Runtime Architecture

Damien Cassou, Stéphane Ducasse and Luc Fabresse

Phar®

http://www.pharo.org

http://www.pharo.org

Execution Model

Pharo virtual machine (VM) executes compiled code
e The virtual machine and its plugins are platform specific
(different versions for different OSes)

e VMs exist for MacOS, Windows, Linux (different versions),
i0S, ARM, Android

2
» W6S06 2/13

Multiple Stage Compilation

1. Pharo code is compiled to bytecodes (platform neutral
instructions)

2. The virtual machine dynamically transforms bytecodes to
assembly

%
»~ W6S06 3/13

Virtual Machine

Pharo.exe, Pharo.app... are the virtual machines

There are two modes:

o from command-line or in interactive (Ul) mode

It executes compiled code / generates on the fly assembly
Compiled code is packaged/stored in an image (memory
snapshot)

The virtual machine only needs the image to execute
programs

2
» W6S06 4/13

Image Files: Memory Snapshots

2

mage files is a cache of objects:

Simple objects (points, strings ...)

But also compiled classes and
compiled methods

Each time we save the image, all %
objects are saved to disc §
At startup we get back all the 5

objects we saved

PC (program counter) is also
saved and restored

o frozen execution is restarted at
launch time

W6S06 5/13

image

A world of objects

0100100011100
0100100011100
0100100011100f

saved image

A world of objects

0100100011100
0100100011100
0100100011100}

Pharo Virtual Machine

Operating System

Change Files: Change Tape

.changes file is a tape of all the changes performed to the
system

e Logs class creation/deletion, method addition/removal,
actions...
e Used to browse versions

e Can replay/undo actions
A change is associated to an image

e To display class/method definition, tools look in the
changes file associated to the current image

2
» W6S06 6/13

Image/Change Files

e A change is associated to an image

e Image contains all the objects in binary form. Can be
executed without the changes file

e Changes file simply contains the textual representation of
the changes made to the image

Image Changes

A world of objects Object subclass: #Node
Node >> send:

Object subclass: #Counter

0100100011100 Counter >> increase
0100100011100 Counter >> decrease
0100100011100 Node >> accept:

Object subclass: #Packet

Pharo Virtual Machine

Operating System

2
» W6S06 7/13

Save your code using a package and version
control system

Change and image are handy to develop
But they are not a software engineering artefact
Always have a loading script that takes an image, load your
code, run the tests, build your application
Usually
o save code using a Version Control System (monticello,
it
° 8529 an integration server to build automatically
applications

%
» W6S06 8/13

About the Source/Changes Files

PharoXX.sources

Contains the textual
definition of system
classes and
predefined objects

Is read-only
Created during

release of new Pharo
versions

Shared to all the
users (images)

W6S06 9/13

e m e

system objects

0100100011100
0100100011100
0100100011100

Pharo Virtual Machine

Operating System

nil subclass: #Object
Object subclass: #Array
Object subclass: #Set
Array >> at: anindex

Array >> at: anindex put: aValue

source40

image with system objects

When you Define New Classes

During development or
code loading

. (Obj lass: #N
° New ObJeCtS are Obiject subclass: #Node

E Node >> send:
compiled in the image ; new objects —>
* New definitions are i system objects | changes .
added to the changes |
file nil subclass: #Object
Object subclass: #Array
o Still you can browse 03?88?8831:?80 [Object subclass: #Set
.y 0100100011100 Array >> at: anindex
the definition of the Pharo Virtual Machine
system class (stored Array >> at: anindex put: aValue
in the Operating System
source40
PharoXX.sources) image with new objects

2
»~ W6S06 10/13

Change Management

e Tools>Code Changes

o relies on the changes file and the recording mechanism
o support replay changes

e Tools>Iceberg

o Integration with Git and other modern distributed version
control systems

e New ways to produce images (e.g. Bootstrapping)

%
»~ W6S06 11/13

Conclusion

Powerful deployment
Fast boot-time

Support micro commits
Modern version control

%
»~ W6S06 12/13

A course by

v d

Universite de Technologie
Ouverte Pluripartenaire

in collaboration with

i

unis| (it

Université Numérique ==
Ingénierie et Technologie

L\

i
\\\

Université 'u’
de Lille IMT Lille Douai

Ecole Mines-Télécom
IMT-Université de Lille

@®@@ Inria 2020
BY NC ND

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

