoOf: aContact on: html]]

[wAContactBook >> renderPhotoOf: aContact on: html
html image url: aContact gravatarUrl

The result in Figure 1.5 contains a new column for the contact photos, auto-
matically fetched from a web service.

1.5 Adding Actions

We now add buttons to add a new contact and to remove and edit an existing

contact.

Adding a Remove Button

We first add a remove button on each contact line in the table.

12

1.5 Adding Actions

[wAContactBook >> renderContact: aContact on: html
html tableRow: [
html
tableData: aContact name;
tableData: aContact email;
tableData: [self renderPhotoOf: aContact on: html];
tableData: [self renderRemoveButtonForContact: aContact on: html

]

[wAContactBook >> renderRemoveButtonForContact: aContact on: html
html tbsButton
beDanger;
callback: [self contactBook removeContact: aContact];
with: 'Remove’

You can refresh the page in the web browser and you will see the remove
buttons. However, none of them will work because an HTML form must wrap
the buttons. This can be done by modifying the renderContentOn: method
again and add tbsForm::

[WAContactBook >> renderContentOn: html
"Main entry point of the view. Render both a title and the list of
contacts.”

html
tbsContainer: [
html heading
level: 1;
with: 'My Contact Book'.
html tbsForm: [self renderContactsOn: html]]

The remove buttons should now work fine.

Add/Edit new Contact

Implementing buttons to add a new contact or edit an existing one is a bit
more involving because it requires creating a new component to edit the
contact fields as in Figure 1.6.

Creating a new Component

We know create a component to be able to edit a contact. This is typically
such task that the use of a system like Magritte can avoid. Create a new sub-
class of WAComponent which contains a contact instance variable.

WAComponent subclass: #WAContact
instanceVariableNames: 'contact
classVariableNames: ''
package: 'ContactBook'

13

Building A Simple Contact Book Application

Seaside - Nightly x
| Seaside x| 4

€ localhost c »

Contact Editing

Fullname

Stéphane Ducasse

Email

stephane.ducasse@inria.fr

Mew Session Configure Halos Profile Memory XHTML 2/6 ms

Figure 1.6 Screenshot of the contact editor.

We define a class method editContact: to set the corresponding contact.

WAContact class >> editContact: aContact
~ self new
setContact: aContact;
yourself

This time we do not use lazy initialization but we initialize the object by spe-
cialising the method initialize.

[wAContact >> initialize
super initialize.
contact := Contact new.

[wWAContact >> setContact: aContact
contact := aContact

WAContact >> contact
" contact

Rendering a Contact

We define a new method renderContentOn: for the class WAContact

WAContact >> renderContentOn: html
html tbsContainer: [
html heading with: Contact Editing'.
html tbsForm with: [
self renderFieldsOn: html] 1]

14

1.5 Adding Actions

WAContact >> renderFieldsOn: html
self renderFullnameFieldOn: html.
self renderEmailFieldOn: html

The method renderFullnameFieldOn: and renderEmailFieldOn: both
render a label and an input field.

Fields

Here is the renderFullnameFieldOn: method:

[wAContact >> renderFullnameFieldOn: html
html tbsFormGroup: [

html label: 'Fullname'.

html textInput
tbsFormControl;
placeholder: 'fullname';
callback: [:value | self contact fullname: value];
value: (self contact fullname ifNil: '') 1]

The tbsFormGroup: method is a Bootstrap method to visually group a label
and an input field together. Sending the textInput message to html creates
a new text input. The other messages configure it:

* tbsFormControl adds Bootstrap-specific HTML markup;

« placeholder: adds a ghost text indicating the purpose of the field and
expected value that the user is expected to enter;

+ callback: attaches some code to be executed when the form is vali-
dated: the first parameter of the block is the value typed in the input
field;

+ value: writes a default value in the field.

The renderEmailFieldOn: is very similar:

[wAContact >> renderEmailFieldOn: html
html tbsFormGroup: [
html label: 'Email'.
html emaillnput
tbsFormControl;
placeholder: 'youraemail.eu';
callback: [:email | self contact email: email address];
value: (self contact email ifNil: '') 1]

The only difference with renderFullnameFieldOn: lies in the fact that the
input field is dedicated to entering email addresses (the textInput message
has been replaced by the emailInput message). In the callback: block, the
parameter email is an instance of WAEmailAddress: it is necessary to send
the message address to this object to get a string.

15

Building A Simple Contact Book Application

Save/Cancel Buttons

We now need to add 2 buttons: one to save the changes and one to cancel the
changes. We introduce the message renderButtonsOn: in the WAContact as
follows:

[wAContact >> renderContentOn: html
html tbsContainer: [
html heading with: 'Contact Editing'.
html tbsForm with: [
self renderFieldsOn: html.
self renderButtonsOn: html] 1.

Then we define the corresponding methods as follows:

[wAContact >> renderButtonsOn: html
html tbsFormGroup: [
html tbsButtonGroup: [
self
renderSubmitButtonOn: html;
renderCancelButtonOn: html]]

[wAContact >> renderSubmitButtonOn: html
html tbsSubmitButton
beSuccess;
bePrimary;
callback: [self answer: self contact];
with: 'Save'

It is important to see that the callback of the submit button is using the mes-
sage answer :. This message is part of the call: and answer: protocol of
Seaside. call: schedules a component and answer: unschedule it and re-
turn a value to the caller.
WAContact >> renderCancelButtonOn: html
html tbsButton

beDanger;

cancelCallback: [self answer: nil];

with: 'Cancel’

In the cancel button, we use answer: nil, since there is no value returned.

still the component (here the editor) should be closed.

Adding the Add/Edit Buttons to the ContactBook

The last piece of the puzzle is the addition of the add and edit buttons on the
contact book component.

Edit Button

We start with the edit button, at the end of each contact row in the table:

16

1.5 Adding Actions

[wAContactBook >> renderContact: aContact on: html
html tableRow: [
html
tableData: aContact fullname;
tableData: aContact email;
tableData: [self renderPhotoOf: aContact on: html];
tableData: [self renderButtonsForContact: aContact on:
htmt] 1]

[wAContactBook >> renderButtonsForContact: aContact on: html
html tbsButtonGroup: [
self
renderEditButtonForContact: aContact on: html;
renderRemoveButtonForContact: aContact on: html]

[wAContactBook >> renderEditButtonForContact: aContact on: html
html tbsButton
beSuccess;
callback: [self call: (WAContact editContact: aContact) 1;
with: "Edit'

In the edit button callback, the message call: is sent to self to temporarily
replace the contact book component by the contact editor. When the contact
editor sends answer: to itself (in WAContact>>renderSubmitButtonOn:
and WAContact>>renderCancelButtonOn:), the control flow comes back to
this button’s callback.

Adding the Add new Button

The add new contact button is as simple: We add a message renderGlobal-
ButtonsOn:.

[wAContactBook >> renderContentOn: html
"Main entry point of the view. Render both a title and the list
of contacts."

html tbsContainer: [
html heading
level: 1;
with: 'My Contact Book'.
html tbsForm: [
self renderContactsOn: html.
self renderGlobalButtonsOn: html]]

The method renderGlobalButtonsOn: defines a simple button.

WAContactBook >> renderGlobalButtonsOn: html
html tbsButtonGroup: [
html tbsButton
beSuccess;
callback: [self addContact 1;

17

1.6

L

Building A Simple Contact Book Application

with: 'New contact']

WAContactBook >> addContact
(self call: WAContact new)
ifNotNil: [:contact | contactBook addContact: contact]

The message call: returns the same object that was returned by the corre-
sponding message answer: (in WAContact>>renderSubmitButtonOn: and
WAContact>>renderCancelButtonOn:). Because pressing the cancel button
in the contact editor passes nil to answer:, the message call: may return
nil. If call: returns something different, it will be a new contact which
should be added to the contact book.

You should now get the same result as in Figure 1.1.

About using Bootstrap tags

Now as we mentioned before when using the Seaside tags tbs we are pro-
moting a bad practice. We did so because we did not want to spend time ex-
plain CSS and HTML. But you should really change your code.

We are adding styling to the places where it should not be and we are break-
ing the idea that the code and its display should be separated. You can read
the following blog to get a deeper view on it: http://ruby.bvision.com/blog/
please-stop-embedding-bootstrap-classes-in-your-html

Here is a summary
The argument is that having html code like this:

<div class="row">
<div class="span6">...</div>
<div class="span6">...</div>
</div>

goes against the separation of rendering and content that CSS is supposed
to bring. Adding all those bootstrap classes everywhere in the HTML is not
better than adding <table> tags to layout web pages.

The solution is to use SCSS/SASS/Less mixins to add sanity to your html.
Something like:

<div class="book-previews">
<div class="book-preview">...</div>
<div class="book-preview">...</div>
</div>

and the SCSS/SASS/Less stylesheet:

.book-previews {
.makeRow(); // Mixin provided by Bootstrap

18

http://ruby.bvision.com/blog/please-stop-embedding-bootstrap-classes-in-your-html
http://ruby.bvision.com/blog/please-stop-embedding-bootstrap-classes-in-your-html

1.7 Summary

1.7 Summary

During this tutorial we defined a simple model and two simple web views.
We could have written tests and implement methods in the debugger while
the application is running. Pharo developers often prefer to write code in the
debugger because they go faster and the execution provides objects to play
with.

Further Development

As you see the current functionality is rather limited, here is a list of possible
extensions.

+ Add more information to describe a contact. For this we suggest that
you use Magritte (Magritte is a framework to describe data and its Sea-
side extension defines automatically Seaside component). You can
read the Magritte chapter in the book as well as the Magritte tutorial
available at https://github.com/SquareBracketAssociates/PharolnProgress.
With Magritte, the components such as our ==WAContact= are auto-
matically generated.

Use Twitter mixin class tags instead of hardcoded brushes.

Save and load contacts in an external format such as JSON or STON
(STON is a Pharo object notation format. It is by default in Pharo 50).

Save the contacts in a MongoDB using the Voyage framework (Check
the chapters available on http://books.pharo.org)

Deploy your application on http://www.pharocloud.com - It usually takes
3 min.

19

https://github.com/SquareBracketAssociates/PharoInProgress
http://books.pharo.org
http://www.pharocloud.com

	Building A Simple Contact Book Application
	About development style
	Getting Seaside

	The Model
	The Contact Class
	Adding a Test
	Enhancing Object Textual Interface
	Class Comment and Saving

	The Contact Book Class
	Initializing Contact Books
	Providing a Default Contact Book

	A First Web View
	Defining the WAContactBook Component
	Rendering a Title
	Registering our 'App'
	Starting the Server
	Accessing the Model
	Rendering a Table of Contacts

	Improving the View with Twitter Bootstrap
	Declaring Twitter Bootstrap Use
	Using Twitter Brushes

	Adding Photos
	Adding Actions
	Adding a Remove Button
	Add/Edit new Contact
	Creating a new Component
	Rendering a Contact
	Fields
	Save/Cancel Buttons

	Adding the Add/Edit Buttons to the ContactBook
	Edit Button

	Adding the Add new Button

	About using Bootstrap tags
	Summary
	Further Development

