
Runtime Architecture
Damien Cassou, Stéphane Ducasse and Luc Fabresse

W6S06

http://www.pharo.org

http://www.pharo.org


Execution Model

Pharo virtual machine (VM) executes compiled code
 The virtual machine and its plugins are platform specific

(different versions for different OSes)
 VMs exist for MacOS, Windows, Linux (different versions),

iOS, ARM, Android

W6S06 2 / 13



Multiple Stage Compilation

1. Pharo code is compiled to bytecodes (platform neutral
instructions)

2. The virtual machine dynamically transforms bytecodes to
assembly

W6S06 3 / 13



Virtual Machine

 Pharo.exe, Pharo.app... are the virtual machines
 There are two modes:

◦ from command-line or in interactive (UI) mode
 It executes compiled code / generates on the fly assembly
 Compiled code is packaged/stored in an image (memory

snapshot)
 The virtual machine only needs the image to execute

programs

W6S06 4 / 13



Image Files: Memory Snapshots

.image files is a cache of objects:
 Simple objects (points, strings ...)
 But also compiled classes and

compiled methods
 Each time we save the image, all

objects are saved to disc
 At startup we get back all the

objects we saved
 PC (program counter) is also

saved and restored
◦ frozen execution is restarted at

launch time

W6S06 5 / 13



Change Files: Change Tape

.changes file is a tape of all the changes performed to the
system
 Logs class creation/deletion, method addition/removal,

actions...
 Used to browse versions
 Can replay/undo actions

A change is associated to an image
 To display class/method definition, tools look in the

changes file associated to the current image

W6S06 6 / 13



Image/Change Files
 A change is associated to an image
 Image contains all the objects in binary form. Can be

executed without the changes file
 Changes file simply contains the textual representation of

the changes made to the image

W6S06 7 / 13



Save your code using a package and version
control system

 Change and image are handy to develop
 But they are not a software engineering artefact
 Always have a loading script that takes an image, load your

code, run the tests, build your application
 Usually

◦ save code using a Version Control System (monticello,
git)

◦ use an integration server to build automatically
applications

W6S06 8 / 13



About the Source/Changes Files

PharoXX.sources
 Contains the textual

definition of system
classes and
predefined objects

 Is read-only
 Created during

release of new Pharo
versions

 Shared to all the
users (images)

W6S06 9 / 13



When you Define New Classes

During development or
code loading
 New objects are

compiled in the image
 New definitions are

added to the changes
file

 Still you can browse
the definition of the
system class (stored
in the
PharoXX.sources)

W6S06 10 / 13



Change Management

 Tools>Code Changes
◦ relies on the changes file and the recording mechanism
◦ support replay changes

 Tools>Iceberg
◦ Integration with Git and other modern distributed version

control systems
 New ways to produce images (e.g. Bootstrapping)

W6S06 11 / 13



Conclusion

 Powerful deployment
 Fast boot-time
 Support micro commits
 Modern version control

W6S06 12 / 13



A course by

and

in collaboration with

Inria 2020

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

